Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Joshi, Nidhi
- Tool-Kit Assisted Hygienic Menstrual Practices through Design Thinking of Social Innovation Course
Abstract Views :85 |
Authors
Nidhi Joshi
1,
Rohit Palthur
1,
Lipika Chavan
1,
Anoop Patil
1,
Ganesh Anvekar
1,
Shivalingsarj V. Desai
1
Affiliations
1 KLE Technological University, Hubballi, IN
1 KLE Technological University, Hubballi, IN
Source
Journal of Engineering Education Transformations, Vol 37, No SP 2 (2024), Pagination: 484-490Abstract
Social problems have been a part of the society since ages and efforts to address them have been on practice along with. The evolution of knowledge society and the technology have enabled better ways of addressing such problems. In this context, the present study “ Design Thinking for Social Innovation” was undertaken by Freshman students of undergraduate engineering students to identify a relevant social challenge and address it with the aid of design thinking process. Inadequate awareness and education about hygienic menstrual practices is one such major but less discussed social problem among the various genderspecific issues. Despite the modern days advancement with digital tools and social media, social taboos, misbeliefs and unwarranted phobias pertaining to the phenomenon are widely prevalent in several sections of the society. The different phases of design thinking: Empathy, Define, Ideate and Prototype were employed for understanding the insights and different dimensions of the challenge. The different stakeholders of the challenge, possible ideas and solutions were generated through the process. Finally an organized solution in the form of designing an informative website and tool-kit containing the key menstrual products and their demonstration was implemented as part of solution. The stakeholders were educated about menstruation, hygienic menstrual practices and their myths were busted as part of the exercise. The student team gained an immersive experience of identifying and addressing a social challenge using design thinking process.Keywords
Design thinking; Empathy, Menstruation; Social innovation; Stakeholders- Differential Property of Cationic and Anionic Calcium Ion Cross-linked Pectin Gels
Abstract Views :360 |
PDF Views:2
Authors
Affiliations
1 School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, IN
2 Inter University Accelerator Centre (IUAC), New Delhi 110067, IN
3 Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, IN
1 School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, IN
2 Inter University Accelerator Centre (IUAC), New Delhi 110067, IN
3 Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, IN
Source
Journal of Surface Science and Technology, Vol 31, No 1-2 (2015), Pagination: 31-36Abstract
Pectin is a branched polysaccharides found in the cell wall of the plants and commonly used in food industry as a gelling agent, emulsifier or stabilizer. The effect of calcium chloride on the gelation of pectin dispersions was studied using rheology and light scattering measurements. Addition of calcium induced the gel formation in pectin dispersions follows egg-box crosslink mechanism. Zeta potential measurements revealed the formation of cationic and anionic pectin gels on concentration of calcium. The cationic gels had higher rigidity compared to anionic gels. The sol-gel transition has been investigated for pectin-calcium system from the structure factor data which indicated cationic gels undergo transition earlier compared to anionic ones. The gelation time was determined from rheology and viscosity experiments and found to be less for cationic gels.Keywords
Ca2+-pectin Gels, Egg-box Model, Gel Elastic Behaviour, Gel Stiffness, Gel Structure Development, Pectin, Rheology of GelsReferences
- A. S. Zerda and A. J. Lesser, J. Polym. Sci part B: Polymer physics, 39, 1137 (2001).
- B. R. Thakur, R. K. Singh and A. K. Handa, Critical Reviews in Food Science and Nutrition, 37, 47 (1997).
- C. Garnier, M. V. Axelos and J. Thibault, Carbohydr. Res.,240, 219 (1993).
- M. Ousalem, J. P. Busnel and T. Nicolai, Int. J. Biol.Macromol., 15, 209 (1993).
- M. D. Walkinshaw and S. Arnott, J. Mol. Biol., 153, 1077 (1981).
- D. A. Powell, E. R. Morris, M. J. Gidley and D. A. Rees,J. Mol.Biol.,155, 517 (1982).
- C. Lofgren, S. Guillotin, H. Evenbratt, H. Schols and A. M.Hermansson, Biomacromolecules 6, 646 (2005).
- D. A. Powell, E. R. Morris, M. J. Gidey and D. A. Rees,J. Mol. Biol., 155, 517 (1982).
- E. R. Morris, D. A. Powell, M. J. Gidley, D. A. Rees, J. Mol.Biol., 155, 507 (1982).
- M. Ashford, J. Fell, D. Attwood, H. Sharma and P. Woodhead, J. controlled release, 30, 225 (1994).
- A. Rubinstein, R. Radai, M. Ezra, S. Pathak and J. S. Rokem, Pharm. Res., 10, 258 (1993).
- S. F. Ahrabi, G. Madsen, K. Dyrstad, S. A. Sande and C. Graffner, Eur. J. Pharm. Sci., 10, 43 (2000).
- T. Radeva, I. Petkanchin and R. Varoqui, Langmuir, 9, 170 (1993).
- S. M. Cardoso, M. A. Coimbra and J. A. Lopes da Silva, Food Hydrocolloids, 17, 801 (2003).
- G. C. Olivireira, S. K. Moccelini, M. Castilho, A. J. Terezo, J. Possavatz, M. R. L. Magalhaes and E. F. G. C. Dores,Talanta, 98, 130 (2012).
- X. Zhang, Y. Cao, S. Yu, F. Yang and P. Xi, Biosensors and Bioelectronics, 44, 183 (2013).
- K. Ramanathan, R. Mehrotra, B. Jayaram, A. S. N. Murthy and B. D. Malhotra, Anal. Lett., 29, 1477 (1996).
- P. C. Pandey and A. P. Mishra, Analyst, 113, 329 (1988).
- A. S. Zerda and A. J. Lesser, J. Polym. Scipart B: Polymer physics, 39, 1137 (2001).
- S. K. Arya, P. R. Solanki, M. Datta and B. D. Malhotra, Biosensors and Bioelectronics, 24, 2810 (2009).