
Abstract
This paper presents a relation between queue-length distributions during vacations and those at vacation start and end
times, in M/G/1 vacation queues with batch arrivals, batch services or multi-class arrivals. In order to obtain the relation,
we develop a new approach that extends Burke’s theorem to queues with batch arrivals, batch services or multi-class
services. We also give an example to demonstrate how to apply the proposed relation to the analysis of such a queue.
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1. Introduction
It is well known that in the M/G/1 queue with server
vacations and the exhaustive service policy, the following
relation holds between the queue-length distribution dur-
ing server vacations and that at epochs just after  succesive
vacations end:
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where NV is the number of customers during  vacations
and N T is the number of customers at epochs just after
successive vacation terminations. Also, the  corresponding
PGFs are defined as:
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Similarly, if N S denotes the number of customers
at epochs just before successive vacations start and the
corresponding PGF is defined as
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S
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
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then the following relation holds in the M/G/1 vacation
queue with non-exhaustive service policy.
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See1 and 2 for the derivation and intuitive  interpretation
of 1 and 2.

Using 1 and 2, the queue-length distribution during
vacations can be derived for a variety of M/G/1 vacation
queues and the queue-length distribution at any arbi-
trary time, in turn, can be obtained from the well-known
stochastic decomposition property:

P z P z P zV
M G( ) ( ) ( ) / / = ⋅ 1 , (3)

where P z ( ) is the PGF of the queue length in the
M/G/1 vacation queue in question and P z M G( ) / /1 is 
the PGF of the queue length in the standard M/G/1
queue1,2. 

It is natural to ask whether or not there exist such
relations as in 1 and 2in the cases of M/G/1 vacation 
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queues with batch arrivals, batch service or multi-class 
arrivals. This study explores the possibility of such 
relations in those queues. Using a generalization of Burke’s 
theorem to those queues, this study demonstrates that 
there exist relations similar to 1 and 2 for M/G/1 vacation 
queues with batch arrivals, batch services or multi-class 
customers.

There have been recent studies on queue-length 
distributions in server vacation queues10–15. However, 
most works have only considered the queue-length dis-
tribution of a specific vacation queue as a special case. In 
this paper, we explore a general relation between queue-
length distributions during vacations. Hence, this study 
is more related to the classic work on relations between 
queue-length distributions in vacation queues, such as1–4. 
However, those studies only considered relations between 
queue-length distributions in the standard M/G/1 vaca-
tion queue or M/G/1 vacation queues with batch arrivals 
or batch services separately. In this study, in a unified 
approach, we explore a general relation between queue-
length distributions in various M/G/1 vacation queues 
with batch arrivals, batch services or multi-class arrivals.

In Section 2, we present a new way of extending 
Burke’s theorem. In Section 3, we present our main result 
for the relation between queue-length distributions dur-
ing vacations. In Section 4, we also give an example in 
order to demonstrate how to apply the proposed relation 
to the analysis of such a queue.

2. An Extention of Burke’s Result

Consider G/G/c queues. Let a n( )  and d n n( ), , , , ,= 0 1 2 
denote the probability that there are n  customers just 
before successive customer arrivals, and the probability 
that there are n  customers just after successive customer 
departures, respectively. Then, Burke’s theorem says that

	 a n d n( ) ( )= . � (4)

Let A  denote a set of states in which the number of 
customers is less than or equal to n  and AC  is the comple-
mentary set of A , i.e., a set of states in which the number 
of customers is greater than n . Then, Burke’s theorem 
can be derived from the argument that, in a steady state, 
the transition rate from A  to AC  needs to be identical to 
that from AC  to A . In other words, if gA B,  denotes the 

transition rate from set A  to set B , then any stochastic 
model holds the following equation:

	 g g
A A A AC C, ,

= � (5)

In a G/G/c queue, only one customer arrives at 
or departs from the system at a time. Thus, we have 
g l

A AC a n
,

( )=  and g l
A AC d n

,
( )= , where l  is the arrival 

rate of customers. From 5, we obtain Burke’s theorem in 4. 
For the sake of simplicity, we will present Burke’s theorem 
and its new variants in PGF form. Burke’s theorem in 4 
can be rewritten in PGF form as

	 Π ΠA Dz z( ) ( )= , � (6)
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This standard form of Burke’s theorem can be extended 
to queueing systems with batch arrivals or batch services 
or to those with both. g n( )  and f n n( ), , , , ,= 0 1 2   
denote the probability that the size of a batch arrival is 
n  and the probability that the size of a batch service is n ,  
respectively. We assume that a member in batch arrival 
observes the customers in the system and those who are 
ahead of him/her in the batch. Similarly, a member in 
batch service observes the customers in the system and 
those who are behind him/her in the batch. Then, the 
standard argument for 6 can be generalized to the batch 
arrival and service case, and we have
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All these arguments for Burke’s theorem so far are 
based on local balance equations that equate the level 
crossing rate from states that are less than or equal to n  
with that from states that are greater than n . However, if 
we employ an argument based on global balance equa-
tions that equate the transition rate from inside n  with 
that from outside n , an extension of Burke’s theorem in 7 
can be obtained more straightforwardly. As we will dem-
onstrate, an extension of Burke’s theorem to multi-class 
queueing systems can also be easily obtained.

