
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(34), DOI: 10.17485/ijst/2016/v9i34/95610, September 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

FPGA Specific Real Time Hardware Architecture
Implementing Bounding Box Merging Algorithm for

Object Detection
Bhavya Alankar1* and Binod Kumar Kanaujia2

1Department of Computer Science and Engineering, Hamdard University, New Delhi, India and Research Scholar,
Uttrakhand Technical University (UTU), Dehradun, India; bhavya.alankar@gmail.com

2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi –110067, Delhi, India;
bkkanaujia@yahoo.co.in

Keywords: Bounding Box, Field Programmable Gate Array (FPGA), Non Maximum Suppression (NMS), Non-Maximum
Suppression Finite State Machine (NMS-FSM), Real Time, Video Graphics Array (VGA)

Abstract
Objectives: This paper focuses on the real time hardware implementation of improved version of Viola Jones algorithm
for automatic object detection. Methods/Statistical Analysis: In this regard, A greedy NMS(Non Maximum Suppression)
approach has been adopted to develop the bounding box merging algorithm which could suppress the confusing dense
grid of overlapping bounding boxes against a threshold value and gives an accurate result and further this algorithm has
been transformed in to a real time hardware architecture. Findings: The hardware architecture designed is fully Field
Programmable Gate Array (FPGA) based which will take the input coordinates of the image and will process it accordingly
by reducing the number of overlapped bounding boxes in real time. Applications/Improvements: Any researcher who is
working on automatic object detection can use this hardware architecture as it is in his design and further this architecture
itself can be used to create Application Specific IC (ASIC).

1. Introduction
We are all aware that object tracking is a very challenging
task in the presence of variability illumination condition,
background motion, complex object shape, partial and
full object occlusions. In spite of these difficulties, how-
ever, a lot of research has been done and progress has
been made on the problem of detecting objects or pedes-
trians within an image in a wide field of applications such
as surveillance systems, traffic assistance systems, auton-
omous robot navigation, video stabilization, automated
vehicle parking systems, cell counting in bio-imaging
etc., all of which solely depend upon the optimization of
object detecting algorithms1-3. While many approaches
have been adopted for object detection, one of the most
acceptable approaches is to run a “scanning window”
detector across the image at a dense grid of locations

and scales, as in the Viola-Jones face detector and the
pedestrian detector algorithms1,2 These algorithms have
many advantages such as a very fast and efficient feature
selection, scale and location invariant detector, i.e., a
generic detection scheme that can be trained for detec-
tion of other types of objects (e.g., cars, hands etc.).
However, the major disadvantage of these algorithms is
that such methods typically produce a number of posi-
tive responses that are close to the correct detection and
this dense output leads to a confusing interpretation as
far as the processing and understanding of the image is
considered. This, in turn, leads to the need to have a fur-
ther Non Maximum Suppression (NMS) stage to thin out
and suppress the multiple spurious responses4,5. The most
suitable approach is the greedy NMS approach. The pro-
cedure starts by selecting the best scoring bounding box
and assuming that it indeed covers an object. Then, the

Indian Journal of Science and TechnologyVol 9 (34) | September 2016 | www.indjst.org 2

FPGA Specific Real Time Hardware Architecture Implementing Bounding Box Merging Algorithm for Object Detection

bounding boxes that are too close to the selected boxes
are suppressed. Out of the remaining boxes, the next top-
scoring one is selected, and the procedure is repeated till
a limited number of bounding boxes remain as desired
by the user or the required number of boxes needed to
process the image6,7. This procedure involves defining a
measure of similarity between bounding boxes and set-
ting a threshold for suppression.

Although a lot of research has already been done on
this8-11,, we would also like to take a small step and con-
tribute towards it further. The main aim of our work is
to design an efficient real time hardware architecture of
bounding box merging algorithm based on the greedy
NMS approach that will take the input image that has a
dense grid of overlapping bounding boxes and give the
output of a minimum number of bounding boxes as
desired by the user, as shown in Figure 1(a) and 1(b). The
hardware architecture designed by us is based on an Field
Programmable Gate Array (FPGA) based architecture
and incorporates the algorithm along with the display
unit that is needed for the display of the output result3,12.
In the next section, we will describe a modified version of
the bounding box merging algorithm in detail and then
the FPGA based real time hardware architecture needed
to implement the algorithm. Complete FPGA imple-
mentation along with simulation diagrams and resource
utilization of the hardware architecture will be dealt in
our upcoming work.

