
Indian Journal of Science and Technology, Vol 8(34), DOI: 10.17485/ijst/2015/v8i34/72194, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Studies on defects in software under pair programming
and on the development speed advantage of pair
programming in isolation are found to be abundant in

literature. But a correlation study of both is rare to be
seen. One of the most important practices of Extreme
Programming (XP) is pair programming1 under agile
technology. It is evident that pair programming due to
the engagement of two programmers, would increase the

Abstract
Objectives: Proportional increase in speed of development (known as pair speed advantage) in software product
development by pair programmers when compared with single programmer has been reported in literature. There is
also an indication in the literature that the software defects in relation to lines of coding (known as defect density) are
reduced in the case of pair programming when compared with conventional single programming technique. Correlation
studies onthe contribution of application specific expert, when paired with conventional single programmer are not to be
seen much in literature. Whether the findings seen in literature would hold good for small sized software developments
also? Under these background this research work aims at presenting a correlation study (presentation of results) on
the defect density of five chosen small sized software developments by three different programmer strategies, namely
single, pair and expert programmer pair, in correlation with pair speed advantage. Methods: The research work however
doesn’t present correlation coefficients and other related statistical results, as ‘correlation’as a term, is treated only for
the study of relative performances. The novelty of the work is exhibited through the isolated study on the contribution of
domain or application specific expert when acted as a pair alongside a relatively inexperienced s software programmer,
while the domain expert need not know software programming as such, although he/she might still be a subject/domain
specialist. Finding: The experimental works elaborated in the paper, which involved three s/w developer pairs on five
small projects (file sizes varied from about 300 to 800 KB) were completely carried out by the control and direction of
the researcher herself, in laboratory conditions as pointed out in the paper, and no external agencies were involved as
the coding on the chosen applications is small when compared with huge LOC of s/w industries. These results were not
sent to any other publisher for publication. Since the objective of the research work is to do a correlative study between
the efforts of programmers and domain experts, MCA students and known domain experts (namely banking staff) were
deployed by the researcher. The demography presented in the paper vouches the same. Application/Improvement:
The paper has clearly demonstrated the performance improvement by the expert pair combination in the reduction of
application specific defects (expressed in terms of defect density similar to the term pointed out by Frank Padberg et. al.
2003), when correlated with other two pairs. The paper also has shown that there is also a marginal increase in the pair
speed advantage in the case of expert pair with compared with conventional programmer pair.

Keywords: Application Specific Experts, Pair Programming, Pair Speed Advantage, Software Defect Density

Correlation Study on Defect Density with Domain
Expert Pair Speed for Effective

Pair Programming
K. S. Sunitha* and K. Nirmala

Department of Computer Science, Quaid-E-Millath Government College for Women(A),
University of Madras, Chennai - 600002, Tamil Nadu, India;

sunithasura2001@gmail.com, nimimca@yahoo.com

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology2

Correlation Study on Defect Density with Domain Expert Pair Speed for Effective Pair Programming

personnel cost; but however aims at increasing the team
productivity and also to improve the quality as compared
to single programmer development2. On the other hand,
‘it is debatable; whether or not the productivity gain is
worth the extra cost’ and ‘it is also doubtful whether
two programmers produce code twice as fast as a single
programmer?’3. Pair programming have found to have
provided only a small effect on the reduction of defects
in large software development4. Software development
in India is primarily manpower intensive and the growth
is proportional to software engineer’s employed5 and
this phenomenon has resulted in increase difficulty in
coordinating and controlling large software developments.
Small sized software developments are seen aplenty
in South India. In view of the above background, this
research work attempts to make a correlation (relation
with each other) study on the defect density of five chosen
small sized software development under three different
programmer strategies under single, pair and expert
programmer pair in line with pair speed advantage. The
novelty of the work is exhibited on the isolated study
of domain or application specific expert when acting
as a pair alongside a relatively inexperienced software
programmer, while the domain expert is not expected to
know software programming as such, although he/she
might be a subject/domain specialist. The objective of the
research work is to segregate three types of defects such as
syntactic, execution/running and domain or application
specific and to make inferences on the role of expert’s
contribution in fixing the third type of defect. The work
elaborated and presented in this research work is a part of
a whole research program of the authors. Findings along
with results reported in this research work would be of
immense help to pair programming researchers and also
to application specific software development teams in the
field of software engineering.

