Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Mishra, Geetanjali
- Food Resource Exploitation in Ladybirds:Consequences of Prey Species and Size
Abstract Views :119 |
PDF Views:18
Authors
Affiliations
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
Source
Current Science, Vol 110, No 7 (2016), Pagination: 1343-1349Abstract
In the present study, preference between larger and smaller instars of Acyrthosiphon pisum and Aphis craccivora by small and large female variants of ladybirds Menochilus sexmaculatus and Propylea dissecta has been investigated. Results reveal that both ladybird species consumed smaller prey, A. craccivora over larger prey, A. pisum when kept individually and/or in combination. Although small and large female variants of both ladybird species consumed smaller and larger instars of A. craccivora respectively, they preferred smaller instars of A. pisum. Similar results were also recorded within combinations. Thus, food resource exploitation in both ladybirds is due to both prey species and size.Keywords
Aphids, Food Resource Exploitation, Ladybirds, Prey Species and Size Resource Polymorphism.- Ethnopharmacological Story of Guggul Sterones:An Overview
Abstract Views :71 |
PDF Views:0
Authors
Affiliations
1 Department of Pharmacology, Columbia Institute of Pharmacy, Tekari, Near Vidhan Sabha, Raipur -493111 Dist-Raipur (C.G.), IN
2 University Department of Pharmaceutical Sciences, Utkal University, Vanivihar, Bhubaneswar, Odisha-751004, IN
3 School of Pharmaceutical Education and Research, Berhampur University, Odisha-760007, IN
1 Department of Pharmacology, Columbia Institute of Pharmacy, Tekari, Near Vidhan Sabha, Raipur -493111 Dist-Raipur (C.G.), IN
2 University Department of Pharmaceutical Sciences, Utkal University, Vanivihar, Bhubaneswar, Odisha-751004, IN
3 School of Pharmaceutical Education and Research, Berhampur University, Odisha-760007, IN
Source
Research Journal of Pharmacognosy and Phytochemistry, Vol 9, No 3 (2017), Pagination: 182-188Abstract
Medicinal plants have played an important role throughout the world in treating and preventing human diseases, commiphora wightii is an important medicinal plant of herbal heritage of India. Guggul is obtained from commiphora mukul which belong to the Family, Burseraceae . C. mukul occurs in north east Africa, Somali and southern Arabia , in India it is found in Gujrat, Mysore , Bengal, M. Pradesh , Desert of Rajastasthan a list of few Commiphora species C. Mukul, C. Myrrh , C. Stocksiana Engl, C. Caudate Engl. etc, Guggul tree is small ,1.2-1.8 m high. Each plant yield about one kilogram of the product which is collected in cold Season, isolation of guggul sterons , extract with EtOAC yield soluble fraction and insoluble fraction, soluble fraction consist of 45% gum resin while 55% insoluble fraction contains carbohydrate, there is no any therapeutic property reported. Guggul lipid has active ingredients like Ketosteroids cis and trans is also known as sterones. guggulsterone-I, II, III, IV, V, VI, myrcene, dimyrcene, bioactive compounds in extract of mukul reported are dimyrcene, 15 α- camphorene. 16 linoleic, oleic, stearic, palmitic acid, sitosterol etc. It is therapeutically used in obesity hyperlipidaemia, arthritis, coronary thrombosis, cardiac disorders, diabetes, tumours, thyroid disorders, hepatic obstructions and weakness pharyngitis etc. Marketed formulation of Guggul triphala Guggul, Yougaraja Guggul, kaishora gugguln, Navaka guggul etc.Keywords
Commiphora Mukul, Chemistry, Guggul Lipid, Therapeutic Uses.References
- Singh A, Chawhan ES, Tiwari A. Phytochemical Screening Of Commniphora Mukul Seeds And Bark Powder-A Comparative Studies. International Journal for Innovative Research in Science and Technology. 2016 : 2(9):157-9.
- Bhardwaj Shivangi, Renuka, Shukla VJ.Optimization of mobile phase by simplex method with special reference to guggulu (commiphora wightii). International Journal of Pharmacy. 2014:4(3): 129-134.
- Xiao M, Xiao D. Gugulipid, an Extract of Ayurveda Medicine Plant Commiphora Mukul as a potent agent for cancer chemoprevention and cancer chemotherapy. Medicinal chemistry. 2012 :2(6):1-2.
- Dubey D, Prashant K, Jain SK. In-vitro antioxidant activity of the ethyl acetate extract of gum guggul (Commiphora mukul). In Biological Forum-An Int. J. 2009: 32-35.
- Krishnamurthy G, Tiwari S K., Pandey Amit and Yadav SS. RAPD Markers for Genetic Diversity Assessment of Critically Endangered Medicinal Plant Commiphora wightii (Arn.) Bhandari. International Journal of Current Research in Biosciences and Plant Biology. 2015:2(8): 29-34.
- Vyas P, Joshi R. Assessment of molecular variations among different biotypes of Commiphora wightii (Arnott.) Bhandari, using RAPD markers. International Journal of Innovative Science, Engineering and Technology. 2015: 2(6):328-38.
- Goyal P, Chauhan A, Kaushik P. Assessment of Commiphora wightii (Arn.) Bhandari (Guggul) as potential source for antibacterial agent. Journal of Medicine and Medical Sciences. 2010:1(3):71-75.
- D.Kumar, Mishra DK and Sharma SK. Sharma Standardization of Agronomic Practices for Commiphora wightii (Arnott) Bhandari. An Important Medicinal Plant of Indian Desert Forestry Bulletin. 2012:12(2): 69-72.
- Ramesh B et al. Effect of Commiphora mukul gum resin on polyol pathway and intestine disaccharidases enzymes of insulin deficient and fructose fed insulin resistant rats. Indo American Journal of Pharma Research.2014: (12):1559-5906.
- Ramesh B, Saralakumari D. Antihyperglycemic, hypolipidemic and antioxidant activities of ethanolic extract of Commiphora mukul gum resin in fructose-fed male Wistar rats. Journal of physiology and biochemistry. 2012: 68(4):573-82.
- Agrawal N, Kumar A. In Recent era: Indication of Guggulu (Commiphora wightti) IN Human disorders. Medical Science Global Journal for Research Analysis.2015: 4(1):128-130.
- Dave R.P, Patel S. Gugulu plant of Jambudia vidi at Saurashtra region: A review of the medicinal evidences for its Remedial properties. Research and Review in bioscience. 2014:9(7): 231-236.
- Masten SA. Toxicological summary for gum guggul and some of its steroidal constituents. NTP/NIEHS, National Institutes of Health, US Department of Health and Human Services, Research Traingle Park, North Carolina. 2005:1-38.
- Azam Roohi, Mushtaq Shafia, Nisar Shubrin. Muqil (commiphora mukul) –a Wonder Drug inTraditional Medicine. International Journal of Institutional Pharmacy and Life Sciences .2015: 5(3):286-295.
- Singh DC, Dhyani S, Kaur G. A critical review on guggulu [Commiphora wightii (Arn.) Bhand.] and its miraculous medicinal uses. International Journal of Ayurveda and Pharma Research. 2015: 3(1).1-9.
- Sharma S, Kumar A. Traditional Uses of Herbal Medicinal Plants of Rajashthan: Guggal. International Journal of Life Science and Pharma Research. 2012:2(4):77-82.
- Poonia P, Mittal SK., Gupta V K, Singh J, Sweety. Gum Guggul: An Ayurvedic Boom. International Journal of Pharmacognosy and Photochemical Research 2014: 6(2): 347-354.
- Sagar PK. Adulteration and substitution in endangered, ASU herbal medicinal plants of India, their legal status, scientific screening of active phytochemical constituents. International Journal of Pharmaceutical Sciences and Research. 2014: 5(9):4023.
- Pragnesh N Dave1, Lakha V Chopda. Review on biological activity and determination of EandZGuggulsterones concentration by HPLC and HPTLC Methods. International Journal of Chemical Studies, 2013:1(3):166-170.
- Chaudhary GU. Pharmacological properties of Commiphora wightii arn. Bhandari–An overview. International Journal of Pharmacy and Pharmaceutical Sciences. 2012:4(3):73-5.
- Hanus LO, Rezanka T, Dembitsky VM, Moussaieff A. Myrrh-commiphora chemistry. Biomedical papers. 2005:149(1):3-28.
- Taru P, Abhyankar M, Undale V, Bhosale A. Acute and subacute toxicity studies on Shodhana processed guggul. International Journal of Pharmaceutical Sciences and Research. 2013 : 4(2):796.
- Jaiswal S, Bara J.K, Soni R,Saksena P, Medical uses of Commiphora Wightii. IOSR Journal of Nursing and Health Science 2016:5(5):76-81.