2. Bounding Box Merging
Algorithm
This algorithm basically works on the principle of the
greedy NMS approach by suppressing the bounding
boxes against a threshold value as desired by the user7,8.
The algorithm takes the coordinates of bounding boxes
as input in the form of (x,y,h,w) where (x,y) are the coor-
dinates and (h,w) are the height and width respectively.
These coordinates are stored in a matrix called Temp. In
addition to this, we have another matrix called Result,
which stores the coordinates of the final bounding boxes
left behind after the application of the algorithm. Apart
from this, a few variables are declared and initialized for
the smooth functioning of the algorithm. The declara-
tions assumed and the algorithmic procedure has been
explained in the subsections.

Figure 1. (a) Before applying bounding box merging
algorithm

Figure 1. (b) After applying bounding box merging
algorithm

Declarations:
Temp Matrix: // Coordinates of all the input bounding

boxes in the form of (x,y,h,w)
N_result: // No. of coordinates in Temp matrices
Result: // Coordinates of the resulting bounding boxes

obtained after running the algorithm
N_ped: // variable stores the number of bounding

boxes in matrix N_result
I: // variable points to the current bounding box in

Temp Matrix, where initially i=2 and N_ped =1 // and
one box is inserted in N_result matrix

j: // variable points to the current bounding box in the
N_result matrix. Initially j=1 as N_ped=1 //. Therefore,
there is one bounding box in the N_result matrix

Flag_new: // variable is initialized to ‘0’ if the bound-
ing box is suppressed, otherwise it is initialized to 1.

Initially if i<N_result, then Flag_new and j are ini-
tialized to 1, which means that there is the input number
of overlapping bounding boxes in the Temp matrix, oth-
erwise the algorithm would be suspended. If this is not
the case, then j is compared to N_ped. If j<= N_ped, then
the distance is calculated against a minimum thresh-
old. Again, if the distance is found to be less than the
threshold, then the bounding box is suppressed and the
Flag_new is initialized to 0. The value of j is then incre-
mented by 1, and once again this is compared to N_ped

Indian Journal of Science and Technology 3Vol 9 (34) | September 2016 | www.indjst.org

Bhavya Alankar and Binod Kumar Kanaujia

to see whether there is another bounding box in the N_
result matrix. Thus, the whole procedure may be repeated
otherwise the Flag_new will be initialized to 1 and the
bounding box will be added to N_result matrix i.e.,
(N_ped) = N_ped+1 and the result (N_ped) = Temp (i))
and I will be incremented to 1 so that it can take another
bounding box from the Temp matrix for processing. This
algorithm is repeated until all the bounding boxes have
been processed and a limited number of non overlapping
bounding boxes remain as decided by the threshold value.
The whole algorithmic procedure is also depicted in the
form of a flow chart in Figure 2

Figure 2. Flow chart representation of bounding box
merging algorithm

3. Proposed FPGA Based Real
Time Hardware Architecture
Before moving to the hardware architecture, let us discuss
the system as a whole. Our system basically consists of
three main elements, out of which one is the input coor-
dinate of the image another one is the FPGA based real
time hardware architecture while the final one is the dis-
play screen as shown in Figure 3. Now let us focus on the
main element, i.e., the real time hardware architecture,
which is divided into four major modules as depicted in
Figure 4. The main module of this architecture is the NMS
memory interaction block, which mainly consists of an
FSM in which the greedy NMS approach has been imple-

mented, as well as the memory block which consists of
eight dual port memory blocks of 256 MB containing the
coordinates of the bounding boxes. A detailed description
of this block along with the FSM is given in the follow-
ing subsection. The other modules consist of the initial
display module, which is used to display all the bound-
ing boxes in the image and the resulting display module,
which is used to display the minimum resulting number
of bounding boxes obtained after the application of the
bounding box merging algorithm. Both these modules
use the Video Graphics Array (VGA) module to display
the image of the object on the screen.