2. Literature Support and
Problem Formulation

Pair programming is one of the core areas of the process
paradigm of XP6. At the expense of personnel costs
increased by pairs, the productivity and the quality of
software product is expected to increase, when compared
with conventional single programmer’s effort. Works
on the quantification of pair programmer efforts in
comparison with conventional single programmer for

faster production has been reported. Advantages of
pair programming and the specific issues arising out of
it have been reported in detail by7 Programming logics
and coding output may be affected due to human factors
and the programmers forming in pairs would influence
the quality of the coding. Lessons are learnt from
implementing the practices of project risk management
during the process of software development8 such as by
pair programmers. This would indicate that the defect
ratios of software projects would become sensitive.
Pair speed advantage has been termed on the higher
development speed by pair programmers than a single
programmer6. The authors have also mathematically
expressed the computation of software defect densities.
Both these terms are restricted to software development
costs and not on operation costs. According to the
authors ‘the average productivity of a single developer
is measured in Lines of Coding (LOC) per month. This
includes design, coding and unit testing, but excluding
regression testing’. To reduce project cost, time of
development, and to improve the customer expectations,
XP coding technique has been suggested9. XP is one of
the software development methodologies which are
expected to improve the software quality particularly
with pair programming. XP adopts agile technology to a
great extent. This is intended to improve the productivity
and also for adopting customer requirements. One of
the elements of XP is pair programming that extensively
reviews coding; an area of determining defects in software
that is of demand now-a-days.

The importance of application specific errors in
huge software development that involves several man
years and the need for addressing such software bugs
have been stressed10. Software developers generally pay
more attention to commonly known errors caused by
operating systems, but literatures have also reported on
lesser known application dependent errors in software.
Such violations of application specific coding rules are
responsible for multitude of errors. Only application
specific domain experts can discover such patterns of
application dependent logical errors, so that they can
get fixed relatively quickly. From the support of these
base papers, the research work is identified to perform
a correlation study on defect density through the
contribution of domain specific experts in improving the
pair speed advantage.

K. S. Sunitha and K. Nirmala

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology 3

3. Proposed Method

3.1 Experimental Setup and Research
Methodology

The proposed study has delimited with five small/medium
sized software development products that are dealing with
popular and less complex domain areas such as banking,
hotel management etc. that are enlisted in this section.
The pair group behavior, which is the main objective of
the study, is planned with three categories (or cases) with
a single programmer, pair of two programmers and most
importantly a domain expert (in the chosen application
area) alongside a programmer as a pair. The experiment
is however focused only on the number of defects in the
total LOC of each case and not focused on the algorithmic
studies and efficiency of the coding. The experimental
studies are limited to laboratory conditions and not on
actual industrial environments. The demographic details
with legends are presented below.

The software products are identified with P1, P2 etc.
P1: Hotel management software; Single Programmer LOC:
2633; P2: Travel and Tours management software;(all
Single Programmer) LOC: 3450; P3: Banking operations
software; LOC: 4128; P4: Financial company management
software; LOC: 7402; P5: Combined banking and
financial borrowing/lending company software; LOC:
10239; The Programmer Cost (PC) is computed in terms
of unit programmer cost which is computed as: One man
day * fixed cost for one working day (assumed unit Rs)

= 1. The PC can therefore be easily computed for actual
cost based on any working day. The Expert Cost (EC) is
determined for domain or application specific expert’s
unit cost for P1: 2.5 * PC; P2: 2.5* PC; P3: 2.7* PC; P4:
2.7* PC; P5: 2.7* PC. The factors, namely 2.5 or 2.7 can
be changed with actual ratios practiced in real world
condition. A well balanced demography has been chosen
while developing the software in laboratory conditions.
Experts acted as part of the control group samples but not
concerned with the research program. All the samples
of the control group for experiments are from the city
of Chennai, India. Developments were carried out at
various stages. As this research work forms a part of a
whole research program, results have been shared for a
few research programmes under the single supervisor/
guide who is also the second author of this research work.
Total programmers (sample) = 20. Demography of the
programmers/experts is presented in Table 1.

