
Abstract
Objectives: Scheduling is an optimization problem in computer science and operation research in which ideal jobs are
assigned to particular times. Nowadays, the problem is presented as an online problem, that is, each job is presented and
the online algorithm needs to make a decision about the job before the next job is presented. Methods and Statstical
Analysis: The proposed approach is used to solve the open job scheduling problem in which any job can be connected
with the available machine. That was implemented in matlab to available best results with hybrid evolutionary algorithm.
Findings: In this paper, a hybrid algorithm based on the particle swarm optimization is proposed, for flexible, open
shop scheduling problem, to minimize the make-span. First an effective new approach using two decisions based on
parallel priories dispatching rules is applied. Next we develop a hybridizing HPSO, that presents new components for
updating velocity and position using evolutionary operators, with an adaptive neighbourhood procedure based on the
insert-interchange fitness function, selection, mutation, crossover. Application/Improvements: The performance of the
proposed a new hybrid algorithm is compared to other benchmark problems.

Single Objective for Partial Flexible Open Shop
Scheduling Problem using Hybrid Particle

Swarm Optimization Algorithms
M. Nagamani1* and E. Chandrasekaran2

1Global Institute of Engineering and Technology, Vellore - 632509, Tamil Nadu, India; nagamanim1983@gmail.com
2Veltech University, Avadi, Chennai - 600085, Tamil Nadu, India; e_chandrasekaran@yahoo.com

Keywords: Dispatching Rules, Evolutionary Operators, Flexible Open Shop Problem, Local Search, Particle Swarm
Optimization

1.  Introduction
The flexible, open shop scheduling problem (FOSP) can be
defined by a set of n jobs to be scheduled through s stages
in series. Each stage j (j = 1, 2,s) has mj identical
and parallel machines. The job i (i = 1, 2,….., n) require a
processing time pij at stage j, and has to be processed with-
out preemptive by exactly only one machine at one stage.
The objective is to find a schedule of jobs, which would
minimize the make-span1. Many research and researches
in the literature have been attempted to solve the flex-
ible, open shop, using several approaches such as exact
methods, heuristic and metaheuristic. Branch and bound
is the only method widely used to solve the HFS. The pro-
posed a branch and bound method based on m-machines
problems2. The presented an enhanced branch and bound
procedure based on energetic reasoning and of global

operations3. The applied a branch and bound algorithm
for a flexible, open shop scheduling problem with setup
time and assembly operations4.

An efficient heuristic algorithm for the special case
when the second stage contains only the one machine.
The proposed metaheuristic algorithms for a two-stage
flexible, open shop with and of multiprocessor tasks5.
The presented an effective parallel ambition algorithm to
solve HFS with multiprocessor tasks6. Recently, several
metaheuristcs have been described to solve the HFS7. The
presented a parallel Tabu Search (TS) to solve large, compli-
cated size problem instances of HFS7. Developed diverged
approaches based on Evolutionary Algorithms (EA) for
flexible, open shop with multiprocessor task of problems.
An ant colony optimization for HFS is introduced an
approach hybridizing particle swarm optimization with
bottle neck metaheuristic and proposed a hybrid discrete

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(35), DOI: 10.17485/ijst/2015/v8i35/79530, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Single Objective for Partial Flexible Open Shop Scheduling Problem using Hybrid Particle Swarm Optimization Algorithms

Indian Journal of Science and Technology2 Vol 8 (35) | December 2015 | www.indjst.org

particle swarm optimization for the no-idle permutation
flexible open-shop scheduling problem8. An improved
advanced cuckoo algorithm to minimize the maximum
completion of time9,10. The presented two algorithms
inspired by the natural immune system (QIA), with the
objectives to minimize the make-span and the mean
flowtime9,10. The proposed new approaches based on an
artificial immune system for HFS11,12. In this paper, we
will present a hybrid particle swarm algorithm incorpo-
rated with mutation-based local search, that operates by
the use of compound neighbourhood structures. Due to
the importance in solution method, the objective func-
tion would be calculated by a new heuristic, that consist
to combine parallel priority dispatching rules to assign
jobs to machines at each stage13.

