
Abstract
Objectives: Scheduling is an optimization problem in computer science and operation research in which ideal jobs are 
assigned to particular times. Nowadays, the problem is presented as an online problem, that is, each job is presented and 
the online algorithm needs to make a decision about the job before the next job is presented. Methods and Statstical 
Analysis: The proposed approach is used to solve the open job scheduling problem in which any job can be connected 
with the available machine. That was implemented in matlab to available best results with hybrid evolutionary algorithm. 
Findings: In this paper, a hybrid algorithm based on the particle swarm optimization is proposed, for flexible, open 
shop scheduling problem, to minimize the make-span. First an effective new approach using two decisions based on 
parallel priories dispatching rules is applied. Next we develop a hybridizing HPSO, that presents new components for 
updating velocity and position using evolutionary operators, with an adaptive neighbourhood procedure based on the 
insert-interchange fitness function, selection, mutation, crossover. Application/Improvements: The performance of the 
proposed a new hybrid algorithm is compared to other benchmark problems.
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1.  Introduction
The flexible, open shop scheduling problem (FOSP) can be 
defined by a set of n jobs to be scheduled through s stages 
in series. Each stage j (j = 1, 2, ...........s) has mj identical 
and parallel machines. The job i (i = 1, 2,….., n) require a 
processing time pij at stage j, and has to be processed with-
out preemptive by exactly only one machine at one stage. 
The objective is to find a schedule of jobs, which would 
minimize the make-span1. Many research and researches 
in the literature have been attempted to solve the flex-
ible, open shop, using several approaches such as exact 
methods, heuristic and metaheuristic. Branch and bound 
is the only method widely used to solve the HFS. The pro-
posed a branch and bound method based on m-machines 
problems2. The presented an enhanced branch and bound 
procedure based on energetic reasoning and of global 

operations3. The applied a branch and bound algorithm 
for a flexible, open shop scheduling problem with setup 
time and assembly operations4.

An efficient heuristic algorithm for the special case 
when the second stage contains only the one machine. 
The proposed metaheuristic algorithms for a two-stage 
flexible, open shop with and of multiprocessor tasks5. 
The presented an effective parallel ambition algorithm to 
solve HFS with multiprocessor tasks6. Recently, several 
metaheuristcs have been described to solve the HFS7. The 
presented a parallel Tabu Search (TS) to solve large, compli-
cated size problem instances of HFS7. Developed diverged 
approaches based on Evolutionary Algorithms (EA) for 
flexible, open shop with multiprocessor task of problems. 
An ant colony optimization for HFS is introduced an 
approach hybridizing particle swarm optimization with 
bottle neck metaheuristic and proposed a hybrid discrete 
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particle swarm optimization for the no-idle permutation 
flexible open-shop scheduling problem8. An improved 
advanced cuckoo algorithm to minimize the maximum 
completion of time9,10. The presented two algorithms 
inspired by the natural immune system (QIA), with the 
objectives to minimize the make-span and the mean 
flowtime9,10. The proposed new approaches based on an 
artificial immune system for HFS11,12. In this paper, we 
will present a hybrid particle swarm algorithm incorpo-
rated with mutation-based local search, that operates by 
the use of compound neighbourhood structures. Due to 
the importance in solution method, the objective func-
tion would be calculated by a new heuristic, that consist 
to combine parallel priority dispatching rules to assign 
jobs to machines at each stage13.