- Siddiqui MZ, Mazumder PM. Comparative study of hypolipidemic profile of resinoids of Commiphora mukul/Commiphora wightii from different geographical locations. Indian journal of pharmaceutical sciences. 2012:74(5):422.
- Ajay J Parikh, Krishna KL. Antiamnesic Activity of Guggul Extract on Scopolamine Induced Amnesia in Mice. International Journal of Pharmacy 2013; 3(2): 403-409.
- Ding X, Staudinger JL. The ratio of constitutive androstane receptor to pregnane X receptor determines the activity of guggulsterone against the Cyp2b10 promoter. Journal of Pharmacology and Experimental Therapeutics. 2005: 314(1):120-7.
- Brobst DE, Ding X, Creech KL, Goodwin B, Kelley B, Staudinger JL. Guggulsterone activates multiple nuclear receptors and induces CYP3A gene expression through the pregnane X receptor. Journal of Pharmacology and Experimental Therapeutics. 2004: 310(2):528-35.
- Claudel T, Staels B, Kuipers F. The Farnesoid X receptor a molecular link between bile acid and lipid and glucose metabolism. Arteriosclerosis, thrombosis, and vascular biology. 2005:25(10):2020-30.
- Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleogum resin of Commiphora wightii (Guggulu). Scientifica. 2015.1-14.
- Jain Anurekha, Gupta VB. Chemistry and Pharmacological Profile of Guggul a Review. Indian journal of Traditional Knowledge. 2006:5(4): 478-483.
- Barve K, Bhonsle N. Commiphora mukul Prevents Myocardial Dysfunction in Streptozotocin Induced Diabetic Rats. Pharmaceutical crops.2014:5:61-66.
- Sudhakara G, Ramesh B, Mallaiah P, Sreenivasulu N, Saralakumari D. Protective effect of ethanolic extract of Commiphora mukul gum resin against oxidative stress in the brain of streptozotocin-induced diabetic Wistar male rats. EXCLI J. 2012:11:576-92.
- Shishodia S, Aggarwal BB. Guggulsterone inhibits NF-κB and IκBα kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. Journal of Biological Chemistry. 2004: 279(45):47148-58.
- Ladybird, Menochilus Sexmaculatus (Fabricius) Can Survive o Oophagy but with Altered Fitness than Aphidophagy
Abstract Views :191 |
PDF Views:16
Authors
Affiliations
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
Source
Current Science, Vol 118, No 10 (2020), Pagination: 1602-1608Abstract
Egg consumption is common among insects, including ladybirds. The consumed eggs may be conspecific or heterospecific. Egg consumption eliminates potential competitors and provides additional nutrients for development and reproduction. In ladybirds, the incidence of cannibalism and intraguild predation has been proven as alternative tactics for the sustenance of life under prey-scarce condition. The consumption of conspecific eggs is known as cannibalism. Thus, in this study we have evaluated the effect of diets, viz. conspecific and heterospecific eggs along with aphids on egg consumption, developmental and reproductive attributes of a ladybird beetle, Menochilus sexmaculatus (Fabricius) (Coleoptera: Coccinellidae). We found that all the immature stages and adults prefer and consumed more conspecific eggs than heterospecific eggs possibly owing to low toxicity. Fourth instars and adult females consumed higher number of conspecific (82.15 ±4.94 and 85.04 ±0.05 respectively) and heterospecific eggs (56.61 ±0.44 and 60 ±0.48 respectively) than other life stages. Further the life stages developed faster on aphids followed by conspecific and heterospecific eggs. Besides aphids, overall maximum number of eggs was laid on conspecific eggs (84.00 ±1.92) followed by heterospecific eggs (67.70 ± 1.07). However, reverse trend was observed for per cent egg viability. Thus, with scarcity of primary prey (aphid), ladybirds consume and reproduce on conspecific/heterospecific eggs as alternative diets.Keywords
Aphidophagy, Egg Consumption, Ladybirds, Oophagy.References
- Kudo, S. I. and Nakahira, T., Effects of trophic-eggs on offspring performance and rivalry in a sub-social bug. Oikos, 2004, 107, 28– 35.
- Järnegren, J., Tobias, C. R., Macko, S. A. and Young, C. M., Egg predation fuels unique species association at deep-sea hydrocarbon seeps. Biol. Bull., 2005, 209(2), 87–93.
- Ochi, H., Sato, Y. and Yanagisawa, Y., Obligate feeding of cichlid eggs by Caecomastacembelus zebratusin Lake Tanganyika. J. Fish Biol., 1999, 54, 450–459.
- Denoël, M. and Andreone, F., Trophic habits and aquatic micro-habitat use in gilled immature, paedomorphic and metamorphic Alpine newts (Triturus alpestris apuanus) in a pond in central Italy. Belg. J. Zool., 2003, 133(2), 95–102.
- De Queiroz, A. and Rodriguez-Robles, J. A., Historical contingency and animal diets: The origin of egg eating in snakes. Am. Naturalist, 2006, 167, 682–692.
- Burger, J., Territory size differencesin relation to reproductive stage and type of intruder in herring gulls (Larus argentatus). Auk, 1980, 97(4), 733–741.
- Estrada, A., Rivera, A. and Coates-Estrada, R., Predation of artificial nests in a fragmented landscape in the tropical region of Los Tuxtlas, Mexico. Biol. Conserv., 2002, 106, 199–209.
- Omkar, Pervez, A. and Gupta, A. K., Why do neonates of aphido-phagous ladybird beetles preferentially consume conspecific eggs in presence of aphids? Biocontrol. Sci. Technol., 2006, 16(3), 233–243.
- Singh, S., Mishra, G. and Omkar, Oviposition in aphidophagous ladybirds: effect of prey availability and conspecific egg presence. Int. J. Trop. Insect Sci., 2019, 39, 107–104.
- Schausberger, P., Inter and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyriand Kampimo dromus aberrans(Acari: Phytoseiidae). Exp. Appl. Acarol., 1997, 21(3), 131–150.
- Kaplan, R. H. and Sherman, P. W., Intraspecific oophagy in California newts. J. Herpetol., 1980, 14(2), 183–185.
- Elgar, M. A. and Crespi, B. J.,Cannibalism: Ecology and Evolution among Diverse Taxa, Oxford University Press, Oxford, UK, 1992.
- Schausberger, P., Cannibalism amongphytoseiid mites: a review. Exp. Appl. Acarol., 2003, 29(3–4), 173–191.
- Pfennig, D. W., Ho, S. G. and Hoffman, E. A., Pathogen transmission as a selective force against cannibalism. Anim. Behav., 1998, 55(5), 1255–1261.
- Evans, E. W., Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies – a review. Eur. J. Entomol., 2008, 105, 369–380.
- Dixon, A. F. G., Insect Predator – Prey Dynamics, Ladybird Beetles and Biological Control, Cambridge University Press, Cambridge, 2000.
- Snyder, W. E., Joseph, S. B., Preziosi, R. F. and Moore, A. J., Nutritional benefits of cannibalism for the lady beetle Harmonia axyridis(Coleoptera: Coccinellidae) when prey quality is poor. Environ. Entomol., 2000, 29, 1173–1179.
- Yadav, T., Omkar and Mishra, G., Conspecific egg quality and distribution pattern do not affect life history traits of ladybird, Menochilus sexmaculatus. Bull. Insectol., 2019, 72, 125–133.
- Dixon, A. F. G. and Kindlmann, P., Cannibalism, optimal egg size and vulnerable developmental stages in insect predators. Eur. J. Environ. Sci., 2012, 2, 84–88.
- Hemptinne, J. L., Magro, A., Saladin, C. and Dixon, A. F. G., Role of intraguild predation in aphidophagous guilds. J. Appl. Entomol., 2011, 136(3), 161–170.
- Hodek, I., Van Emden, H. F. and Honek, A., Ecology and behavior of the ladybird beetles (Coccinellidae). John Wiley & Sons, West Sussex, 2012.
- Hemptinne, J. L., Dixon, A. F. G. and Coffin, J., Attack strategy of ladybird beetles (Coccinellidae): factors shaping their numerical response. Oecologia, 1992, 90, 238–245.
- Hodek, I. and Honek, A., Ecology of Coccinellidae, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
- Dixon, A. F. G. and Agarwala, B. K., Triangular fecundity function and ageing in ladybird beetles. Ecol. Entomol., 2002, 27, 433– 440.
- Schellhorn, N. A. and Andow, D.A., Mortality of coccinellids (Coleoptera: Coccinellidae) larvae and pupae when prey become scarce. Environ. Entomol., 1999, 28, 1092–1100.
- Hemptinne, J. L., Dixon, A. F. G. and Gauthier, C., Nutritive cost of intraguild predation on eggs of Coccinella septempunctataand Adalia bipunctata(Coleoptera: Coccinellidae). Eur. J. Entomol., 2000, 97, 559–562.