Figure 3. System level representation

Figure 4. Hardware architecture of bounding box merging
algorithm

3.1 FSM Memory Interaction Block
As discussed above, this is the most critical module of
the whole hardware architecture, in which the bound-
ing box merging algorithm is implemented as shown in
Figure 5. The designing of this module involves the Non-
Maximum Suppression Finite State Machine (NMS FSM),
which may also be called the main controller of the hard-
ware architecture. Interaction between the memory block
and the NMS FSM block is the main driving force behind
implementation of the bounding box merging algorithm.
Before proceeding further, we need to briefly understand
these two blocks in the following subsections.

3.1.1. Memory Block
The memory block is constituted of eight dual port mem-
ory blocks of 256 MB which are equally divided into two
parts: Temp and Result. The Temp portion consists of

Indian Journal of Science and TechnologyVol 9 (34) | September 2016 | www.indjst.org 4

FPGA Specific Real Time Hardware Architecture Implementing Bounding Box Merging Algorithm for Object Detection

four memory blocks (x,y,h,w) which have coordinates of
the unsuppressed and overlapping bounding boxes. These
coordinates are the outcome of the Viola-Jones algorithm
executed on a preloaded image in the MATLAB simula-
tion environment as shown in Figure 3. Besides this, the
Result portion also consists of four dual port memory
blocks (x,y,h,w), which have coordinates of the remaining
bounding boxes after the application of the bounding box
merging algorithm. Inputs to the result portion are the
output of the NMS FSM block.

Figure 5. FSM memory interaction block

3.1.2 NMS FSM Block
As discussed earlier, this block is the most dominating
block of the proposed hardware architecture in which the
bounding box merging algorithm is implemented. This
block uses eight bit addressing lines to fetch ten bits of
data (coordinates) from the Temp portion of the memory
block. The fetched data is used by the eleven states FSM
as shown in figure 6 to suppress the overlapping bound-
ing box against a threshold value as decided by the user.
The whole process may be understood in the following
manner.

The process begins with the idle state of the FSM,
which checks whether there is any bounding box. If there
isn’t, then the process is suspended, otherwise the process
goes to the next state after performing all the variable ini-
tializations

In the next state, the distance between the coordinates
is calculated and compared. If the distance is found to be
less than the threshold value (which has been decided by
the user), then that bounding box is suppressed and the
address is generated by the FSM to read the next coordi-
nate from the Temp portion. Otherwise, the write address
is generated and the bounding box is inserted into the
Result portion of the memory as depicted in Figure 5. The
wr_result acts as a select line to select the address depend-
ing upon the choice made by the FSM. This is repeated
until the entire set of bounding boxes has been scanned
from the Temp portion of the memory block. This whole
process and the functionalities of all the eleven states are
depicted in tabular form in Table 1.

Figure 6. Finite state machine

Table 1. Finite State machine tabular representation

S_idle According to the status of i_end,either
it will goto the next state S_read_i or
S_stop and will initialize the following
variables as i=0,n=0,j=0 and Final =0

S_read According to the status of i,either it will
goto the next state S_condition_i or
S_initialization

S_condition_i According to the status of i_end,either it
will goto the next state S_nms_complete
or S_read_i and will increment i=i+1,
n=n+1 and Wr_result=1

S_initialization It will initialize j=0
S_read_j Delay of two cycles would be given and

the next state would be S_current_j_act

Indian Journal of Science and Technology 5Vol 9 (34) | September 2016 | www.indjst.org

Bhavya Alankar and Binod Kumar Kanaujia

S_current_j_act Distance between the coordinates would
be calculated and compared and if the
distance is found to be less than some
threshold value then the next state would
be S_variable_act otherwise the next
state would be S_inc_address_j

S_variable_act The next state would be S_inc_address_j
and Final=1, O_wr_result=1

S_inc_address_j The next state would be S_decision and J
would be incremented as j=j+1

S_decision Three conditions would be there
If j>= n and Final=0 then
Next state would be S_act_i
If j>= n and Final=1 then
Next state would be S_increment_i
If j<n then
Next state would be S_read_j

S_act_i Next state would be S_increment_i
n=n+1, , O_wr_result=1

S_increment_i If i_end=1 the S_nms_Complete else
S_read_i Final=0 and i=i+1

3.1.3 Display Unit
The display unit is a combination of two separate units,
viz., Initial display and Result display as depicted in
Figure 4. The Initial display unit is responsible for display-
ing the image with overlapping bounding boxes stored in
the Temp portion of the memory while the Result display
unit is responsible for displaying the image with the sup-
pressed bounding box stored in the Result portion of the
memory after the application of the algorithm. Both of
these units interact with the VGA, which is part of the
hardware architecture and implemented along with the
other units13,14. This VGA unit generates the required
signals which are needed to display the image and these
signals are accordingly sent to the display device.