2. � Hybrid Particle Swarm 
Optimization Algorithm

Hybrid Particle Swarm Optimization (HPSO) is an 
evolutionary biologically inspired optimization, based 
on the behaviour and intelligence of swarms14. It was first 
originally developed by Kennedy15. HPSO is initialized by 
a population of particles randomly chosen (individuals 
or solutions), and the processing of research is carried 
out by updating the individuals in the population. In the 
standard PSO algorithm, the status of a particle on the 
space search is represented by its position and velocity. In 
the dimensional search space, the position and the veloc-
ity of ith particle is represented by the vectors respectively,
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Denote the best position of the ith particle (Pbest) as

Pb Pb Pb Pbi i i id= 1 2, ,

The best position of the swarm (Gbest) as

Pbg Pb Pb Pbg g gd= 1 2, ,

The velocity and the position of each particle are 
calculated as follows:

	 Vi(k + 1) = ωVi(k) + c1r1(Pbi − Xi(k)) 
+ c2r2(Pbg − Xi(k))� (1)

	 Xi(k + 1) = Xi(k) + Vi(k + 1)� (2) 

Where c1 and c2 are non negative constants called acceler-
ation coefficients, and ω is the inertia coefficient, which is 

a constant in the interval [0,1], r1 and r2 are two random 
numbers uniformly generated in the interval [0,1].

2.1  Particle Updating
Since a solution of the problem is represented by a 
permutation of n jobs (1, 2, ... n), the position of the par-
ticle can be updated according the equation below16

	 X c F c F F X P Gi
t

i
t

i
t t= ⊗ ⊗ ⊗ − − −

2 3 1 2 1
1 1 1( ( ( ), ), )ω � (3) 

Note that Xi
t is the position of the particle is its Pt

1  per-
sonal and  best position, and Gi

t is the best position of 
the whole particles in the swarm. The updated equation 
consisting of three components:

The second component represents the“cognition” part •	
of the particle and f2 is the crossover operator with the 
sole probability of c1

The third component this corresponds to the social •	
part of the particle f1 of the particle, f3 the crossover 
operator with the probability of c2

In addition, to that we add a new term in equation (3) that 
represents the best neighbor found by the neighbouring 
structures[1]. The particle will b eupdated as follows:

X c F c F c F X P Gi
t

i
t

i
t t= ⊗ ⊗ ⊗ − − −

3 4 2 3 1 2 1
1 1 1( ( ( (F ), )), )ω � (4)

The operator f4 corresponds to the local search applied 
and to the particle with th eprobability of c3.

2.2  Mutation Operator
In the proposed algorithm the inverse mutation is used, 
it works as stated below:

Two positions are randomly selected in the •	 sequence 
of its order.
In this portion between these •	 two positions is 
inverted.

2.3  Crossover Operators
Two crossover operators areused here:

2.3.1  Uniform Crossover
Random binary masks with the same size of the parents 
are generated. The (0) of the mask define the positions 
preserved to the first parent, and the (1) of the mask corre-
sponds to the positions preserved to the second parent. The 
illustration of the uniform crossover is given in below. 
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2.3.2  Right Corner Crossover
Firstly proposed in, this operator starts by choosing 
randomly two positions from the first parent. The block 
determined by the two point has moved to the right cor-
ner of the offspring. This is the complete the remaining 
jobs from these condparent.

2.4  Mutation based Local Search
In our paper, we strongly propose a mutation-based local 
search referring to the well known NEH method. The 
proposed local search starts from an initial solution, and 
attempts to improve the present solution by generating 
compound neighborhood structures. More or formally, 
two neighborhoods are defined, the insert neighborhood 
and the interchange neighborhood. The insert neighbor-
hood is created by insert moves, that consist to remove 
the job currently in the below Figure 1.

Position I and insert it into another position j. The 
interchange neighborhood, uses per pair wise interchange 
moves that interchange two r and ompositions in the job 
sequence to obtain a fresh new mutated sequence. The 
procedure operates by extending the both neighborhoods 
Consecutively, by exploring the insert neighborhood 
first, then the interchange second neighborhood. This 
approach combines two local search structures, with 
the aim of exploring effectively the solution space and 
improves the exact convergence. The following is the 
pseudo code of the mutation-based local search:

Mutation-based Local Search Pseudo Code procedures
Input: π0 the initial solution.
Output: π∗ the best solution found so far.
π∗ ← π0