4. Experimental Results and
Discussion

Experiments were planned for development of software
packages/products on five selective application areas
by three programmer teams as specified earlier. At the
development stage, before the testing process of the
products, the number of defects caused in the coding is
calculated along with the LOC. The demography details
of the cases along with software product details are

Table 1. Demography of programmers/Experts for the experiments

Pr
oj

ec
tI

d

Demography details
Single

Programmer
Pair Programmers Expert Programmer Pair

Programmer 1 Programmer 2 Programmer Expert

A
ge

 L
im

it

Pr
og

ra
m

m
in

g
Ex

pe
ri

en
ce

 (y
rs

)

Po
sit

io
n

A
ge

 L
im

it

Pr
og

ra
m

m
in

g
Ex

pe
ri

en
ce

 (y
rs

)
Po

sit
io

n

A
ge

 L
im

it

Pr
og

ra
m

m
in

g
Ex

pe
ri

en
ce

 (y
rs

)
Po

sit
io

n

A
ge

 L
im

it

Pr
og

ra
m

m
in

g
Ex

pe
ri

en
ce

 (y
rs

)

Po
sit

io
n

A
ge

 L
im

it

D
om

ai
n

Ex
pe

ri
en

ce
 (y

rs
)

Po
sit

io
n

P1 20 4

I t
o

II
I y

ea
r

M
C

A
 st

ud
en

ts 21 4

I t
o

II
I y

ea
r

M
C

A
 st

ud
en

ts 20 4

I t
o

II
I y

ea
r

M
C

A
 st

ud
en

ts 20 4

I t
o

II
I y

ea
r

M
C

A
 st

ud
en

ts 36 5

Pr
of

es
sio

na
l

co
ns

ul
ta

nt
s

P2 20 3 21 4 20 4 20 4 35 5
P3 21 4 22 5 22 5 21 4 27 4
P4 22 4 23 5 22 5 21 4 40 12
P5 23 5 23 5 23 5 21 4 40 12

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology4

Correlation Study on Defect Density with Domain Expert Pair Speed for Effective Pair Programming

presented in Table 1. As the research objective involves
correlation study of these programmer groups, such a
demographic detail is required.

The computation of pair speed advantage and the
defect densities are presented below.

Development cost unit = Man days consumed * PC
and/or EC.

Total single programmer man days: P1: 17; P2: 18; P3:
22; P4: 26; P5: 38.

Total pair programmers man days: P1: 28; P2: 28; P3:
30; P4: 32; P5: 44.

Total domain expert programmer pair man days: P1:
4*2.5 + 18; P2: 4*2.5 + 18; P3: 7*2.7 + 20;

P4: 6*2.7 + 24; P5: 10*2.7 + 26.
The defect density and pair speed advantage are

computed as presented below6. Defect density: No. of
defects lines per 1000 lines * (100% - good conventional
coding that would have eliminated X% of these defects).
Ex.: 400 / 1000 * (10/100) with a good coding that would
have eliminated 90% of the defects (= 0.04).Pair speed
advantage: Percentage of reduction of duration than
single programmer duration. Ex.: For 17.65% shorter
duration, the pair speed advantage would become 100 /
(100 – 17.65) = 1.21.

A sample program coding is shown in Figure 1. The
display (Figure 1) is just to indicate the vulnerability of
defects liberally caused by inexperienced programmers
and also allowed for the purpose of research. The fourth
line in the Figure 1, namely the variable ‘seatbook’ is
erroneously spelt as ‘seat-book’; fifth line shows ‘flag=’
instead of specifying ‘flag==’. The eighth line of the
coding specifies an application dependent value that is
inadvertently buried in the program by the programmer
that is causing a defect which was pointed out and
rectified by the domain expert. In normal circumstances
this rectification wouldn’t have been possible.
void reserve (int n)
{if (n>arrRowState[14]) {cout<<”Too large group to
accommodate”; getch (); return; }
int flag=0; int seat-book;
for (int i = 0 ; flag=0&&i<=13 ; i++) {
if (arr Row State [i] >= n) {flag=1;
cout<< “Following Seats Alloted”;
seatbook = (((i)*5)+(6-arr Row State [i]));
for (int j = 0 ; j < n ; j++) {
cout<< “”<<seatbook+j<<””;
seat [(seatbook+j)]. is Empty=0; }
arr Row State [i] = arr Row State [i]-n;
arr Row State [14] = arr Row State [14]-n; } }

if (flag==0) {
while (n!=0) {
intmax, rowNo = 0; max=arr Row State [0];
for (int j = 0 ; j<14 ; j++) {
if (arr Row tate [j] > max) {
max = arr Row State [j];
row No = j; } }
if (n>max) {
n = n-max;
seatbook = (((row No)*5)+(6-arrRow State [rowNo]));
arrRowState [row No] = arr Row State [row No] - max;
for (int j = 0 ; j<max ; j
++) {
cout<< “”<<(seatbook+j)<<””;
seat [(seatbook+j)]. is Empty=0; } }
else {
 reserve (n); n=0; } } }

As stated earlier, the defects caused while coding have
been grouped into three categories and the distribution of
the ratios of individual category to the LOC of the three
cases are presented in Table 2.