In order to compare the local balance approach and the 
global balance approach, we first derive 7 using our new 
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global balance approach. Let B  denote a set consisting 
of only state n . Let lg  be the rate of batch arrivals and 
l f  the rate of batch services. A transition from B  to BC  
occurs when a batch arrival observes n  customers in the 
system just before its batch arrival or a batch service with 
size j  observes n j−  customers in the system just after 
its batch service. Thus, we have

	 g l l
B B g f

j

n

C a n f j d n j
,

( ) ( ) ( )= + −
=

∑
1

.� (8)

Similarly, a transition from BC  to B  occurs when a 
batch arrival with j  observes n j−  customers in the sys-
tem just before its batch arrival or a batch service observes 
n  customers in the system just after its batch service. 
Thus, we have

	 g l l
B B g

j

n

fC g j a n j d n
,

( ) ( ) ( )= − +
=

∑
1

. � (9)

Equating g
B BC,

 with g
B BC ,

, we have from 8 and 9

	 l l l lg
A

f
D

g
A

f
Dz z F z z G z zΠ Π Π Π( ) ( ) ( ) ( ) ( ) ( )+ = +  .� (10)

Because in a steady state the average rate of customer 
arrivals is identical to the average rate of customer 
departures, we also have

	 l lg fg f= . � (11)

Substituting 11 into 10 and rearranging the terms in 
10 gives 7.

We now extend our new global balance approach to 
multi-class queueing systems. We assume that there are 
P P, ,≥ 1  classes of customers. Customers arrives at the 
system in a batch, which can include different classes of 
customers. The customer distributions in batches are i.i.d. 
and independent of the batch arrival process. Customers 
are served one at a time, under an arbitrary service pol-
icy, so any sort of priority discipline can be assumed. 
X i Pi , ,1 ≤ ≤  denotes the number of class- i  customers 

in the batch; the corresponding PGF of the customer 
distributions in the batch is defined as

	 X E z zX
P

X Pz( ) ≡ ( ) ( )



1

1  .

The system state n  is represented by a state vector 
n nP1, ,( ) , where ni  is the number of class- i  customers 

in the system. a( )n  is the probability that a multi-class 

arrival batch observes the system state n  just before its 
arrival, and di ( )n  is the probability that a class- i  cus-
tomer observes the system state n  just after its departure 
from the system.

Let B denote a set consisting of only state n .  
A transition from B  to BC  occurs when a multi-class batch 
observes state n just before its arrival, and when a class-
i  customer observes state n e− i  just after its departure, 
where ei is a P  dimensional vector whose i -th element is 
1 and all of whose other elements are 0. Hence, we obtain
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where lX  is the arrival rate of batches, and l j  is the 
departure rate of class- j  customers. Similarly, a transi-
tion rate from BC  to B  occurs when a multi-class batch 
with x = ( , , )x xP1   customers observes state n x− just 
before its arrival and when a class- i  customer observes 
state n  just after its departure. Hence we obtain

	 g l l
B B x j j

j

P
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Equating g
B BC,

 with g
B BC ,

, we have from 12 and 13
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.Because in a steady state 

the average rate of class- j  customer arrivals is identical 
to the average rate of class- j  customer departures, we 
also have
	 l lX j jE X  = .� (15)

Substituting 15 into 14 and rearranging the terms 
gives a variant of Burke’s theorem for multi-class GX/G/c 
queues as follows:

	 Π ΠA
j
D

j

P

j jX z E X( ) ( ) ( )z z z1 1
1

−( ) = −( )  
=

∑  � (16)

If the customer distribution at epochs just after 
successive departures is given, we can easily obtain the 
customer distribution at epochs just before successive 
arrivals from 16. Also, if the arrival process is a Poisson 
process, we can also derive the customer distribution at 
any arbitrary time from the PASTA property5.

In the next section, using the new, extended approach 
of Burke’s theorem in this section, we derive relations 
between queue-length distributions during vacations and 
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those at epochs just before vacations start and end for 
MX/G/1 vacation queues and multi-class M/G/1 vacation 
queues.