- Abdelwahab, A. H., Michaud, J. P., Bayoumy, M. H., Awadalla, S. S. and El-Gendy, M., No nutritional benefits of egg cannibalism for Coleomegilla maculata(Coleoptera: Coccinellidae) on a high-quality diet. Bull. Entomol. Res., 2017, 108(3), 344–350.
- Nakamura, K. and Ohgushi, T., Studies on the population dynamics of a thistle-feeding lady beetle, Henosepilachna pustulosa (Kono) in a cool temperate climax forest II. Life tables, key-factor analysis, and detection of regulatory mechanisms. Res. Popul. Biol., 1981, 23, 210–231.
- Hemptinne, J. L., Lognay, G., Gauthier, C. and Dixon, A. F. G., Role of surface chemical signals in egg cannibalism and intraguild predation in ladybirds (Coleoptera: Coccinellidae). Chemoecology, 2000, 10, 123–128.
- Ware, R., Yguel, B. and Majerus, M., Effects of competition, cannibalism and intraguild predation on larval development of the European coccinellid Adalia bipunctataand the invasive species Harmonia axyridis. Ecol. Entomol., 2009, 34, 12–19.
- Cottrell, T. E., Suitability of exotic and native lady beetle eggs (Coleoptera: Coccinellidae) for development of lady beetle larvae. Biol. Control, 2004, 31, 362–371.
- Koide, T., Observations on the feeding habit of the larva of Coccinella septempunctata bruckiiMulsant: the feeding behaviour and number of prey fed under different temperatures. Kontyu, 1962, 30, 236–241.
- Kajita, Y., Obrycki, J. J., Slogett, J. J. and Haynes, K. F., Intraspecific alkaloid variation in ladybird eggs and its effects on conand heterospecific intraguild predators. Oecologia, 2010, 163, 313–322.
- Kumar, B., Mishra, G. and Omkar, Functional response and predatory interactions in conspecific and heterospecific combinations of two congeneric species (Coleoptera: Coccinellidae). Eur. J. Entomol., 2014, 111(2), 257–265.
- Omkar, Suitability of different foods for a generalist ladybird, Micraspis discolour(Coleoptera: Coccinellidae). Int. J. Trop. Insect Sci., 2006, 26, 35–40.
- Dimetry, N. Z., The consequences of egg cannibalism in Adalia bipunctata(Coleoptera: Coccinellidae). Entomophaga, 1974,19(4), 445–451.
- Osawa, N., Sibling cannibalism in the lady beetle Harmonia axyridis: fitness consequences for mother and offspring. Res. Popul. Ecol., 1992, 34, 45–55.
- Perry, J. C., The behavioural ecology of trophic egg laying, MSc thesis, Department of Biological Sciences, Simon Fraser University, 2004.
- Osawa, N., Ecology of Harmonia axyridisin natural habitats within its native range. BioControl, 2011, 56, 613–621.
- Food Availability Rhythm Affects Reproduction in Consecutive Generations of Ladybird, Propylea dissecta
Abstract Views :75 |
PDF Views:18
Authors
Affiliations
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
Source
Current Science, Vol 119, No 6 (2020), Pagination: 1038-1041Abstract
Transgenerational effect on developmental attributes of insects has been studied extensively. The present study elucidates the role of diet on transgenerational developmental duration and reproductive attributes of Propylea dissecta (Mulsant). We have found a significant direct and transgenerational role of diet variations in feeding rhythms on the above attributes of P. dissecta. Dampened response was found in offspring fed on intermittent diet even when their parental generation was provided abundant food supply. Reduced reproductive attributes were found in the progeny of abundant diet parents reared on intermittent diet than the kin of the same abundant fed parents which were under other diet conditions.Keywords
Feeding Behaviour, Ladybirds, Pea Aphid, Stress, Transgenerational Effect.References
- Houghton, J. T. et al., Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, 2001.
- Gilbert, S. F., Mechanisms for the environmental regulation of gene expression: ecological aspects of animal development. J. Biosci., 2005, 30, 65–74.
- Bonduriansky, R. A. and Head, M., Maternal and paternal condition effects on offspring phenotype in Telostylinus angusticollis (Diptera: Neriidae). J. Evol. Biol., 2007, 20, 2379–2388.
- Mousseau, T. A. and Fox, C. W., The adaptive significance of maternal effects. Trends Ecol. Evol., 1998, 13, 403–407.
- Omkar, Kumar, G. and Sahu, J., Performance of a predatory ladybird beetle, Anegleis cardoni (Weise) (Coleoptera: Coccinellidae) on three aphid species. Eur. J. Entomol., 2009, 106, 565–572.
- Bubli, O. A., Imasheva, A. G. and Loeschcke, V., Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval diet. Evolution, 1998, 52, 619–625.
- Smith, E. M. et al., Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. J. Nutr., 2007, 137, 2006–2012.
- Reynolds, S. E., Yeomans, M. R. and Timmins, W. A., The feeding behaviour of caterpillars (Manduca sexta) on tobacco and on artificial diet. Physiol. Entomol., 1986, 11, 39–51.
- Blaney, W. M., Chapman, R. F. and Wilson, A., The pattern of feeding of Locusta migratoria (L.) (Orthoptera: Acrididae). Acrida, 1973, 2, 119–137.
- Simpsons, S. J., The role of volumetric feedback from the hindgut in the regulation of meal size in fifth instar Locusta migratoria nymphs. Physiol. Entomol., 1983, 8, 451–467.
- Simpson, S. J. and Simpson, C. L., The mechanisms of compensation by phytophagous insects. In Insect–Plant Interactions (ed. Bernays, E. A.), CRC Press, Boca Raton, Fla., USA, 1989, vol. 2, pp. 112–160.
- Bernays, E. A. and Singer, M. S., A rhythm underlying feeding behaviour in a highly polyphagous caterpillar. Physiol. Entomol., 1998, 23, 295–302.
- Hodek, I., Van Emden, H. F. and Honek, A., Ecology and Behaviour of the Ladybird Beetles (Coccinellidae), John Wiley Ltd, UK, 2012, p. 4229.
- Lemos, W. P., Medeiros, R. S., Ramalho, F. S. and Zanuncio, J. C., Effects of plant feeding on the development, survival and reproduction of Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). J. Integr. Pest Manage., 2001, 47(2), 89–93.
- Droney, D. C., Environmental influences on male courtship and implications for female choice in a lekking Hawaiian Drosophila. Anim. Behav., 1996, 51, 821–830.
- Lawo, J. P. and Lawo, N. C., Misconceptions about the comparison of intrinsic rates of natural increase. J. Appl. Entomol., 2011, 135, 715–725.
- Agarwala, B. K. and Bhowmik, A. K., Effect of resource gradient on age and size at maturity and their influence on early-life fecundity in the predatory Asian lady beetle, Harmonia axyridis. Entomol. Exp. Appl., 2011, 141, 97–102.
- Omkar, Sahu, J. and Kumar, G., Effect of prey quantity in a ladybird beetle, Anegleis cardoni (Weise) (Coleoptera: Coccinellidae). Int. J. Trop. Insect. Sci., 2010, 30(1), 48–56.
- Fischer, K. and Fiedle, K., Sexual differences in life-history traits in the butterfly Lycaena tityrus: a comparison between direct and diapause development. Entomol. Exp. Appl., 2001, 100(3), 325–330.
- Vijendravarma, R. K., Narasimha, S. and Kawecki, T. J., Effects of parental diet on egg size and offspring traits in Drosophila. Biol. Lett., 2010, 6, 238–241.
- Food Plasticity for Mating and Reproductive Success in Propylea dissecta (Mulsant) (Coleoptera: Coccinellidae)
Abstract Views :68 |
PDF Views:18
Authors
Affiliations
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
Source
Current Science, Vol 120, No 8 (2021), Pagination: 1388-1392Abstract
Food supply at each life stage is of prime importance that determines the organism’s fitness and also influences individual’s reproductive performance and development. In this contest, we assessed the interactive effect of both larval and adult food regimes in Propylea dissecta (Mulsant) individuals. For this, egg batches were randomly selected and hatched larvae (larval diet) were reared into two food regimes, abundant (A) and scarce (S) till pupation. Post-emergence (adult stage) the ladybird beetles of each food regime were divided into two groups, abundant and scarce and at the age of 10 days adults were paired in all possible combinations. The results showed that individuals that were reared on abundant food mated for longer and showed higher reproductive output than other individuals. The adults provided with scarce and abundant food regime both irrespective of life stages showed similar mating durations and reproductive output. Food supply at larval and adult stages in both sexes plays important role in determining the reproductive success.Keywords
Fecundity, Food Supply, Ladybird, Reproduction, Viability.References
- Jervis, M. A. and Ferns, P. N., The timing of egg maturation in insects: ovigeny index and initial egg load as measures of fitness and of resource allocation. Oikos, 2004, 107(3), 449–461.