2. � Hybrid Particle Swarm
Optimization Algorithm

Hybrid Particle Swarm Optimization (HPSO) is an
evolutionary biologically inspired optimization, based
on the behaviour and intelligence of swarms14. It was first
originally developed by Kennedy15. HPSO is initialized by
a population of particles randomly chosen (individuals
or solutions), and the processing of research is carried
out by updating the individuals in the population. In the
standard PSO algorithm, the status of a particle on the
space search is represented by its position and velocity. In
the dimensional search space, the position and the veloc-
ity of ith particle is represented by the vectors respectively,

X X X X
V V V V

i i i id

i i i id

=
=

1 2

1 2

, ,
, ,

and

Denote the best position of the ith particle (Pbest) as

Pb Pb Pb Pbi i i id= 1 2, ,

The best position of the swarm (Gbest) as

Pbg Pb Pb Pbg g gd= 1 2, ,

The velocity and the position of each particle are
calculated as follows:

	 Vi(k + 1) = ωVi(k) + c1r1(Pbi − Xi(k))
+ c2r2(Pbg − Xi(k))� (1)

	 Xi(k + 1) = Xi(k) + Vi(k + 1)� (2)

Where c1 and c2 are non negative constants called acceler-
ation coefficients, and ω is the inertia coefficient, which is

a constant in the interval [0,1], r1 and r2 are two random
numbers uniformly generated in the interval [0,1].

2.1  Particle Updating
Since a solution of the problem is represented by a
permutation of n jobs (1, 2, ... n), the position of the par-
ticle can be updated according the equation below16

	 X c F c F F X P Gi
t

i
t

i
t t= ⊗ ⊗ ⊗ − − −

2 3 1 2 1
1 1 1(((),),)ω � (3)

Note that Xi
t is the position of the particle is its Pt

1 per-
sonal and best position, and Gi

t is the best position of
the whole particles in the swarm. The updated equation
consisting of three components:

The second component represents the“cognition” part •	
of the particle and f2 is the crossover operator with the
sole probability of c1

The third component this corresponds to the social •	
part of the particle f1 of the particle, f3 the crossover
operator with the probability of c2

In addition, to that we add a new term in equation (3) that
represents the best neighbor found by the neighbouring
structures[1]. The particle will b eupdated as follows:

X c F c F c F X P Gi
t

i
t

i
t t= ⊗ ⊗ ⊗ − − −

3 4 2 3 1 2 1
1 1 1((((F),)),)ω � (4)

The operator f4 corresponds to the local search applied
and to the particle with th eprobability of c3.

2.2  Mutation Operator
In the proposed algorithm the inverse mutation is used,
it works as stated below:

Two positions are randomly selected in the •	 sequence
of its order.
In this portion between these •	 two positions is
inverted.

2.3  Crossover Operators
Two crossover operators areused here:

2.3.1  Uniform Crossover
Random binary masks with the same size of the parents
are generated. The (0) of the mask define the positions
preserved to the first parent, and the (1) of the mask corre-
sponds to the positions preserved to the second parent. The
illustration of the uniform crossover is given in below.

M. Nagamani and E. Chandrasekaran

Indian Journal of Science and Technology 3Vol 8 (35) | December 2015 | www.indjst.org

2.3.2  Right Corner Crossover
Firstly proposed in, this operator starts by choosing
randomly two positions from the first parent. The block
determined by the two point has moved to the right cor-
ner of the offspring. This is the complete the remaining
jobs from these condparent.

2.4  Mutation based Local Search
In our paper, we strongly propose a mutation-based local
search referring to the well known NEH method. The
proposed local search starts from an initial solution, and
attempts to improve the present solution by generating
compound neighborhood structures. More or formally,
two neighborhoods are defined, the insert neighborhood
and the interchange neighborhood. The insert neighbor-
hood is created by insert moves, that consist to remove
the job currently in the below Figure 1.