Rep�eat Until a given stopping criterion is met completely.
π0 = �insert – LS(π0), the local search based on insert neigh-

borhood.
π0 = �interchange − LS(π0), the local search procedure 

based on a new interchange neighborhood.
If π0 is better than π∗, then π∗ ← π0.
End if
π0 ←

 π0

2.5  Make-span Metaheuristic
We consider an effective metaheuristic a calculation of 
the makespan (Cmax), characterized by the use of two 
decision methods based on priority dispatching algo-
rithm, including FIFO (First In First Out), LPT (Longest 
Processing Time). The SPT (Shortest Processing Time): 
The proposed metaheuristic combines the classical list 
scheduling, wherein the jobs are assigned at the first 
available machine according FIFO rule, and a modified 
fully list scheduling that uses three parallel priority dis-
patching algorithm: FIFO, FIFO+LPT and FIFO+SPT, 
and then adopts at each stage the rule that generates the 
sequence giving a smallest completion time. The heu-
ristic makes a choice between the two scheduling lists 
described above and selects the one that givesa minimize 
value of the make - span.

3.  The Proposed Algorithm
In our proposed approach incorporates hybrid PSO, 
mutation-based local search and the make-span meta-
heuristic. The DPSO well assures the diversification and a 
large rexploration of the solution space. However the local 
search is employed more to intensify the search and do 
improve the convergence. In order to increase the quality 
of solution evaluation, the make-span metaheuristic takes 
advantage of two decision method at atime. We summa-
rize the steps of the proposed algorithm given below:

Step 1: Generate only initial population randomly.
Step 2: �Evaluate the particles using the metaheuristic 

method
Step 3: Find P best and G best accordingly.
Step 4: Update the particles using (4) equation
Step 5: Evaluate the particles in the swarm optimization
Step 6: Find P best and G best.
Step 7: �Stop if the stopping criterionis met, or otherwise 

return to step 4.

3.1  Benchmark Scheme
The performance of the proposed hybrid algorithm was 
being tested on benchmark problems that are largely used 
in the said literature. The benchmark problems consist of 
77 instances, divided into 53 easy problems and 24 hard 
problems17. Accordingly the machine configuration plays 
a vitalrole on the complexity of problems. There are four 
machine configurations a,b,c and d, which corresponds Figure 1.  Illustration of uniform Crossover.
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Mutation-basedLocalSearchPseudoCode procedures 

 
 Input: π0 the initial solution. 

 Output: π∗ the best solution found so far. 

π∗←π0 
Repeat Until a given stopping criterion is met completely. 

π0 = insert–LS(π0), the local search based on insert neighborhood. 

π0 = interchange−LS(π0), the local search p r o c e d u r e  based on a new 
interchange neighborhood. 
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to the bottleneck stage. The following is the meaning of 
the letters of machine configuration as stated

There is one machine at the middle stage (bottleneck) •	
traffic, and three machines at the other stages of the 
traffic.
There is one machine at the first stage of •	 bottleneck 
and three machines at the other stages. In the line
There are two machines at the middle stage (•	 bottle-
neck), and three machines at the other stages stated.
There are three machines at each stage and there is no •	
bottleneck stage.

For example, the notation j10c5b3 means 10 jobs, 5 stages 
and the letter b define the machine configuration, where 
there are other three machines at each stage except the 
first stage which is bottleneck with only one machine left. 
The letters j and care the abbreviations of job and stage 
stated respectively.

4.  Numerical Results
In our computational experiments, we consider the 
24 covehard problems. The comparison was performed 
using four algorithms: 

The 1.	 Immunoglobulin-based Artificial Immune 
System algorithm (IAIS)
The Ant Colony Optimization (ACO) 2.	 18.
The Artificial Immune System algorithm (AIS)3.	 19.
The 4.	 Quantum-inspired Immune Algorithm(QIA)20.