- Boggs, C. L. and Freeman, K. D., Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia, 2005, 144, 353–361.
- Geister, T. L., Lorenz, M. W., Hoffmann, K. H. and Fischer, K., Adult nutrition and butterfly fitness: effects of diet quality on reproductive output, egg composition, and egg hatching success. Front. Zool., 2008, 5, 10.
- Auer, S. K., Arendt, J. D., Chandramouli, R. and Reznick, D. N., Juvenile compensatory growth has negative consequences for reproduction in Trinidadian guppies (Poecilia reticulata). Ecol. Lett., 2010, 13, 998–1007.
- Dmitriew, C. M., The evolution of growth trajectories: what limits growth rate?. Biol. Rev., 2011, 86, 97–116.
- Zeller, M. and Koella, J. C., Effects of food variability on growth and reproduction of Aedes aegypti. Ecol. Evol., 2016, 6(2), 552–559.
- Hebets, E. A., Wesson, J. and Shamble, P. S., Diet influences mate choice selectivity in adult female wolf spiders. Anim. Behav., 2008, 76, 355–363.
- Blanckenhorn, W. U., Adaptive phenotypic plasticity in growth, development and body size in the yellow dung fly. Evolution, 1998, 52, 1394–1407.
- Fischer, K. and Fiedler, K., Effects of larval starvation on adult life-history traits in the butterfly species Lycaena tityrus (Lepidoptera: Lycaenidae). Entomol. Gen., 2001, 25, 249–254.
- Pervez, A. and Omkar, Influence of prey deprivation on biological attributes of pale morphs of the ladybeetle, Propylea dissecta (Mulsant). Int. J. Tropic. Insect Sci., 2003, 23, 143–148.
- Pervez, A. and Omkar, Predation potential and handling time estimates of a generalist aphidophagous ladybird, Propylea dissecta. Biologic. Memo. Lucknow, 2003, 29, 91–97.
- Koch, R. L., The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and nontarget impacts. J. Insect Sci., 2003, 3, 1–16.
- Dmitriew, C. and Rowe, L., Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). J. Evol. Biol., 2007, 20, 1298–1310.
- Singh, P., Mishra, G. and Omkar, Are the effects of hunger stagespecific? A case study in an aphidophagous ladybird beetle. Bull. Entomol. Res., 2021, 111, 66–72.
- Ware, R. L., Yguel, B. and Majerus, M. E., Effects of larval diet on female reproductive output of the European coccinellid Adalia bipunctata and the invasive species Harmonia axyridis (Coleoptera: Coccinellidae). Euro. J. Entomol., 2008, 105, 437.
- Omkar, Sahu, J. and Kumar, G., Effect of prey quantity in a ladybird beetle, Anegleis cardoni (Weise) (Coleoptera: Coccinellidae). Int. J. Tropic. Insect Sci., 2010, 30, 48–56.
- Dixon, A. F. G. and Guo, Y. Q., Egg and cluster size in ladybird beetles (Coleoptera, Coccinellidae) the direct and indirect effects of aphid abundance. Euro. J. Entomol., 1993, 90, 457–463.
- Michaud, J. P., On the assessment of prey suitability in aphidophagous Coccinellidae. Euro. J. Entomol., 2005, 102, 385.
- Omkar and Pervez, A., Prey preference of a ladybeetle, Micraspis discolor (Fabricius). Entomon, 2001, 26, 195–197.
- Ragkou, V. S., Athanassiou, C. G., Kavallieratos, N. G. and Tomanović, Ž., Daily consumption and predation rate of different Stethorus punctillum instars feeding on Tetranychus urticae. Phytoparasitica, 2004, 32, 154–159.
- Agarwala, B. K., Bardhanroy P., Yasuda, H. and Takizawa, T., Prey consumption and oviposition of the aphidophagous predator Menochilus sexmaculatus (Coleoptera: Coccinellidae) in relation to prey density and adult size. Environ. Entomol., 2001, 30, 1182– 1187.
- Dmitriew, C. and Rowe, L., The effects of larval nutrition on reproductive performance in a food-limited adult environment. PLoS ONE, 2011, 6, e17399.
- Hodek, I. and Honek, A., Ecology of Coccinellidae, Kluwer, Dordrecht, 1996, p. 464.
- Hodek, I. and Evans, E. W., Food relationships. In Ecology and Behaviour of the Ladybird Beetles (Coccinellidae) (eds Hodek, I., van Emden, H. F. and Honek, A.), Wiley-Blackwell, Oxford, 2012, pp. 141–274.
- Perry, J. C. and Rowe, L., Condition-dependent ejaculate size and composition in a ladybird beetle. Proc. R. Soc. B: Biol. Sci., 2010, 277(1700), 3639–3647.
- Skorupa, D. A., Dervisefendic, A., Zwiener, J. and Pletcher, S. D., Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell, 2008, 7, 478–490.
- Omkar and Pervez, A., Biodiversity of predaceous coccinellids (Coleoptera: Coccinellidae) in India: a review. J. Aphidol., 2000, 14, 41–66.
- Pervez, A., Contribution on prey–predator relationship and reproductive biology of a colour morph of Propylea dissecta (Mulsant) (Coccinellidae: Coleoptera). Ph.D. thesis, University of Lucknow, India, 2002.
- Omkar and Pervez, A., Sexual dimorphism in Propylea dissecta (Mulsant), (Coccinellidae: Coleoptera). J. Aphidol., 2000, 14, 139–140.
- Engqvist, L. and Sauer, K. P., Influence of nutrition on courtship and mating in the scorpionfly Panorpa cognata (Mecoptera, Insecta). Ethology, 2003, 109, 911–928.
- Eraly, D., Hendrickx, F. and Lens, L., Condition-dependent mate choice and its implications for population differentiation in the wolf spider Pirata piraticus. Behav. Ecol., 2009, 20, 856–863 32. Albo, M. J., Toft, S. and Bilde, T., Female spiders ignore conditiondependent information from nuptial gift wrapping when choosing mates. Anim. Behav., 2012, 84, 907–912.
- Gwynne, D. T., Testing parental investment and the control of sexual selection in katydids: the operational sex ratio. Am. Nat., 1990, 136, 474–484.
- Perry, J. C., Sharpe, D. M. and Rowe, L., Condition-dependent female remating resistance generates sexual selection on male size in a ladybird beetle. Anim. Behav., 2009, 77, 743–748.
- Cope, J. M. and Fox, C. W., Oviposition decisions in the seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae): effects of seed size on superparasitism. J. Stored Prod. Res., 2000, 39, 355–365.
- Terashima, J. and Bownes, M., Translating available food into the number of eggs laid by Drosophila melanogaster. Genetics, 2004, 167, 1711–1719.
- Droney, D. C., Environmental influences on male courtship and implications for female choice in a lekking Hawaiian Drosophila. Anim. Behav., 1996, 51, 821–830.
- Boggs, C. L. and Ross, C. L., The effect of adult food limitation on life history traits in Speyeria mormonia (Lepidoptera: Nymphalidae). Ecology, 1993, 74, 433–441.
- Rosenheim, J. A., Heimpel, G. E. and Mangel, M., Egg maturation, egg resorption and the costliness of transient egg limitation in insects. Proc. R. Soc. London, Ser. B: Biol. Sci., 2000, 267(1452), 1565–1573.
- Omkar and Barish, E. J., Influence of prey species on immature survival, development, predation and reproduction of Coccinella transversalis Fabricius (Col., Coccinellidae). J. Appl. Entomol., 2004, 128, 150–157.
- Ponsonby, D. J. and Copland, M. J. W., Environmental influences on fecundity, egg viability and egg cannibalism in the scale insect predator, Chilocorus nigritus. BioControl, 1998, 43, 39–52.
- Dixon, A. F. G., Insect Predator–Prey Dynamics: Ladybird Beetles and Biological Control, Cambridge University Press, 2000, p. 257.
- Limb regeneration modulates reproductive attributes in ladybirds in Propylea dissecta and Coccinella septempunctata
Abstract Views :23 |
PDF Views:6
Authors
Affiliations
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, India, IN
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, India, IN
Source
Current Science, Vol 123, No 11 (2022), Pagination: 1387-1390Abstract
In holometabolous insects, adult develops through larval and pupal stages. Limb regeneration has an impact on different life traits of organisms. In the present study, we found that limb regeneration of two ladybird species of different body size affected their life attributes. The fourth instar of Propylea dissecta and ladybird Coccinella septempunctata were taken from laboratory stock and ablated. Larvae were observed until adult emergence. Emerged adults were kept in different mating treatments. Unregenerated adults of ladybirds took more time to commence mating with shorter copulation and reduced fecundity and per cent viability. Thus, it can be concluded that regeneration ability modulates life attributes of ladybirds, irrespective of body sizeKeywords
Body size, fecundity, ladybirds, limb regeneration, reproductive attributes.References
- Wedell, N., Gage, M. J. and Parker, G. A., Sperm competition, male prudence and sperm limited females. Trends Ecol. Evol., 2002, 17(7), 313–320.