Table 2. Distribution of number of defects created by
the three cases

Pr
oj

ec
t I

d

Ratio of Defects to LOC in Programs caused by
Single

Programmer
Pair

Programmers
Expert

Programmer Pair

Sy
nt

ac
tic

D

ef
ec

ts
Ex

ec
ut

io
n

D
ef

ec
ts

A
pp

lic
at

io
n

Sp
ec

ifi
c D

ef
ec

ts
Sy

nt
ac

tic

D
ef

ec
ts

Ex
ec

ut
io

n
D

ef
ec

ts
A

pp
lic

at
io

n
Sp

ec
ifi

c D
ef

ec
ts

Sy
nt

ac
tic

D

ef
ec

ts
Ex

ec
ut

io
n

D
ef

ec
ts

A
pp

lic
at

io
n

Sp
ec

ifi
c D

ef
ec

ts

P1 0.121 0.082 0.122 0.104 0.077 0.126 0.101 0.072 0.002
P2 0.118 0.098 0.080 0.101 0.066 0.100 0.098 0.063 0.003
P3 0.143 0.102 0.129 0.111 0.078 0.115 0.103 0.067 0.003
P4 0.138 0.047 0.100 0.100 0.023 0.100 0.094 0.024 0.001
P5 0.198 0.098 0.123 0.186 0.088 0.126 0.097 0.078 0.002

Figure 2. Distribution of defects to LOC ratios of single
programmers.

K. S. Sunitha and K. Nirmala

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology 5

The distribution presented in Table 2 is shown
in Figures 2, 3 and 4 of each programmer category
respectively. As seen from Figure 2 of the case of single
programmer, the defect ratio of syntactic error supersedes
other defects. Even though the distribution is shown in
terms of increasing volume of coding, there is a dip in
the case of 4th product (Figure 2). This may be due to the
specific nature of relatively easier application. A similar
observation is made in Figures3 and 4. It is quite evident
that the ratio of application specific defects to LOC
is the smallest in the case of expert programmer pair.
This clearly indicates that the contribution of experts
(application specific) in development is significant. There
is a reduction of defects both syntactic as well as execution
in the case of pair programmers as seen from Figure 3,
when compared with Figure 2. This is in agreement with
other published works.

Figure 3. Distribution of defects to LOC ratios of pair
programmers.

Figure 4. Distribution of defects to LOC ratios of expert
programmer pairs.

The defect densities and speed advantages computed
using the expressions explained earlier for the three
groups of programmers are presented in Table 3.

Figure 5. Distribution of Dev. cost units for the three cases.

Table 3. Distribution of defect densities and speed advantages of the three cases

Pr
oj

ec
t I

d

Single Programmer Pair Programmers Domain Expert Programmer Pair

S/
w

 P
ro

du
ct

 S
iz

e,
 K

B

D
ev

. C
os

t u
ni

ts

D
ev

. D
ur

at
io

n,
 d

ay
s

D
ef

ec
t D

en
sit

y

Pa
ir

 S
pe

ed
 A

dv
an

ta
ge

S/
w

 P
ro

du
ct

 S
iz

e,
 K

B

D
ev

. C
os

t u
ni

ts

D
ev

. D
ur

at
io

n,
 d

ay
s

D
ef

ec
t D

en
sit

y

Pa
ir

 S
pe

ed
 A

dv
an

ta
ge

S/
w

 P
ro

du
ct

 S
iz

e,
 K

B

D
ev

. C
os

t u
ni

ts

D
ev

. D
ur

at
io

n,
 d

ay
s

D
ef

ec
t D

en
sit

y

Pa
ir

 S
pe

ed
 A

dv
an

ta
ge

P1 332 17 17 0.04 1 367 28 14 0.032 1.21 380 28 18 0.01 0.95
P2 345 18 18 0.09 1 338 28 14 0.044 1.29 404 28 18 0.02 1.00
P3 394 22 22 0.12 1 403 30 15 0.09 1.47 487 38.9 20 0.02 1.10
P4 566 26 26 0.2 1 589 32 16 0.14 1.62 663 40.2 24 0.02 1.08
P5 867 38 38 0.34 1 822 44 22 0.22 1.73 892 53 26 0.03 1.46

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology6

Correlation Study on Defect Density with Domain Expert Pair Speed for Effective Pair Programming

The results are presented in Figures 5, 6 and 7 on the
comparisons of costs, defect densities and pair speed
advantage respectively.

