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1.  Introduction

Cognitive Radio is advancement to the software defined 
radio platform: a dynamical transceiver system which 
automatically reconfigures its communication parameters 
of the network to that of the user requirements. 
Conventional analog designs are not optimized by 
cognitive radio1. The main factor for the insufficient usage 
of the spectrum is because of Static Spectrum Allocation2.  
The static spectrum allocation restricts the usage of 
unused frequencies from being utilized, even though the 
unlicensed user does not cause any noticeable interference 
in the spectrum3. Cognitive radio explores this concept of 
reusing the unused frequencies by the primary user and 
allocates these frequencies to the secondary user1.  

2.  �Spectrum Sensing for 
Cognitive Radio

2.1 Cyclostationary Feature Detection
The transmitted signal from the primary users should 
have a periodic pattern6. This periodic arrangement is 
known as cyclostationarity and this technique is used 
to detect the presence of primary users. The mean and 
the covariance of the signal are in periodic fashion. The 
disadvantage of this technique is that, it requires high 
computation complexity, long sensing time and partial 
information of the primary user signal6. Cyclostationary 
feature detection uses a threshold value to distinguish the 
availability of the primary user and unoccupied bands. 
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The cyclic frequencies in the spectrum are periodically 
scanned continuously and at every cyclic frequency if the 
cyclo autocorrelation function is below a threshold value, 
then that frequencies is said to be unoccupied. Similarly if 
the function is above the threshold, then that frequency is 
said to be occupied.

2.2 Energy Detection 
Energy detection is the most popular sensing technique 
due to its less implementation complexity and it can 
be implemented in both frequency and time domain6. 
Energy detection doesn’t need any preliminary knowledge 
of primary user signals. Energy detection technique is 
much more superior to matched filter detection and 
cyclostationary feature detection because this technique 
requires a prior knowledge of the primary user signals 
to utilize efficiently which is practically cumbersome 
to realize because primary user information is differ in 
different case. Energy detection method also uses the 
threshold computation, where at every frequency in the 
spectrum the energy is calculated and is then compared 
with that of the threshold value1,2. The energy which is 
beyond the threshold is favored as the primary user and 
the other case: below which is consider to be unused 
frequency bands. 

2.3 Hilbert-Huang Transform (HHT)
The conventional transforms like: wavelet transform and 
Fourier transform are applied only on linear/stationary 
signals. In real time applications the signal will be non-
linear/non-stationary. HHT explores this non-linearity 
and can be applied to both linear as well as non-linear 
signals. HHT uses the Empirical model to analyze the 
power of the signal; it is classified into two categories: 
Empirical Mode Decomposition (EMD)1,5 and Ensemble 
Empirical Mode Decomposition (EEMD)1,5. 

2.4 Empirical Mode Decomposition
EMD decomposes the original signal into individual 
frequency components known as Intrinsic Mode 
Functions (IMFs). These IMFs are then fed as input to the 
Hilbert Spectrum Analysis (HSA)1 where the power at 
individual frequency is calculated over entire bandwidth. 
These powers are compared with the threshold and the 
used and unused frequencies are classified accordingly. 

2.5 Ensemble Empirical Moe Decomposition
EEMD is introduced to overcome the drawbacks of 
the EMD where EEMD users Noise Assisted Analysis 
Method (NADA)1 . EMD cannot deal the signal in the 
noisy environment effectively; this is known as Mode 
mixing. This results in aliasing in time frequency domain. 
In EEMD, noise is intentionally added to the original 
signal so as to reduce the aliasing effect by nullifying the 
collection of white noise in time-space ensemble mean, 
resulting in the survival of the original signal. To set the 
meaning of IMF clearly, finite amplitude of white noise 
is required to force the ensemble to drain all the possible 
solutions.

2.6 HHT-Averaging-Ratio 
The algorithm requires baseband discrete-time signal with 
fs as a sampling frequency and the output observed is the 
series of vectors defining the availability of the channel. 
Windowing technique is used here to transmit the signal 
segmented into T-frames and the framed samples are 
represented as yt(n), 

where n=0 to N-1, t=0 to T-1. N is the number of 
samples in a frame and T is number of frames1.

Applying this windowing technique to the sampled 
frames we get,
Yw,t(n) = yt(n)*w(n)				        (1)

Now, applying HHT for the above framed signal we 
get the frequency spectrum of:
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Power spectrum computation is carried out in order to 
calculate the power for each frame after performing HHT.

The Power Spectral Density is defined as: Pt (k)=|Yt(k)|2

						            (3)
We need to set the threshold in order to distinguish 

primary users’ frequency and holes. So, we calculate the 
average power of T successive frames and the mean power 
across all the frequencies in the spectrum.
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The ratio of the average power to that of the mean 
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power gives the threshold value. 
The power at every frequency is compared with the 

threshold value and the decision d(k) of classifying the 
primary user and unused frequency is taken as:

d (k) = Pavg(k)/Pmean				         (6)

The combined decision for all the frequencies is made 
according to:

Combined decision=
used,       if ∩ k€f {d (k)>at particular frequency} 
unused, if ∩ k€f {d(k)<at particular frequency} 	      (7)

3.  Methodology

The input to the HHT is base band discrete time signal, 
where the signal is differentiated into individual IMFs. 
The average power and the mean power are calculated 
according to the Equation (4), (5). The threshold value 
is dynamically changed according to the IMFs observed 
and a particular IMF is then compared with the threshold 
value. This method of comparing IMFs directly with the 
threshold reduces the complexity of finding the power 
of each IMF using HSA, which also reduces hardware 
equipment and increases the computation speed.

In our work, the number of IMF’s generated is 8 and 
any IMF is sufficient to depict the primary user. But, the 
first IMF yielded closer to that of the required result.