- Ortigosa, A. and Rowe, L., The effect of hunger on mating behav-iour and sexual selection for male body size in Gerris buenoi. Anim. Behav., 2002, 64(3), 369–375.
- Wilder, S. M. and Rypstra, L., Prior encounters with the opposite sex affect male and female mating behaviour in a wolf spider. Be-hav. Ecol. Sociobiol., 2007, 62(11), 1814–1820.
- Juanes, F. and Smith, L. D., The ecological consequences of limb damage and loss in decapod crustaceans: a review and prospectus. J. Exp. Mar. Biol. Ecol., 1995, 193(1–2), 197–223.
- O’Neill, D. J. and Cobb, J. S., Some factors influencing the out-come of shelter competition in lobsters (Homarus americanus). Mar. Freshw. Behav. Physiol., 1979, 6(1), 33–45.
- Garvey, J. E., Stein, R. A. and Thomas, H. M., Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Ecology, 1994, 75(2), 532–547.
- Schneider, J. M., Herberstein, M. E., De Crespigny, F. C., Rama-murthy, S. and Elgar, M. A., Sperm competition and small size advan-tage for males of the golden orb‐web spider Nephila edulis. J. Evol. Biol., 2000, 13(6), 939–946.
- Elgar, M. A., Bruce, M. J., De Crespigny, F. E. C., Cutler, A. R., Cutler, C. L., Gaskett, A. C. and Schneider, J. M., Male mate choice and patterns of paternity in the polyandrous, sexually cannibalistic orb-web spider, Nephila plumipes. Aust. J. Zool., 2003, 51(4), 357– 365.
- Johnson, S. A. and Jakob, E. M., Leg autotomy in a spider has mini-mal costs in competitive ability and development. Anim. Behav., 1999, 57(4), 957–965.
- Wang, S., Tan, X. L., Michaud, J. P., Shi, Z. K. and Zhang, F., Sexual selection drives the evolution of limb regeneration in Har-monia axyridis (Coleoptera: Coccinellidae). Bull. Entomol. Res., 2015, 105, 245–252.
- Majerus, M., Ladybirds. In The New Naturalist, Harper Collins, London, UK, 1994.
- Colares, F., Michaud, J. P., Bain, C. L. and Torres, J. B., Indige-nous aphid predators show high levels of pre-adaptation to a novel prey, Melanaphis sacchari (Hemiptera: Aphididae). J. Ecol. Ento-mol., 2015, 108(6), 2546–2555.
- Kearns, P. W. E., Tomlinson, I. P. M., Veltman, C. J. and O’Donald, P., Non-random mating in Adalia bipunctata (the two-spot ladybird). II. Further tests for female mating preference. Heredity, 1992, 68(5), 385–389.
- Mishra, G. and Omkar, Phenotype-dependent mate choice in Propylea dissecta and its fitness consequences. J. Ethol., 2014, 32(3), 165– 172.
- Saxena, S., Mishra, G. and Omkar, Does regeneration ability influ-ence reproductive fitness in Menochilus sexmaculatus (Coleoptera: Coccinellidae)? J. Asia-Pac. Entomol., 2016, 19(3), 829–834.
- Shandilya, A., Mishra, G. and Omkar, Leg impairment affects the reproductive attributes of a ladybird, Menochilus sexmaculatus (Fabricius). J. Asia-Pac. Entomol., 2018, 21(3), 797–806.
- Agarwala, B. K. and Yasuda, H., Competitive ability of ladybird predators of aphids: a review of Cheilomenes sexmaculata (Fabr.) (Coleoptera: Coccinellidae) with a worldwide checklist of preys. J. Aphidol., 2000, 14, 1–20.
- Joseph, S. B., Snyder, W. E. and Moore, A. J., Cannibalizing Har-monia axyridis (Coleoptera: Coccinellidae) larvae use endogenous cues to avoid eating relatives. J. Evol. Biol., 1999, 12, 792–797.
- Michaud, J. P., A comparative study of larval cannibalism in three species of ladybird. Ecol. Entomol., 2003, 28, 92–101.
- Martini, X., Dixon, A. F. G. and Hemptinne, J. L., The effect of related-ness on the response of Adalia bipunctata L. to oviposition deterring cues. Bull. Entomol. Res., 2013, 103, 14–19.
- Zahavi, A., Mate selection – a selection for a handicap. J. Theor. Biol., 1975, 3, 205–214.
- Grafen, A., Sexual selection unhandicapped by the Fisher process. J. Theor. Biol., 1990, 144, 475–516.
- Grafen, A., Biological signals as handicaps. J. Theor. Biol., 1990, 144, 517–546.
- Zahavi, A. and Zahavi, A., The Handicap Principle: A Missing Piece of Darwin’s Puzzle, Oxford University Press, Oxford, UK,1997.
- Moller, A. P., Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Anim. Behav., 1990, 40, 1185–1187.
- Thornhill, R., Fluctuating asymmetry and the mating system of the Japanese scorpionfly, Panorpa japonica. Anim. Behav., 1992, 44, 867–879.
- Swaddle, J. P. and Cuthill, I. C., Preference for symmetric males by female zebra finches. Nature, 1994, 367, 165–166.
- Watson, P. J. and Thornhill, R., Fluctuating asymmetry and sexual selection. Trends Ecol. Evol., 1994, 9, 21–25.
- Haddrill, P. R., Shuker, D. M., Amos, W., Majerus, M. E. and Mayes, S., Female multiple mating in wild and laboratory popula-tions of the two‐spot ladybird, Adalia bipunctata. Mol. Ecol., 2008, 17(13), 3189–3197.
- Firman, R. C., Gasparini, C., Manier, M. K. and Pizzari, T., Post-mating female control: 20 years of cryptic female choice. Trends Ecol. Evol., 2017, 32(5), 368–382.
- Kirkpatrick, M., Sexual selection by female choice in polygynous animals. Annu. Rev. Ecol. Syst., 1987, 18(1), 43–70.
- Sexual Selection in Insects
Abstract Views :22 |
PDF Views:85
Authors
Affiliations
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh,, IN
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh,, IN
Source
Indian Journal of Entomology, Vol 84, No S1 (2022), Pagination: 77-85Abstract
Sexual selection is an evolutionary process, that increases the direct and indirect fitness of an organism by non random preference of mates, based on their differential ability. Sexual selection may be in the form of intrasexual selection and intersexual selection. The former involves competition between the males (usually), while females are passive acceptors of winners as mates. The latter involves display of abilities by the males (usually), while the female inspects and assesses them prior to selection of mate. Traditionally both these mechanisms are believed to take place prior to copulation. However, studies indicate that these also take place, post copulation. The post copulatory displays of sexual selection involve sperm competition and cryptic female choice. Not only are all these displays fascinating, understanding their evolution and their ecological modulations make this field an interesting one. This review deals with these aspects of sexual selection in insects, as they encase some of the most diverse mechanisms of sexual selection.Keywords
Intrasexual selection, intersexual selection, sperm competition, cryptic female choice, direct and indirect fitness, sperm precedenceReferences
- Alcock J. 2001. Animal Behaviour. Sinauer, Sunderland, MA. 543 pp.
- Andersson M, Simmons L W. 2006. Sexual selection and mate choice. Trends in Ecology and Evolution 21: 296-302.
- Anjos-Duarte C S, Costa A M Joachim-Bravo I S. 2011. Sexual behaviour of the Mediterranean fruit fly (Diptera: Tephritidae): the influence of female size on mate choice. Journal of Applied Entomology 135: 367-373.
- Aquiloni L, Gherardi F. 2008. Mutual mate choice in crayfish: large body size is selected by both sexes, virginity by males only. Journal of Zoology 274(2): 171-179.
- Arakaki N, Sadoyama Y, Kishita M, Nagayama A, et al. 2004. Mating behaviour of the scarab beetle Dasylepida ishigakiensis (Coleoptera: Scarabaeidae). Applied Entomology and Zoology 39(4): 669-674.
- Arnaud L, Haubruge E. 1999. Mating behaviour and male mate choice in Tribolium castaneum (Coleopteran: Tenebrionidae). Behaviour 136(1): 67-77.