Position I and insert it into another position j. The
interchange neighborhood, uses per pair wise interchange
moves that interchange two r and ompositions in the job
sequence to obtain a fresh new mutated sequence. The
procedure operates by extending the both neighborhoods
Consecutively, by exploring the insert neighborhood
first, then the interchange second neighborhood. This
approach combines two local search structures, with
the aim of exploring effectively the solution space and
improves the exact convergence. The following is the
pseudo code of the mutation-based local search:

Mutation-based Local Search Pseudo Code procedures
Input: π0 the initial solution.
Output: π∗ the best solution found so far.
π∗ ← π0

Rep�eat Until a given stopping criterion is met completely.
π0 = �insert – LS(π0), the local search based on insert neigh-

borhood.
π0 = �interchange − LS(π0), the local search procedure

based on a new interchange neighborhood.
If π0 is better than π∗, then π∗ ← π0.
End if
π0 ←

 π0

2.5  Make-span Metaheuristic
We consider an effective metaheuristic a calculation of
the makespan (Cmax), characterized by the use of two
decision methods based on priority dispatching algo-
rithm, including FIFO (First In First Out), LPT (Longest
Processing Time). The SPT (Shortest Processing Time):
The proposed metaheuristic combines the classical list
scheduling, wherein the jobs are assigned at the first
available machine according FIFO rule, and a modified
fully list scheduling that uses three parallel priority dis-
patching algorithm: FIFO, FIFO+LPT and FIFO+SPT,
and then adopts at each stage the rule that generates the
sequence giving a smallest completion time. The heu-
ristic makes a choice between the two scheduling lists
described above and selects the one that givesa minimize
value of the make - span.

3.  The Proposed Algorithm
In our proposed approach incorporates hybrid PSO,
mutation-based local search and the make-span meta-
heuristic. The DPSO well assures the diversification and a
large rexploration of the solution space. However the local
search is employed more to intensify the search and do
improve the convergence. In order to increase the quality
of solution evaluation, the make-span metaheuristic takes
advantage of two decision method at atime. We summa-
rize the steps of the proposed algorithm given below:

Step 1: Generate only initial population randomly.
Step 2: �Evaluate the particles using the metaheuristic

method
Step 3: Find P best and G best accordingly.
Step 4: Update the particles using (4) equation
Step 5: Evaluate the particles in the swarm optimization
Step 6: Find P best and G best.
Step 7: �Stop if the stopping criterionis met, or otherwise

return to step 4.

3.1  Benchmark Scheme
The performance of the proposed hybrid algorithm was
being tested on benchmark problems that are largely used
in the said literature. The benchmark problems consist of
77 instances, divided into 53 easy problems and 24 hard
problems17. Accordingly the machine configuration plays
a vitalrole on the complexity of problems. There are four
machine configurations a,b,c and d, which corresponds Figure 1.  Illustration of uniform Crossover.

2.3.2 Right Corner Crossover
Firstly proposed in, this operator starts by choosing randomly twopositions from the first

parent. The block determined by the two point has moved to the right corner of the offspring.
This is the complete the remaining jobs from these condparent.

2.4 Mutation based Local Search

In our paper, we strongly propose a mutation-based local search referring to the well
known NEH method. The proposed local search starts from an initial solution, and attempts to
improve the present solution by generating compound neighborhood structures. More or
formally, two neighborhoods are defined, the insert neighborhood and the interchange
neighborhood. The insert neighborhood is created byinsert moves, that consist to remove the
job currently i n the below Figure 1.

Figure 1. Illustration of uniform Crossover.

Position I and insert it into another p o s i t i o n j.The interchange n e i g h b o r h o o d , u s e s
per pair wise interchange moves that interchange two r and ompositions in the job sequence
to obtain a f r e s h new mutated sequence. The procedure operates by extending the both
neighborhoods Consecutively, by exploring the insert neighborhood first,then the interchange
second neighborhood. This approach combines two local search structures,with the aim
o f exploring effectively the solution space and improves the exact convergence. The following is
the pseudo code of the mutation-based local search:

Mutation-basedLocalSearchPseudoCode procedures

 Input: π0 the initial solution.