4.  Results and Discussion

The input considered for our work is a discrete-time 
domain signal with matrix size 20*5 known signal. The 
range of frequencies considered is 20 MHz – 40 MHz with 
a sampling frequency of 128 MHz and 20 users in this 
spectrum. We considered 200 frames with a window size 
of 200*256. The bit duration is 0.4e-3 and the probability 
of false alarm rate as 0.001. SNR values are set as -40dB. 
A known signal taken as reference signal is taken and 
followed by the incoming random non-stationary signal 
to identify the primary users’ status. The incoming signal 
is fed to the HHT with EMD mode and also EEMD mode 
(Figure 4, Figure 5 respectively).
Information from IMF’s:

Figure 1.    Sensing the user using First IMF.

Figure 2.    Sensing the user with Fourth IMF 
component.

Figure 3.    Sensing the user using Eight IMF.
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Figure 4.    Sensing the users using all IMF’s.

The IMFs are computed and they are enough to 
classify the number of primary users, which produces 
better results in relative to FAR, EFAR, as shown in Table 
1. The threshold value generated is 1.0194 which is the 
ratio of average powers. Figure 4 It corresponds to the 
user identification (power), in which the sum of 8 IMF’s 

generated is taken into consideration. Figure 1, Figure 
2, Figure 3 reflects the individual IMF’s generated for 
the identification of the user in comparison with the set 
threshold value (6). Figure 4 shows sum of all the IMF’s 
for decision making of the user presence. It is very clear 
from the above observations that the first IMF produced 
is almost close enough to the sum of all IMF’s.

Figure 5.    EEMD for user identification.

Table 1.    Comparison of simulated results (threshold= 1.0194, 20 users)
Frequency EFAR DP FAR DP ALL IMFs DP 1st IMF DP 8th IMF DP 3rd IMF DP 4th IMF DP
21 MHz 0.8241 0 1.0135 0 36.4344 1 -9.4519 0 1.6224 1 5.0188 1 11.5269 1
22 MHz 0.7684 0 0.9581 0 36.7754 1 69.0419 1 1.5362 1 -106.7901 0 7.1025 1
23 MHz 0.8456 0 1.1102 1 19.863 1 -33.0619 0 1.4519 1 -1.6627 0 0.7099 0
24 MHz 0.911 0 1.0503 1 40.6697 1 -20.029 0 1.3694 1 75.3518 1 -5.3677 0
25 MHz 0.9846 0 0.9406 0 -2.3624 0 -151.5442 0 1.2887 1 -11.3258 0 -9.4432 0
26 MHz 0.9448 0 1.0683 1 -18.9286 0 -113.6421 0 1.2099 1 -72.5679 0 -10.84 0
27 MHz 0.7062 0 0.9308 0 11.1541 1 45.9015 1 1.1329 1 37.9009 1 -9.0553 0
28 MHz 0.9024 0 0.9516 0 4.8895 1 80.0831 1 1.0577 1 80.9065 1 -4.6318 0
29 MHz 0.729 0 1.0599 1 27.8371 1 -61.7553 0 0.9843 0 1.4622 1 0.7357 0
30 MHz 0.9687 0 0.8804 0 -16.6421 0 53.9251 1 0.9126 0 -68.067 0 5.3005 1
31 MHz 0.9124 0 0.9889 0 46.7474 1 -74.0898 0 0.8427 0 -102.4828 0 7.632 1
32 MHz 1.059 1 0.9591 0 12.8613 1 43.01 1 0.7744 0 -107.8538 0 7.7783 1
33 MHz 1.1758 1 1.072 1 -33.2315 0 115.1585 1 0.7079 0 -90.6125 0 6.3379 1
34 MHz 0.9889 0 0.9398 0 40.0995 1 -78.2393 0 0.6431 0 -57.9544 0 3.89 1
35 MHz 0.8798 0 1.0249 1 6.3209 1 -175.7666 0 0.5799 0 -15.1091 0 1.0084 0
36 MHz 1.0503 1 1.0254 1 5.7695 1 -90.6747 0 0.5184 0 33.6698 1 -1.7335 0
37 MHz 0.981 0 0.9396 0 -17.9235 0 -121.3685 0 0.4585 0 80.5491 1 -3.7618 0
38 MHz 0.8496 0 0.96 0 -2.8199 0 49.0117 1 0.4003 0 103.2214 1 -4.503 0
39 MHz 1.3293 1 0.8779 0 18.3022 1 25.0217 1 0.3436 0 80.8938 1 -3.4409 0
40 MHz 1.2962 1 0.9048 0 0.8094 0 2.9213 1 0.2885 0 14.7819 1 -0.9394 0
Correct Detection 11 13 9 9 12 8 9

DP- Detection Probability for 20 users.
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5.  Conclusion

In order to differentiate the Cognitive radio users 
using all IMF’s, a single IMF is sufficient to yield the 
desired identification, reducing the complexity of 
practical implementations. HHT in total yielded better 
relative detection probability because of the EMD and 
EEMD modes and also IMFs are utmost used to classify 
the detection rather that going to Hilbert-Spectrum 
analysis. Differentiating the users is very much closer 
to the realistic values in HHT-AR over FAR (Figure 4)4. 
Considering the typical frequency 27 MHz for all the 
methodologies, user identification using HHT produced 
accurate output over FAR and EFAR. The main advantage 
of using HHT is that it deals with the non-stationary 
signals and also immunized to noise. This work can be 
carried on for the secondary user power optimization 
which may cause power interference to the primary user. 
Also when the primary user requires a frequency slot 
after allocating to the secondary users, which secondary 
user to be evacuated is the primary question and this can 
be done by using the same HHT computation for every 
secondary user and the user with low power is replaced. 
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