- Arnqvist G, Danielsson I. 1999. Copulatory behaviour, genital morphology, and male fertilization success in water striders. Evolution 53(1): 147-156.
- Atwell A, Wagner W E. 2014. Female mate choice plasticity is affected by the interaction between male density and female age in a field cricket. Animal Behaviour 98: 77-83.
- Avent T D, Price T A R, Wedell N. 2008. Age-based female preference in the fruit fly Drosophila pseudoobscura. Animal Behaviour, 75: 1413-1421.
- Avila F W, Sirot L K, LaFlamme B A, Rubinstein C D, Wolfner M F. 2011. Insect seminal fluid proteins: Identification and function. Annual Review of Entomology 56: 21-40.
- Bissoondath C J, Wiklund C. 1996 Effect of male mating history and body size on ejaculate size and quality in two polyanderous butterflies, Pieris napi and Pieris rapae (Lepidoptera: Pieridae). Functional Ecology 10: 457- 464.
- Bissoondath C J, Wiklund C. 1996. Effect of male mating history and body size on ejaculate size and quality in two polyandrous butterflies, Pieris napi and Pieris rapae (Lepidoptera: Pieridae). Functional Ecology 10(4): 457-464.
- Bista M. 2015. Age dependent mate choice influences reproductive and progeny attributes in aphidophagous ladybird beetles (Coleoptera: Coccinellidae). European Journal of Entomology 112: 648-657.
- Blanckenhorn W U. 1998. Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution 52: 1394-1407.
- Blanckenhorn W U. 2000. The evolution of body size: What keeps organisms small? The Quarterly Review of Biology 75: 385-407.
- Bonduriansky R A, Brassil C E. 2002. Rapid and costly ageing in wild male flies. Nature, 420: 377.
- Brown W D. 1990a. Constraints on size-assortative mating in the blister beetle (Tegrodera aloga) (Coleoptera: Meloidae). Ethology 86: 146-160.
- Brown W D. 1990b. Size-assortative mating in the blister beetle (Lytta magister) (Coleoptera: Meloidae) is due to male and female preference for larger mates. Animal Behaviour 40: 901-909.
- Calabrese J M, Ries L, Matter S F, Debinski DM, et al. 2008. Reproductive asynchrony in natural butterfly populations and its consequences for female matelessness. Journal of Animal Ecology 77(4): 746-756.
- Carazo P, Fernández-Perea R, Font E. 2012. Quantity estimation based on numerical cues in the mealworm beetle (Tenebrio molitor). Frontiers in Psychology 3: 502.
- Chaudhary D D, Mishra G. 2017. Strategic mate‐guarding behaviour in ladybirds. Ethology 123(5): 376-385.
- Cook P A, Wedell N. 1996. Ejaculate dynamics in butterflies: a strategy for maximizing fertilization success? Proceedings of the Royal Society of London. Series B: Biological Sciences 263(1373): 1047-1051.
- Coyne J A, Orr H A. 2004. Speciation. Sunderland: Sinauer Associates.
- Crespi B J. 1988. Risks and benefits of lethal male fighting in the colonial, polygynous thrips Hoplothrips karnyi(Insecta: Thysanoptera). Behavioural Ecology and Sociobiology 22: 293-301.
- Darwin C. 1871. The descent of man and selection in relation to sex (1st ed.). London: John Murray.
- Del Castillo R C. 2003. Body size and multiple copulations in a neotropical grasshopper with an extraordinary mate-guarding duration. Journal of Insect Behaviour 16(4): 503-522.
- Dixon A F G. 2007. Body size and resource partitioning in ladybirds. Population Ecology 49: 45-50.
- Dubey A, Omkar, Mishra G. 2016a. Adult body size drives sexual selection mutually in the ladybird, Menochilus sexmaculatus (Coleoptera: Coccinellidae). Acta Entomologica Sinica 59(2): 209-218.
- Dubey A, Omkar, Mishra G. 2016b. Influence of temperature on reproductive biology and phenotype of a ladybird, Menochilus sexmaculatus (Fabricius) (Coleoptera: Coccinellidae). Journal of Thermal Biology 58: 35-42.
- Eberhard W G. 2009 Postcopulatory sexual selection: Darwin's omission and its consequences. Proceedings of the National Academy of Sciences, 106 (Supplement 1): 10025-10032.
- Emlen S T, Oring LW. 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197: 215-223.
- Engqvist L, Reinhold K. 2005. Pitfalls in experiments testing predictions from sperm competition theory. Journal of Evolutionary Biology 18(1): 116-123.
- Estrada C, Gilbert L E. 2010. Host plants and immatures as mate-searching cues in Heliconius butterflies. Animal Behaviour 80(2): 231-239.
- Filin I, Ovadia O. 2007. Individual size variation and population stability in a seasonal environment: a discrete- time model and its calibration using grasshoppers. American Naturalist 170: 719-733.
- Fricke C, Wigby S, Hobbs R, Chapman T. 2009. The benefits of male ejaculate sex peptide transfer in Drosophila melanogaster. Journal of Evolutionary Biology 22(2): 275-286.
- Gage M J G, Cook P A. 1994. Sperm size or numbers? Effects of nutritional stress upon eupyrene and apyrene sperm production strategies in the moth Plodia interpunctella(Lepidoptera: Pyralidea). Functional Ecology 8: 594-599.
- Gotthard K, Nylin S, Wiklund C. 1994. Adaptive variation in growth rate: life history costs and consequences in the speckled wood butterfly, Parargea egeria. Oecologia 9: 281-289.
- Grant B R, Grant PR. 1989. Evolutionary Dynamics of a Natural Population: The Large Cactus Finch of the Galápagos. University of Chicago Press, Chicago, IL.Hansen T F, Price D K. 1995. Good genes and old age: do old mates provide superior genes? Journal of Evolutionary Biology 8: 769-778.
- Hasselquist D, Besch S, von Schantz T. 1996. Correlation between male song repertoire, extrapair paternity and offspring survival in the great reed warbler. Nature 381: 229-232.
- Hercus M J, Hoffmann A A. 2000. Maternal and grandmaternal age influence offspring fitness in Drosophila. Proceedings of the Royal Society B Biological Sciences 267: 2105-2110.
- Hughes L, Chang B S W, Wagner D, Pierce N E. 2000. Effects of mating history on ejaculate size, fecundity, longevity, and copulation duration in the ant-tended lycaenid butterfly, Jalmenus evagoras. Behavioural Ecology and Sociobiology 47(3): 119-128.
- Johansson F, Söderquist M, Bokma F. 2009. Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society 97(2): 362-372.
- Jones T M, Elgar M A. 2004. The role of male age, sperm age and mating history on fecundity and fertilization success in the hide beetle. Proceedings of the Royal Society B Biological Sciences 271: 1311-1318.
- Jones T M, Balmford A, Quinnell R J. 2000. Adaptive female choice for middle-aged mates in a lekking sandfly. Proceedings of the Royal Society B Biological Sciences 267: 681-686.
- Kelly C D, Jennions M D. 2011. Sexual selection and sperm quantity: meta‐analyses of strategic ejaculation. Biological Reviews 86(4): 863-884.
- Kokko H, Lindstrom J. 1996. Evolution of female preference for old mates. Proceedings of the Royal Society B Biological Sciences 263: 1533-1538.
- Kureck I M, Neumann A, Foitzik S. 2011. Wingless ant males adjust mate-guarding behaviour to the competitive situation in the nest. Animal behaviour 82(2): 339-346.
- Lehtonen J, Parker G A, Scharer L. 2016. Why anisogamy drives ancestral sex roles? Evolution 70: 1129-1135.
- Lum P T M, Flaherty B R. 1970. Effect of continuous light on the potency of Plodia interpunctella males (Lepidoptera: Phycitidae). Annals of the Entomological Society of America 63(5): 1470-1471.
- Majerus M E N. 1998. Melanism: Evolution in Action, Oxford University Press Oxford. 338 pp.
- Manier M K, Belote J M, Berben K S, Novikov D, et al. 2010.
- Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328(5976): 354-357.
- Markow T A, Quaid M, Kerr S. 1978. Male mating experience and competitive courtship success in Drosophila melanogaster. Nature 276: 821-822.
- Michie L J, Mallard F, Majerus M E N, Jiggins F M. 2010. Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. Journal of Evolutionary Biology 23: 1699-1707.
- Michie L J, Masson A, Ware R L, Jiggins F M. 2011. Seasonal phenotypic plasticity: wild ladybirds are darker at cold temperatures. Evolutionary Ecology 25: 1259-1268.
- Moore A J. 1990. The evolution of sexual dimorphism by sexual selection: the separate effects of intrasexual selection and intersexual selection. Evolution 44: 315-331.
- Nakatsuru K, Kramer D L. 1982. Is sperm cheap? Limited male fertility and female choice in the Lemon Tetra (Pisces, Characidae). Science 216: 753-754.