 Output: π∗ the best solution found so far.

π∗←π0
Repeat Until a given stopping criterion is met completely.

π0 = insert–LS(π0), the local search based on insert neighborhood.

π0 = interchange−LS(π0), the local search p r o c e d u r e based on a new
interchange neighborhood.

Single Objective for Partial Flexible Open Shop Scheduling Problem using Hybrid Particle Swarm Optimization Algorithms

Indian Journal of Science and Technology4 Vol 8 (35) | December 2015 | www.indjst.org

to the bottleneck stage. The following is the meaning of
the letters of machine configuration as stated

There is one machine at the middle stage (bottleneck) •	
traffic, and three machines at the other stages of the
traffic.
There is one machine at the first stage of •	 bottleneck
and three machines at the other stages. In the line
There are two machines at the middle stage (•	 bottle-
neck), and three machines at the other stages stated.
There are three machines at each stage and there is no •	
bottleneck stage.

For example, the notation j10c5b3 means 10 jobs, 5 stages
and the letter b define the machine configuration, where
there are other three machines at each stage except the
first stage which is bottleneck with only one machine left.
The letters j and care the abbreviations of job and stage
stated respectively.

4.  Numerical Results
In our computational experiments, we consider the
24 covehard problems. The comparison was performed
using four algorithms:

The 1.	 Immunoglobulin-based Artificial Immune
System algorithm (IAIS)
The Ant Colony Optimization (ACO) 2.	 18.
The Artificial Immune System algorithm (AIS)3.	 19.
The 4.	 Quantum-inspired Immune Algorithm(QIA)20.

The computing environment of all the algorithms is dis-
similar. For this reason, the comparison is made on the
basis of the solution quality, evaluated by the percentage
deviation between the solution and the greatest Lower
Bound (LB) which is defined as stated below:

Relative Deviation
C LB

LB
best=

−





×100

The hybrid algorithm was limited to and with 1600s,
or otherwise to the lower bound was attained. If the low-
erbound was not found within the limited time, the search
was stopped orbit and the best solution was accepted as
the final solution. The proposed algorithm was imple-
mented in C++ and was run ten times to obtain the best
Cmax value alone. Note that for the four compared algo-
rithms as stated, IAIS, ACO and AIS are also limiting their

runtime on 1600s. However QIA was running a limited
and fixed number of iterations. For all considered algo-
rithms, the numerical results were obtained from their
original papers alone. With reference to the computing
environment, the IAIS algorithm was programmed in
C++, the ACO was implemented using Microsoft Visual
Basic studio software, the algorithm AIS was coded in
Excel, Microsoft, and QIA19was coded in Matlab.

There are four essential parameters in our hybrid
method, the Population size Ps, the probability of muta-
tion ω,the crossover probabilities c1and c2and the local
search probability c3. We implemented one mindedly our
algorithm with Ps = 20 and c1 = c2 = 0.8. For ω and c3, a
parametric study was established by the set of values {0.1,
0.2, ..., 0.9}. Three problems j10c5c1, j10c5d1 and j15c5c5
are considered from the benchmark problems. For each
parameter value, 20 tests were carried out. Table 1 and
2 illustrate foreach parameter, the number of times the
Lower Bound (LB) was attained. We were using the
parameters with high number of times LB was attained,
thus attained ω = 0.4 and c3= 0.4.

The numerical comparisons of HPSO algorithm, IAIS,
ACO, AIS and QIA are given below in table 2, where
columns represent the make span (Cmax) in seconds,
the Lower Bound (LB) and the percentage of deviation
is calculated between the Lower Bound (LB) and (Cmax)
described in equation (5). HPSO can solve 18 problems
out of 24 hard problems, that representative (75%),
whereas IAIS and AIS solve 16 problems (66.7%). The
ACO can solve 12 problems of the 18 problems respec-
tively. In table 1, we provided the performance of the
HPSO algorithm among the other compared algorithms,
where the first column represents the percentage of solved
problems (% solved problems) and these condcolumn
gives the average percentage of deviation of the 24 hard
problems (% deviation). The third column explains the
number of problems considered among the 24 hard prob-
lems (number of pbs).

