Refine your search
Collections
Co-Authors
Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Solanki, Pratima R.
- Differential Property of Cationic and Anionic Calcium Ion Cross-linked Pectin Gels
Abstract Views :360 |
PDF Views:2
Authors
Affiliations
1 School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, IN
2 Inter University Accelerator Centre (IUAC), New Delhi 110067, IN
3 Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, IN
1 School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, IN
2 Inter University Accelerator Centre (IUAC), New Delhi 110067, IN
3 Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, IN
Source
Journal of Surface Science and Technology, Vol 31, No 1-2 (2015), Pagination: 31-36Abstract
Pectin is a branched polysaccharides found in the cell wall of the plants and commonly used in food industry as a gelling agent, emulsifier or stabilizer. The effect of calcium chloride on the gelation of pectin dispersions was studied using rheology and light scattering measurements. Addition of calcium induced the gel formation in pectin dispersions follows egg-box crosslink mechanism. Zeta potential measurements revealed the formation of cationic and anionic pectin gels on concentration of calcium. The cationic gels had higher rigidity compared to anionic gels. The sol-gel transition has been investigated for pectin-calcium system from the structure factor data which indicated cationic gels undergo transition earlier compared to anionic ones. The gelation time was determined from rheology and viscosity experiments and found to be less for cationic gels.Keywords
Ca2+-pectin Gels, Egg-box Model, Gel Elastic Behaviour, Gel Stiffness, Gel Structure Development, Pectin, Rheology of GelsReferences
- A. S. Zerda and A. J. Lesser, J. Polym. Sci part B: Polymer physics, 39, 1137 (2001).
- B. R. Thakur, R. K. Singh and A. K. Handa, Critical Reviews in Food Science and Nutrition, 37, 47 (1997).
- C. Garnier, M. V. Axelos and J. Thibault, Carbohydr. Res.,240, 219 (1993).
- M. Ousalem, J. P. Busnel and T. Nicolai, Int. J. Biol.Macromol., 15, 209 (1993).
- M. D. Walkinshaw and S. Arnott, J. Mol. Biol., 153, 1077 (1981).
- D. A. Powell, E. R. Morris, M. J. Gidley and D. A. Rees,J. Mol.Biol.,155, 517 (1982).
- C. Lofgren, S. Guillotin, H. Evenbratt, H. Schols and A. M.Hermansson, Biomacromolecules 6, 646 (2005).
- D. A. Powell, E. R. Morris, M. J. Gidey and D. A. Rees,J. Mol. Biol., 155, 517 (1982).
- E. R. Morris, D. A. Powell, M. J. Gidley, D. A. Rees, J. Mol.Biol., 155, 507 (1982).
- M. Ashford, J. Fell, D. Attwood, H. Sharma and P. Woodhead, J. controlled release, 30, 225 (1994).
- A. Rubinstein, R. Radai, M. Ezra, S. Pathak and J. S. Rokem, Pharm. Res., 10, 258 (1993).
- S. F. Ahrabi, G. Madsen, K. Dyrstad, S. A. Sande and C. Graffner, Eur. J. Pharm. Sci., 10, 43 (2000).
- T. Radeva, I. Petkanchin and R. Varoqui, Langmuir, 9, 170 (1993).
- S. M. Cardoso, M. A. Coimbra and J. A. Lopes da Silva, Food Hydrocolloids, 17, 801 (2003).
- G. C. Olivireira, S. K. Moccelini, M. Castilho, A. J. Terezo, J. Possavatz, M. R. L. Magalhaes and E. F. G. C. Dores,Talanta, 98, 130 (2012).
- X. Zhang, Y. Cao, S. Yu, F. Yang and P. Xi, Biosensors and Bioelectronics, 44, 183 (2013).
- K. Ramanathan, R. Mehrotra, B. Jayaram, A. S. N. Murthy and B. D. Malhotra, Anal. Lett., 29, 1477 (1996).
- P. C. Pandey and A. P. Mishra, Analyst, 113, 329 (1988).
- A. S. Zerda and A. J. Lesser, J. Polym. Scipart B: Polymer physics, 39, 1137 (2001).
- S. K. Arya, P. R. Solanki, M. Datta and B. D. Malhotra, Biosensors and Bioelectronics, 24, 2810 (2009).