- Omkar, Afaq U. 2013. Evaluation of Darwin's fecundity advantage hypothesis in Parthenium beetle, Zygogramma bicolorata. Insect Science 20: 531-540.
- Parker G A. 1990a. Sperm competition games: sneaks and extra-pair copulations. Proceedings of the Royal Society of London. Series B: Biological Sciences 242(1304): 127-133.
- Parker G A. 1990b. Sperm competition games: raffles and roles. Proceedings of the Royal Society of London. Series B: Biological Sciences 242(1304): 120-126.
- Parker G A, Ball M A, Stockley P, Gage M J G. 1997. Sperm competition games: a prospective analysis of risk assessment. Proceedings of the Royal Society of London. Series B: Biological Sciences264(1389): 1793-1802.
- Pech-May F G, Medina-Medina L, May-Itzaa W, de Paxton R J, Quezada-Euán J J G. 2012. Colony pollen reserves affect body size, sperm production and sexual development in males of the stingless bee Melipona beecheii. Insectes Sociaux 59: 417-424.
- Perez-Staples D, Martinez-Hernandez MG, Aluja, M. 2010. Male age and experience increases mating success but not female fitness in the Mexican fruit fly. Ethology 116: 778-786.
- Pischedda A, Rice W R. 2012. Partitioning sexual selection into its mating success and fertilization success components. Proceedings of the National Academy of Sciences 109: 2049-2053.
- Pizzari T, Parker G A. 2009. Sperm competition and sperm phenotype. Sperm Biology. Academic Press, London 207-245 pp.
- Polak M. 1998. Effects of ectoparasitism on host condition in the Drosophila-Macrocheles system. Ecology 79(5): 1807-1817.
- Price D K, Hansen T F. 1998. How does offspring quality change with age in male Drosophila melanogaster? Behavior Genetics 28: 395-402.
- Prowse N, Partridge L. 1997. The effects of reproduction on longevity and fertility in male Drosophila melanogaster. Journal of Insect Physiology 43(6): 501-512.
- Saeki Y, Kruse K C, Switzer P V.2005. The social environment affects mate guarding behaviour in Japanese beetles, Popillia japonica. Journal of Insect Science 5(1): 18.
- Safranek L, Riddiford L M. 1975. The biology of the black larval mutant of the tobacco hornworm. Manduca sexta. Journal of Insect Physiology 21: 1931-1938.
- Salavert V, Zamora-Munoz C, Ruizrodriguez M, Soler J J. 2011. Female-biased size dimorphism in a diapausing caddisfly, Mesophylax aspersus: effect of fecundity and natural and sexual selection. Ecological Entomology 36: 389-395.
- Saxena S, Mishra G, Omkar. 2022. Postcopulatory Sexual Selection. Reproductive Strategies in Insects. CRC Press 161-182 pp.
- Simmons L W. 2001. Sperm competition and its evolutionary consequences in the insects (Vol. 68). Princeton University Press.
- Singh B N, Chatterjee S. 1987. Greater mating success of Drosophila biarmipes males possessing an apical dark black wing patch. Ethology 75: 81-83.
- Smith P H, Gillott C, Browne L B, Gerwen AV. 1990. The mating‐induced refractoriness of Lucilia cuprina females: manipulating the male contribution. Physiological Entomology 15(4): 469-481.
- Sundberg J A, Dixon A. 1996. Old, colourful male yellow hammers, Emberiza citrinella, benefit from extra-pair copulations. Animal Behaviour 52(1): 113-22.
- Trivers R L. 1972. Parental investment and sexual selection. Campbell B (ed.). Sexual selection and the descent of man, 1871-1971. Aldine-Atherton, Chicago 136-179 pp.
- Wallace B. 1987. Ritualistic combat and allometry. American Naturalist 129: 775-776.
- Wang S, Michaud JP, Zhang RZ, Zhang F, Liu S. 2009. Seasonal cycles of assortative mating and reproductive behaviour in polymorphic populations of Harmonia axyridis in China. Ecological Entomology 34: 483-494.
- Wheeler J, Gwynne D T, Bussier L F. 2012. Stabilizing sexual selection for female ornaments in a dance fly. Journal of Evolutionary Biology 25 (7): 1233-1242.
- Wiklund C, Kaitala A. 1995. Sexual selection for large male size in a polyandrous butterfly: the effect of body size on male versus female reproductive success in Pieris napi. Behavioral Ecology 6(1): 6-13.
- Wiley R H. 1974. Evolution of social organization and life history patterns among grouse. Quarterly Reviews of Biology 49: 201-227.
- Woodhead A P.1984. Effect of duration of larval development on sexual competence in young adult male Diploptera punctata. Physiological Entomology 9(4): 473-477.
- Xu J, Wang Q. 2009. Male moths undertake both pre- and in copulation mate choice based on female age and weight. Behavioural Ecology and Sociobiology 63: 801-808.
- Xu J, Wang Q. 2010. Mechanisms of last male precedence in a moth: sperm displacement at ejaculation and storage sites. Behavioural Ecology 21(4): 714-721.
- Zhu D H, Tanaka S. 2002. Prolonged precopulatory mounting increases the length of copulation and sperm precedence in Locusta migratoria (Orthoptera: Acrididae). Annals of the Entomological Society of America 95(3): 370-373.
- Zuk M. 1987. The effects of gregarine parasites on longevity, weight loss, fecundity and developmental time in the field crickets Gryllus veletis and G. pennsylvanicus. Ecological Entomology 12(3): 349-354.
- Zuk M, Kolluru G R. 1998. Exploitation of sexual signals by predators and parasitoids. Quarterly Reviews of Biology 73: 415-438.
- Substitution Rate Estimation of Molecular Markers to Evaluate Evolutionary Aspects in Ladybird Beetles
Abstract Views :5 |
PDF Views:1
Authors
Affiliations
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
1 Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 007, IN
Source
Current Science, Vol 124, No 4 (2023), Pagination: 491-499Abstract
In this study, we examined the ribosomal DNA internal transcribed spacers and mtDNA markers for their use in the prospecting of 480 ladybird species belonging to 14 tribes to assess the evolutionary topology and substitution rates. Substitution patterns of the respective markers were estimated using a cascade of algorithms such as pairwise sequence comparisons, maximum likelihood estimates of the substitution matrix, transitions/transversions (ti/tv) and gamma parameters with a suitable substitution model. Maximum likelihood (ML) estimates showed that COI (R = 1.16) and COII (R = 1.36) were more biased towards transitions. COI has a higher ti/tv ratio indicating more substitutions and less divergence among the species in the phylogenetic tree, though it had moderate bootstrap support. ML and Bayesian analysis were used to construct the morphology character matrix and molecular datasets in order to establish the evolutionary relationship. All the characters of male and female genitalia supported mophyletic topology. The phylogenetic results of molecular datasets suggest that most of the taxa significantly support monophyly. Phylogenetic analysis depict COI consists of more substitution as it shows less divergence among species.Keywords
Evolutionary Topology, Ladybirds, Molecular Markers, Phylogenetic Analysis, Substitution Rates.References
- Vandenberg, N. J., 93. Coccinellidae Latreille 1807, American Beetles (eds Arnett Jr, R. H. and Thomas, M. C.), CRC Press, 2002, vol. 2, pp. 371–389.
- Seago, A. E., Giorgi, J. A., Li, J. and Slipinski, A., Phylogeny, classification and evolution of ladybird beetles (Coleoptera: Coccinellidae) based on simultaneous analysis of molecular and morphological data. Mol. Phylogenet. Evol., 2011, 60(1), 137–151.
- Poorani, J., Coccinellidae of the Indian subcontinent. In Indian Insects, CRC Press, 2019, pp. 223–246.
- Szawaryn, K., Bocak, L., Ślipiński, A., Escalona, H. E. and Tomaszewska, W., Phylogeny and evolution of phytophagous ladybird beetles (Coleoptera: Coccinellidae: epilachnini), with recognition of new genera. Syst. Entomol., 2015, 40(3), 547–569.
- Hodek, I., Honek, A. and Van Emden, H. F. (eds), Ecology and Behaviour of the Ladybird Beetles (Coccinellidae), John Wiley & Sons, 2012.
- Giorgi, J. A. et al., The evolution of food preferences in Coccinellidae. Biol. Control, 2009, 51(2), 215–231.
- Magro, A., Lecompte, E., Magne, F., Hemptinne, J. L. and Crouau-Roy, B., Phylogeny of ladybirds (Coleoptera: Coccinellidae): are the subfamilies monophyletic? Mol. Phylogenet. Evol., 2010, 54(3), 833–848.