Table 1.  The performance of HPSO algorithm

Problem % solved
problems

% deviation Number
of Pbs

HPSO 74.3 2.80 24
IAIS 66.7 3.02 24
QIA 60.0 5.04 12
ACO 66.7 4.10 18
AIS 66.7 3.13 24

M. Nagamani and E. Chandrasekaran

Indian Journal of Science and Technology 5Vol 8 (35) | December 2015 | www.indjst.org

5. � Conclusions and Perspectives
In this paper has been examined the hybrid open shop
problem, with the sole objective to minimize the make
span. We have proposed a method HPSO algorithm to
solve the problem. The proposed HPSO has been used
mutation operator and crossover operators to update
the positions of th particles in the swarm. The devel-
oped HPSO incorporates the mutation-based local
search, which combines two local search strategies based
on the inserted neighborhood and the interchanged
neighborhood. Inorder to improve the performance of
the evaluation, the above said make-span metaheuristic
introduced in our HPSO algorithm combines two deci-
sion methods based on priority dispatching rules. The
performance of the proposed HPSO has been tested
and proved on benchmark problems, and compared

to four different algorithms from the literature. The
computational mathematical results perform the effi-
ciency of our algorithm. The future works may consider
other scheduling problems, such as hybrid open shop
with various objectives.

6.  References
1.	 Bochenek B, Fory´s P. Structural optimization for

post-buckling behavior using particle swarms. Structural
Multidisciplinary Optimization. 2006; 32(6):521–31.

2.	 Carlier J, N´eron E. An exact method for solving the multi-
processor flow-shop. RAIRO Operations Research. 2000;
34(1):1–25.

3.	 N´eron E, Baptiste P, Gupta JND. Solving hybrid flow shop
problem using energetic reasoning and global operations.
Omega, 2001; 29(6):501–11.

Table 2.  Computational results of the algorithms onhard benchmark problems

Problem
deviation

Cmax(Best makespan value) LBofCmax Relative
HPSO IAIS QIA ACO AIS HPSO IAIS QIA ACO AIS

j10c5c1 68 68 69 68 68 68 0 0 1.47 0 0
j10c5c2 74 74 76 76 74 74 0 0 2.70 2.70 0
j10c5c3 71 72 74 72 72 71 0 1.41 4.23 1.41 1.41
j10c5c4 66 66 75 66 66 66 0 0 13.64 0 0
j10c5c5 78 78 79 78 78 78 0 0 1.28 0 0
j10c5c6 69 69 72 69 69 69 0 0 4.35 0 0
j10c5d1 66 66 69 - 66 66 0 0 4.55 - 0
j10c5d2 73 74 76 - 73 73 0 1.37 4.11 - 0
j10c5d3 64 64 68 - 64 64 0 0 6.25 - 0
j10c5d4 70 70 75 - 70 70 0 0 7.14 - 0
j10c5d5 66 66 71 - 66 66 0 0 7.58 - 0
j10c5d6 62 62 64 - 62 62 0 0 3.23 - 0
j15c5c1 85 85 - 85 85 85 0 0 - 0 0
j15c5c2 90 90 - 90 91 90 0 0 - 0 1.11
j15c5c3 87 87 - 87 87 87 0 0 - 0 0
j15c5c4 89 89 - 89 89 89 0 0 - 0 0
j15c5c5 74 74 - 73 74 73 1.37 1.37 - 0 1.37
j15c5c6 91 91 - 91 91 91 0 0 - 0 0
j15c5d1 167 167 - 167 167 167 0 0 - 0 0
j15c5d2 84 84 - 86 84 82 2.44 2.44 - 4.88 2.44
j15c5d3 82 82 - 83 83 77 6.49 7.73 - 7.79 7.79
j15c5d4 84 84 - 84 84 61 37.70 37.70 - 37.70 37.70
j15c5d5 79 79 - 80 80 67 17.91 17.99 - 19.40 19.40
j15c5d6 81 81 - 79 82 79 2.53 2.53 - 0 3.80