Figure 6. Distribution of defect densities for the three cases.

Figure 7. Distribution of pair speed advantages for the three
cases.

The development unit costs of the three cases are
gradually increasing along with the increase in volume
of coding as seen from Figure 5. However the increase
is seen rapid for the single programmer case while the
gap is found to be gradually reducing in the case of pair
programming from that of the case of single programming.
But not so much seen in the case of expert programmer
pair. This clearly indicates that the development cost
might be reduced for large coding projects that are in
agreement with other findings3. Important findings of
this research demonstrate that the contribution of experts
of the relevant domains would influence (reduce) the
development cost for domain dependent developments.

Important observations are made from Figure 6. The
defect densities are certainly found to be low in the case
of expert programmer pair when compared with the rest
of the two cases. Irrespective of the domain, the experts

would certainly contribute in reducing the defects in the
programs when paired with conventional programmers.
Besides, the defect densities are found to be less in the
case of pair programmers when compared with single
programmer, as seen in Figure 6.

Unlike some of the other published works6, there is
no marked improvements seen in pair speed advantage
as witnessed in Figure 7. However, large coding projects
might show some improvements in pair speed advantage,
as an indication is noted from project 1 to 5. There is an
signal in Figure 7, that for larger coded projects, expert
programmer pair might further increase the advantage
of speed, as seen for this particular case in Figure 7. Yet
again the advantage of pair speed is certainly visible in
the case of pair programmers when compared with single
programmer, which is in agreement with6.

5. Conclusion

The experiments clearly indicate that there is a
contribution by application specific experts in reducing
the defect ratios, particularly on the application
specific defects. There is also a marginal increase in the
pair speed advantage in the case of expert pair with
conventional programmer. Unlike the general belief that
pair programmers would reduce production time when
compared with single programmer, the reduction is
found to be only very marginal in small sized software
developments.

6. References
1. Huizinga D, Adam K. Automated defect prevention: Best

practices in software management. John Wiley and Sons;
2007. p. 75.

2. Muller MM, Frank P. On the economic evaluation of XP
projects. ACM SIGSOFT Software Engineering Notes.
2003; 28(5):168–77.

3. Kim N. Increasing quality with pair programming. Soft-
ware Engineering [Master Thesis]. Thesis no: MSE-2003-15
06 2003.

4. Enrico diB, Ilenia F, Nattakaran P, Alberto S, Giancario
S, Jelena V. Pair Programming and Software Defects – A
Large, Industrial Case Study. IEEE Transactions on Soft-
ware Engineering. 2013; 39(7)930–53.

5. Rishikesha T, Krishnan NP, Ganesh NP. Software product
development in lesson: Lessons from Six Cases. Journal of
India in the Global Software Industry: Innovation, Firm
Strategies and Development; 2003. p. 139–63.

K. S. Sunitha and K. Nirmala

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology 7

6. Padberg F, Matthias MM. Analyzing the cost and benefit
of pair programming. Proceedings Ninth International in
Software Metrics Symposium, 2003. IEEE; USA; 2003. p.
166–77.

7. Williams L. Integrating pair programming into a software
development process. Proceedings 14th Conference on in
Software Engineering Education and Training, 2001 IEEE;
2001. p. 27–36.

8. Kwak YH, Jared S. Project risk management: Lessons
learned from software development environment. Techno-
vation. 2004; 24(11):915–20.

9. Kent B. Extreme Programming Explained: Embrace
Change. 2nd Edition. Addison-Wesley; NY: USA; 2004.

10. Livshits B, Thomas Z. DynaMine: Finding common er-
ror patterns by mining software revision histories. In
ACM SIGSOFT Software Engineering Notes. ACM. 2005;
30(5):296–305.

11. Nagarajan R, Velanganni JA, Sujatha S. Behavioural As-
pects of Software Project Management-In-House Software
Development. Indian Journal of Science and Technology.
2015; 8(S3):1–9.