- Atif, J. Y., El-Husseini, M. M., Al-Shemi, H. A. and Ahmed, S. S., Molecular identification of five Egyptian lady bird beetles based on 28S rDNA (Coleoptera: Coccinellidae). Egypt. J. Biol. Pest Control, 2016, 26(1).
- Escalona, H. E. et al., Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini). BMC Evol. Biol., 2017, 17(1), 1–11.
- Robertson, J. A. et al., Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia). Syst. Entomol., 2015, 40(4), 745–778.
- De Mandal, S., Chhakchhuak, L., Gurusubramanian, G. and Kumar, N. S., Mitochondrial markers for identification and phylogenetic studies in insects – a review. DNA Barcodes, 2014, 2(1), 1–9.
- Mahmoud, A. G. Y. and Zaher, E. H. F., Why nuclear ribosomal internal transcribed spacer (ITS) has been selected as the DNA barcode for fungi. Adv. Genet. Eng., 2015, 4(119), 2169–0111.
- Jay, P., Chouteau, M., Whibley, A., Bastide, H., Parrinello, H., Llaurens, V. and Joron, M., Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nature Genet., 2021, 53(3), 288–293.
- Von der Schulenburg, J. H. G., Hancock, J. M., Pagnamenta, A., Sloggett, J. J., Majerus, M. E. and Hurst, G. D., Extreme length and length variation in the first ribosomal internal transcribed spacer of ladybird beetles (Coleoptera: Coccinellidae). Mol. Biol. Evol., 2001, 18(4), 648–660.
- Zhao, Y., Tsang, C. C., Xiao, M., Cheng, J., Xu, Y., Lau, S. K. and Woo, P. C., Intra-genomic internal transcribed spacer region sequence heterogeneity and molecular diagnosis in clinical microbiology. Int. J. Mol. Sci., 2015, 16(10), 25067–25079.
- Badotti, F. et al., Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (fungi). BMC Microbiol., 2017, 17(1), 1–12.
- Yang, R. H., Su, J. H., Shang, J. J., Wu, Y. Y., Li, Y., Bao, D. P. and Yao, Y. J., Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS ONE, 2018, 13(10), e0206428.
- Edger, P. P. et al., Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards). PLoS ONE, 2014, 9(7), e101341.
- Nolan, M. J. and Cribb, T. H., The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv. Parasitol., 2005, 60, 101–163.
- Schlötterer, C., Hauser, M. T., von Haeseler, A. and Tautz, D., Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol. Biol. Evol., 1994, 11(3), 513–522.
- Song, N., Li, X., Yin, X., Li, X. and Xi, Y., The mitochondrial genomes of ladybird beetles and implications for evolution and phylogeny. Int. J. Biol. Macromol., 2020, 147, 1193–1203.
- Cameron, S. L., Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol., 2014, 59, 95–117.
- Aruggoda, A. G. B., Shunxiang, R. and Baoli, Q., Molecular phylogeny of ladybird beetles (Coccinellidae: Coleoptera) inferred from mitochondrial 16S rDNA sequences. Trop. Agric. Res., 2010, 21(2), 209–217.
- Correa, C. C. and Ballard, J. W. O., Wolbachia associations with insects: winning or losing against a master manipulator. Front. Ecol. Evol., 2016, 3, 153.
- Sato, M. and Sato, K., Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta – Mol. Cell Res., 2013, 1833(8), 1979–1984.
- Poolprasert, P., Senarat, S., Nak-eiam, S. and Likhitrakarn, N., Molecular taxonomic identification of predatory ladybird beetles inferred from COI sequences (Coleoptera: Coccinellidae). Malaysian J. Appl. Sci., 2019, 4(2), 10–18.
- Ghosh, S., Behere, G. T. and Agarwala, B. K., Molecular characterization of ladybird predators (Coleoptera: Coccinellidae) of aphid pests (Homoptera: Aphididae) in North East India. Curr. Sci., 2017, 113, 1755–1759.
- Lin, C. P. and Danforth, B. N., How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol. Phylogenet. Evol., 2004, 30(3), 686–702.
- Kaltenpoth, M., Corneli, P. S., Dunn, D. M., Weiss, R. B., Strohm, E. and Seger, J., Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: new evidence from crabronid wasps. PLoS ONE, 2012, 7(3), e32826.
- Chang, H. et al., Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Mol. Phylogenet. Evol., 2020, 145, 106734.
- Li, T., Hua, J., Wright, A. M., Cui, Y., Xie, Q., Bu, W. and Hillis, D. M., Long-branch attraction and the phylogeny of true water bugs (Hemiptera: Nepomorpha) as estimated from mitochondrial genomes. BMC Evol. Biol., 2014, 14(1), 99.
- Qu, X. J., Jin, J. J., Chaw, S. M., Li, D. Z. and Yi, T. S., Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae). Sci. Rep., 2017, 7(1), 1–11.
- Hung, J. H. and Weng, Z., Sequence alignment and homology search with BLAST and ClustalW. Cold Spring Harb. Protoc., 2016, 11, pdb-prot093088.
- Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, 35, 1547–1549.
- Xu, X. and Reid, N., On the robustness of maximum composite likelihood estimate. J. Stat. Plan. Inference, 2011, 141(9), 3047–3054.
- Tamura, K. and Kumar, S., Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol. Biol. Evol., 2002, 19(10), 1727–1736.
- Myung, I. J., Tutorial on maximum likelihood estimation. J. Math. Psychol., 2003, 47(1), 90–100.
- Watanabe, S., A widely applicable Bayesian information criterion. J. Mach. Learn. Res., 2013, 14, 867–897.
- Ronquist, F. et al., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol., 2012, 61(3), 539–542.
- Gascuel, O., BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol., 1997, 14(7), 685–695.
- Maddison, W. P. and Maddison, D. R., Mesquite: a modular system for evolutionary analysis. Version 3.70. 2021; http://www.mesquiteproject.org
- Brennan, P. L. and Orbach, D. N., Copulatory behavior and its relationship to genital morphology. In Advance Study Behaviour, Academic Press, 2020, vol. 52, pp. 65–122.
- Verma, C., Mishra, G. and Omkar, Widespread inspection and comparative analysis of ITS secondary structure conservation and covariation of Coccinellidae. Int. J. Trop. Insect Sci., 2020, 40(3), 587–597.
- Tomaszewska, W. et al., Phylogeny of true ladybird beetles (Coccinellidae: Coccinellini) reveals pervasive convergent evolution and a rapid Cenozoic radiation. Syst. Entomol., 2021, 46(3), 611–631.
- Stoltzfus, A. and Norris, R. W., On the causes of evolutionary transition: transversion bias. Mol. Biol. Evol., 2016, 33(3), 595–602.
- Homem, R. A., Buttery, B., Richardson, E., Tan, Y., Field, L. M., Williamson, M. S. and Emyr Davies, T. G., Evolutionary trade-offs of insecticide resistance – the fitness costs associated with target-site mutations in the nAChR of Drosophila melanogaster. Mol. Ecol., 2020, 29(14), 2661–2675.
- Sahu, R., Biswal, D. K., Roy, B. and Tandon, V., Molecular characterization of Opisthorchis noverca (Digenea: Opisthorchiidae) based on nuclear ribosomal ITS2 and mitochondrial COI genes. J. Helminthol., 2016, 90(5), 607–614.
- Greczek-Stachura, M., Potekhin, A., Przyboś, E., Rautian, M., Skoblo, I. and Tarcz, S., Identification of Paramecium bursaria Syngens through molecular markers – comparative analysis of three loci in the nuclear and mitochondrial DNA. Protist, 2012, 163(5), 671–685.
- Ghada, B., Ahmed, B. A., Messaoud, M. and Amel, S. H., Genetic diversity and molecular evolution of the internal transcribed spacer (ITSs) of nuclear ribosomal DNA in the Tunisian fig cultivars (Ficus carica L.; Moracea). Biochem. Syst. Ecol., 2013, 48, 20–33.
- Martyn, I. and Steel, M., The impact and interplay of long and short branches on phylogenetic information content. J. Theor. Biol., 2012, 314, 157–163.
- James, J. E., Piganeau, G. and Eyre-Walker, A., The rate of adaptive evolution in animal mitochondria. Mol. Ecol., 2016, 25(1), 67–78.
- Duchêne, S., Ho, S. Y. and Holmes, E. C., Declining transition/transversion ratios through time reveal limitations to the accuracy of nucleotide substitution models. BMC Evol. Biol., 2015, 15(1), 36.
- Yan, Z., Ye, G. and Werren, J. H., Evolutionary rate correlation between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins in insects. Mol. Biol. Evol., 2019, 36(5), 1022–1036.
- Bromham, L., Substitution rate analysis and molecular evolution. Phylogenet. Genomic Era, 2020, 4.