Single Objective for Partial Flexible Open Shop Scheduling Problem using Hybrid Particle Swarm Optimization Algorithms

Indian Journal of Science and Technology6 Vol 8 (35) | December 2015 | www.indjst.org

4. Fattahi P, Hosseini SMH, Jolai F, Tavakkoli-Moghaddam
R. A branch and bound algorithm for hybrid flow-
shop scheduling problem with setup time and assembly
operations. Applied Mathematical Modelling. 2014;
38(1):119–34.

5. Oguz C, Ercan MF, Edwin Cheng TC, Fung YF. Heuristic
algorithms for multiprocessor task scheduling in a two-
stage hybrid flow-shop. European Journal of Operational
Research. 2003; 149(2):390–403.

6. Kahraman C, Engin O, Ihsan K, Ozturk RE. Multiprocessor
task scheduling in multistage hybrid flow-shops: A paral-
lel greedy algorithm approach. Applied Soft Computing.
2010;10(4):1293–300.

7. Bozejko W, Pempera J, Smutnicki C. Parallel tabu search
algorithm for the hybrid flowshop problem. Computers
and Industrial Engineering. 2013; 65(13):466–74.

8. Pan QK, Wang L. No-idle permutation flowshop
scheduling based on a hybrid discrete particle swarm opti-
mization algorithm. The International Journal of Advanced
Manufacturing Technology. 2008; 39(7):796–807.

9. Niu Q, Zhou T, Ma S. A quantum-inspired immune algo-
rithm for hybrid flowshop with make span criterion. Journal
of Universal Computer Science. 2009;15:765–85.

10. Hamid T, Ali ARH, Mehdi Y, Touraj M. Using gravitational
search algorithm for in advanced reservation of resources
in solving the scheduling problem of works in workflow
workshop environment. Indian Journal of Science and
Technology. 2015; 8(11):1–16.

11. Engin O, Ceran G, Yilmaz MK. An efficient genetic
algorithm for hybrid flow shop scheduling with multi-
processor task problems. Applied Soft Computing. 2011;
11(3):3056–65.

12. Engin O, Doyen A. A new approach to solve hybrid flow
shop scheduling problems by artificial immune system. Future
Generation Computer Systems. 2004; 20(6):1083–95.

13. Chung TP, Liao CJ. An immunoglobulin-based artificial
immune system for solving the hybrid flowshop problem.
Applied Soft Computing. 2013; 13(8):3729–36.

14. Bharathi T, Krishnakumari P. Application of modified
artificial fish swarm algorithm for optimizing association
rule mining. Indian Journal of Science and Technology.
2014; 7(12):1906–15.

15. Kennedy J, Eberhart R. Particle Swarm Optimization. IEEE
Conference on Neural Networks. 1995; 4. p.1942–48.

16. Pan QK, Tasgetirenc MF, Liang YC. A discrete particle
swarm optimization algorithm for the no-wait flowshop
scheduling problem. Computer and Operations Research.
2008; 35(9):2807–39.

17. Liao CJ, Tjandradjaja E, Chung TP. An approach using
particleswarm optimization and bottleneck heuristic to
solve hybrid flow shop scheduling problem. Applied Soft
Computing. 2012; 12(6):1755–64.

18. Serifoglu FS, Ulusoy G. Multiprocessor task scheduling in
multistage hybrid flow-shops: A genetic algorithm ap-
proach. The Journal of the Operational Research Society.
2004; 55(4):504–12.

19. Alaykyran K, Engin O, Doyen A. Using ant colony optim-
ization to solve hybrid flowshop scheduling problems. The
International Journal of Advanced Manufacturing Tech-
nology. 2007; 35(5):541–50.

20. Marichelvam MK, Prabaharan T, Yang XS. Improved
cuckoo search algorithm for hybrid flow shop scheduling
problems to minimize make span. Applied Soft Comput-
ing. 2014; 19(10):93–101.