The computing environment of all the algorithms is dis-
similar. For this reason, the comparison is made on the 
basis of the solution quality, evaluated by the percentage 
deviation between the solution and the greatest Lower 
Bound (LB) which is defined as stated below:

Relative Deviation
C LB

LB
best=

−





×100

The hybrid algorithm was limited to and with 1600s, 
or otherwise to the lower bound was attained. If the low-
erbound was not found within the limited time, the search 
was stopped orbit and the best solution was accepted as 
the final solution. The proposed algorithm was imple-
mented in C++ and was run ten times to obtain the best 
Cmax value alone. Note that for the four compared algo-
rithms as stated, IAIS, ACO and AIS are also limiting their 

runtime on 1600s. However QIA was running a limited 
and fixed number of iterations. For all considered algo-
rithms, the numerical results were obtained from their 
original papers alone. With reference to the computing 
environment, the IAIS algorithm was programmed in 
C++, the ACO was implemented using Microsoft Visual 
Basic studio software, the algorithm AIS was coded in 
Excel, Microsoft, and QIA19was coded in Matlab.

There are four essential parameters in our hybrid 
method, the Population size Ps, the probability of muta-
tion ω,the crossover probabilities c1and c2and the local 
search probability c3. We implemented one mindedly our 
algorithm with Ps = 20 and c1 = c2 = 0.8. For ω and c3, a 
parametric study was established by the set of values {0.1, 
0.2, ..., 0.9}. Three problems j10c5c1, j10c5d1 and j15c5c5 
are considered from the benchmark problems. For each 
parameter value, 20 tests were carried out. Table 1 and 
2 illustrate foreach parameter, the number of times the 
Lower Bound (LB) was attained. We were using the 
parameters with high number of times LB was attained, 
thus attained ω = 0.4 and c3= 0.4.

The numerical comparisons of HPSO algorithm, IAIS, 
ACO, AIS and QIA are given below in table 2, where 
columns represent the make span (Cmax) in seconds, 
the Lower Bound (LB) and the percentage of deviation 
is calculated between the Lower Bound (LB) and (Cmax) 
described in equation (5). HPSO can solve 18 problems 
out of 24 hard problems, that representative (75%), 
whereas IAIS and AIS solve 16 problems (66.7%). The 
ACO can solve 12 problems of the 18 problems respec-
tively. In table 1, we provided the performance of the 
HPSO algorithm among the other compared algorithms, 
where the first column represents the percentage of solved 
problems (% solved problems) and these condcolumn 
gives the average percentage of deviation of the 24 hard 
problems (% deviation). The third column explains the 
number of problems considered among the 24 hard prob-
lems (number of pbs).

Table 1.  The performance of HPSO algorithm

Problem % solved 
problems

% deviation Number  
of Pbs

HPSO 74.3 2.80 24
IAIS 66.7 3.02 24
QIA 60.0 5.04 12
ACO 66.7 4.10 18
AIS 66.7 3.13 24
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5. � Conclusions and Perspectives
In this paper has been examined the hybrid open shop 
problem, with the sole objective to minimize the make 
span. We have proposed a method HPSO algorithm to 
solve the problem. The proposed HPSO has been used 
mutation operator and crossover operators to update 
the positions of th particles in the swarm. The devel-
oped HPSO incorporates the mutation-based local 
search, which combines two local search strategies based 
on the inserted neighborhood and the interchanged 
neighborhood. Inorder to improve the performance of 
the evaluation, the above said make-span metaheuristic 
introduced in our HPSO algorithm combines two deci-
sion methods based on priority dispatching rules. The 
performance of the proposed HPSO has been tested 
and proved on benchmark problems, and compared 

to four different algorithms from the literature. The 
computational mathematical results perform the effi-
ciency of our algorithm. The future works may consider 
other scheduling problems, such as hybrid open shop 
with various objectives.
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