4. Conclusions
Several researchers have used the greedy NMS approach
in application specific ways for creating different applica-
tions for object detection by implementing the algorithm
on different platforms such as MATLAB in order to judge
the accuracy and efficiency of the algorithm. However,
thus far, no one has given an insight into the real time
hardware implementation of this algorithm. We have
taken the greedy NMS approach in order to create a mod-
ified version of the algorithm named the bounding box
merging algorithm, specially for creating the FPGA spe-

cific real time hardware architecture that can process the
image immediately as it gets the input coordinates. This
architecture can be used as it is by researchers, who are
working in the field of object detection and want to pro-
cess the image for different applications. Moreover, this
architecture can be further exploited for creating ASICs

5. References
1. Viola P, Jones M. Rapid object detection using a boosted

cascade of simple features. In: IEEE Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, CVPR’01, 2001, 1, p. 511-18.

2. Viola P, Jones MJ. Robust real-time face detection.
International Journalof Computer Vision. 2012; 57(2):137-
54.

3. Raveendra Reddy S, Sakthivel SM. A FPGA Implementation
of Dual Images based Reversible Data Hiding Technique
using LSB Matching with Pipelining, Indian Journal of sci-
ence and Technology. 2015; 8(25):1-6.

4. Wang W, Yi-Qing Y. An analysis of the Viola-Jones face
detection algorithm. Image Processing On Line, 2014, 4, p.
128-48.

5. Neubeck A, Van Gool L. Efficient non-maximum suppres-
sion. In: IEEE 18th International Conference on Pattern
Recognition, Hong Kong, ICPR’06, 2006, 3, p. 850-55.

6. Pirsiavash H, Ramanan D, Fowlkes CC. Globally-optimal
greedy algorithms for tracking a variable number of
objects. In: 2011 IEEE International Conference onCom-
puter Vision and Pattern Recognition(CVPR), RI, 2011, p.
1201-208.

7. Rothe R, Rasmus R, Guillaumin M, Gool LV. Non-maximum
suppression for object detection by passing messages
between windows. In: Asian Conference on Computer
Vision (ACCV), Springer International Publishing:
Switerzerland, 2014, 9003, p. 290-306.

8. Hefenbrock D, Oberg J, Thanh NTN, et al.,. Accelerating
Viola-Jones face detection to FPGA-level using GPUs. In:
18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, Charlotte,
NC, 2010, p. 11-18.

9. Brookshire B, Jon J, Steff Jorgenensen S, Xiao J. In: FPGA-
based Pedestrian Detection, Barcelona, 2010, p. 530-537.

10. Hahnle M, Saxen F, Hisung M, Brunsmann U. FPGA-
based real-time pedestrian detection on high-resolution
images. In: 2013 Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
Portland, OR, CVPRW’13, 2013, p. 629-35.

11. Diederichs C, Fatikow S. FPGA-based object detection
and motion tracking in micro-and nanorobotics. In:
Nanotechnology: Concepts, Methodologies, Tools, and

Indian Journal of Science and TechnologyVol 9 (34) | September 2016 | www.indjst.org 6

FPGA Specific Real Time Hardware Architecture Implementing Bounding Box Merging Algorithm for Object Detection

Applications: Concepts, Methodologies, Tools, and
Applications, 2014, p. 251-53.

12. Kadali KS, Rajaji L. FPGA and ASIC Implementation of
Systolic Arrays for the Design of Optimized Median Filter
in Digital Image Processing Applications, Indian Journal of
Science and Technology. 2014 Nov; 7(S7):99-103.

13. Zhang Z, Wen-ai W, Zhang B, Cheng YQ. The implementa-
tion of VGA display controller with high resolution based
on FPGA [J]. Advanced Display. 2006; 9(1):13.

14. Ya-Ping Z, Zhan-Zhuang H. Design of VGA display module
based on FPGA. Computer Technology and Development,
2007; 17(6):242-45.