3. � Queue-length Distributions 
During Vacations

Consider an M/G/1 queue with server vacations. 
The server vacation policy can be exhaustive or non-
exhaustive. Let N  denote the number of customers in the 
system. Let Y  denote the server state: Y = 0  when the 
server is on vacation and Y = 1  when the server is busy. 
Then, the system state can be represented by N Y,( ) . We 
define a set C  of states as C n= ( ){ },0 . Then, a transi-
tion from C  to CC  occurs when a vacation ends with 
n  customers in the system or a customer arrives at the 
system with n  customers while the server is on vacation. 
Let a nV ( )  denote the queue-length distribution while the 
server is on vacation, k n( )  denote the queue-length dis-
tribution when a vacation ends, lV  be the rate at which a 
customer arrives at the system during a vacation and b  
be the rate at which vacations start (terminate). Then, the 
global balance argument in Section 2 gives the following 
equation:

	 g l b
C C V

V
C a n k n

,
( ) ( )= + . � (17)

Similarly, a transition from CC  to C  occurs when a 
vacation starts with n  customers in the system or a cus-
tomer arrives at the system with n −1  customers while 
the server is on vacation. Thus, if we let h n( )  denote the 
queue-length distribution when a vacation starts, then we 
have
	 g l b

C C V
V

C a n h n
,

( ) ( )= − +1  � (18)

Equating g
C CC,

 with g
C CC ,

, we have, from 17 and 18,

	 l b l bV
V T

V
V SP z z P z z z( ) ( ) ( ) ( )+ = +Π Π . 	� (19)

(It should be noted that, from the PASTA property, we 

have P z a n zV V n
n

( ) ( )=
=

∞∑ 0
. ) From the definition of lV ,  

we have l lv Y= =[ ]Pr 0  . Also, from Little’s law, we 

have Pr[ ] [ ]Y E V= =0 b . Since the number of customers 
who arrive at the system during a vacation makes the 
difference between the number of customers at the vaca-
tion starting point and that at its ending point, we have 

lE V E N E NT S[ ] [ ] [ ]= − . Plugging these results into 19 
results in 2.

In a similar way, we derive a relation between 
queue-length distributions during vacations and those 
at successive vacation starts and end points, for MX/G/1 
vacation queues. Considering possible transitions from 
C  to CC  gives the following transition rate equation:

	 g l b
C C g V

V
C a n k n

, , ( ) ( )= + , � (20)

where lg V,  is the rate at which the server is on vacation 
and customers in batch arrive at the system. Considering 
possible transitions from CC  to C gives the following 
transition rate equation:

	 g l b
C C g V
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n
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Equating g
C CC,

 with g
C CC ,

, we have, from 20 and 21,

	 l b l bg V
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From arguments similar to those below 19, we have
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Remark. 23 corresponds to previous studies on MX/G/1 
vacation queues. For the case of exhaustive server 
vacations,6 studied an MX/G/1 queue with N-policy and 
Equation 4.1 in 6 can be rewritten in the form of 23. 
7also studied an MX/G/1 queue with multiple vacations. 
Equation 11 in 7 can be rewritten in the form of 23. For the 
case of non-exhaustive server vacations, MX/G/1 retrial 
queues can be considered. In8, the equation for p z0 ( )  on 
p. 175 and that for j( )z  on p. 179 result in a new equation 
in the form of 23.

Our method can be easily extended to multi-class 
M/G/1 queues with server vacations. If we let lX V,  denote 
the rate at which a batch consisting of multi-class custom-
ers arrives at the system during a server vacation, and 
let PV ( )z  denote the PGF of the customer distribution 
during vacations, we have

	 l b l bX V
V T

X V
V SP P X, ,( ) ( ) ( ) ( ) ( )z z z z z+ = +Π Π . � (24)

Hence, we have the following relation for multi-class 
M/G/1 queues with server vacations:

	 P
E V X E X E N

V
S T

X

VS VT

j j
VT

( ) ( ) ( )
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( ) ( )
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z z z
z

z z
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−
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Π Π Π Π
l 1 1 NN X

for j P
j
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1
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where N j
S  and N j

T are the number of class- j  
customers in the system at vacation starting times and the 
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number of class- j  customers at vacation ending times, 
respectively.

4.  Example
Consider a multi-class queue: There are 2 classes of 
customers. Class- j  customers arrive at the system, 
according to a Poisson process with rate l j j, ,= 1 2 . As 
soon as the system is empty of customers, the server goes 
on vacation. The vacation ends as soon as the number 
of class-1 customers becomes N . (9for the waiting time 
analysis of this queueing system.) Then, the following 
terms can be easily derived:

	 ΠT
N

z

N
z z

z
( )z =

+




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−


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
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= −

l
l q

l
l l

q l l

1 1

1
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2 2
2 2 2

 � (26)

	 ΠS ( )z = 1 � (27)

	 X z
z z

( ) =
+l l
l

1 1 2 2  � (28)

	 E N N NT S
1 1−  =  � (29)

	 E X[ ] /1 1= l l  � (30)

Plugging 26-30 into 25, we can obtain the queue-length 
distribution during vacations as follows:
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l
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In order to verify 31(31), the marginal queue-length 
distribution for class-1 customers will be calculated from 
31, substituting z2  with 1.  Then, the corresponding PGF 
is given as follows:

	
P z

z
N z

V
N

( , )1
1

1

1
1

1
=

− ( )
−( )   ,� (32)

which is the PGF of the queue-length distribution for 
the standard M/G/1 queue with N policy.
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