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Abstract

Objectives: To predict the optimum value of heat transfer coefficient during condensation of refrigerant inside a 
smooth horizontal tube using Teaching-Learning based Optimization Algorithm. Methods: Refrigerant vapor qual-
ity and mass flux are considered as variables. An objective function is formulated based on the Shah’s correlation for 
heat transfer coefficient. The optimal results predicted by Teaching-Learning based Optimization Algorithm are validat-
ed with experimental data. Results: Refrigerant mass flux and vapor quality are varied from 100 to 500 kg/m2s and 
0.1 to 0.9 respectively. The optimal value of heat transfer coefficient, refrigerant mass flux and vapor quality predicted 
by the algorithm are 7.56 kW/m2K, 493 kg/m2s and 0.87, respectively. Conclusions: The Teaching-Learning based 
Optimization Technique is capable of predicting the optimal set of values for different design and operating parameters. 

*Author for correspondence

1.  Introduction
The condenser is an important heat exchanger widely used 
in refrigeration and air conditioning, process industries 
and power plants. The refrigerant and cooling water flow 
through two passes separated by a wall. The heat from the 
refrigerant to cooling water takes place by mainly convec-
tion. The heat transfer rate between refrigerant and water 
is governed by a convective heat transfer coefficient and 
heat transfer area. This heat transfer is accomplished at 
the rate of pump work. The heat transfer between refrig-
erant and water may be enhanced by either enhancing the 
heat transfer coefficient or heat transfer area. But due to 
the size and economic constraint the heat transfer area 
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cannot be increased beyond a certain limit, so the aim 
of the researchers is to enhance convective heat transfer 
coefficient.

The heat transfer coefficient depends upon several 
parameters like, mass flux and vapor quality of refriger-
ant, inner diameter of tube, Reynolds’s number, Prandtl 
number and properties of refrigerant. The parameters 
affecting the heat transfer coefficient are required to be 
optimized by either stochastic or deterministic nature of 
optimization techniques.

Several researchers have used different optimization 
techniques such as Particle Swarm Optimization (PSO), 
Artificial Neural Network (ANN), Genetic Algorithm 
(GA) and some other optimization techniques to opti-
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mize the design of heat exchangers. In1 estimated the 
maximum heat transfer rate and minimum pressure 
drop in shell and tube heat exchangers using Genetic 
Algorithm. In2 optimized thermal and economic aspects 
of shell and tube condenser by implementing genetic 
and Particle Swarm Optimization algorithms. In3 used 
Teaching-Learning based Optimization method to opti-
mize the thermal performance of a solar air heater. In4 
optimized the cost, weight, pressure drop and effective-
ness of plate fin heat exchanger through multi objective 
Teaching-Learning based Optimization Algorithm. In5 

presented optimized value of cost and effectiveness of plate 
fin heat exchanger using modified Teaching-Learning 
based Optimization Algorithm. In6 implemented Genetic 
Algorithm, Nelder-Mead method and nonlinear squares 
method to develop correlations for heat transfer coeffi-
cient, two phase friction factor frictional pressure drop 
and found these in good agreement with experimental 
results. In7 used Artificial Neural Network method to 
predict the most affecting parameter on heat transfer and 
pressure drop during condensation of refrigerant dur-
ing condensation of R-134a inside downward tube. In8 
utilized genetic and Particle Swarm Optimization algo-
rithms for entropy minimization of fin type heat sink. In9 
optimized multi-stream plate fin heat exchanger based 
on the entropy generation minimization principal using 
Genetic Algorithm.

The objective of this work is to find the optimized set 
of design and operating parameters during condensation 
of refrigerant inside horizontal plain tube through the 
teaching - learning based optimization technique.

2. � Teaching-Learning based 
Optimization Technique 
(TLBO)

Teaching-Learning based Optimization Technique is a 
teaching-learning process inspired algorithm proposed 
by10. Figure 1 denotes the flow chart of TLBO algorithm. 
In this optimization algorithm, a group of students reflects 
the population and subjects offered to them are taken as 
different design parameters. The Learners’ output reflects 
the ‘fitness’ values of the objective function. The teacher 
is taken as the best solution among the entire population 
Crepinsek11.

The working of Teaching-Learning based 
Optimization Algorithm has been divided into “Teacher 
phase” and “Learner phase”. Let us consider two teach-
ers ‘A’ and ‘B’ are teaching in two different classes C1 and 
C2. It is assumed that both teachers are teaching the same 
subject of the equal content to the equal merit level of stu-
dents. Figure 2 depicts the marks distribution obtained by 
students of classes C1 and C2 evaluated by own teachers. 
The marks of students are taken normally distributed. In 
Figure 2, curves 1 and 2 represent the marks distribution 
of students taught by teachers A and B respectively. The 
normal distribution is calculated by the Equation 1.
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Here, µ, and x are mean, variance and the value 
for which normal distribution is to be calculated. Figure 2 
reveals that the mean value (MB) of curve 2 is greater than 
curve 1 value (MA). Every teacher will attempt to raise the 
mean of his/her class according to his/her ability. In the 
present case, the teacher ‘A’ will make an effort to bring 
mean MA, near to his/her level and then towards mean 
MB. As mean MA becomes equal to mean MB, a new more 
learned teacher ‘B’ is required.

2.1  Teacher Phase
Let at any iteration i, Mi is the mean of marks obtained 
by students and Ti be the teacher. As Ti makes an effort to 
bring mean M I near to his/her level, so Mnew is the modi-
fied mean of teacher T i. The change between modified 
mean and old mean is evaluated as suggested by10.

Difference_Mean = r i (M new –TF M i)
Here TF is teaching factor taken as either 1 or 2 and ri 

any random number between 0 and 1. The current solu-
tion is updated as given below:

X new, i = X old, i + Difference_Mean i

2.2  Learner Phase
In this phase students enhance their knowledge by com-
municating randomly with other students. A student 
learns something new if the other student is more learned. 
The learner modification is made as suggested by10–12.
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Figure 1.  Flow chart of Teaching-Learning based Optimization Algorithm.
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for i = 1:P n 

Arbitrarily another student X j selected such that i ≠ j.
if f (X i) < f (X j)
X new, i = X old + r i (X i – X j)
else
X new, i = X old + r i (X j – X i)
end
X new is accepted if it yields an improved function 

value.

3.  Experimental Set-Up
The Teaching-Leaning based Optimization Algorithm 
results are authenticated with the data collected from 
the experimental system shown in Figure 3. The experi-
mental system consists of two test condensers. Each test 
condenser is a two concentric tube of length one meter. 
The inner tube is made of hard drawn copper having 9.4 
mm and 12.76 mm inside and outside diameters respec-
tively. The outer tube made of galvanized iron having 

Figure 2.  Marks distribution of students.

Parameters         Value

Refrigerant mass flux (G)        	 100 - 250 kg/m2s

Heat flux (q)                        7.5 - 20.5 kW/m2

Condensing pressure (P)         20 k Pa  

Condensing temperature (T)    35.950C

Vapor quality (x)                 0.1 - 0.9

Table 1.  Operating parameters
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inner and outer diameters 43 mm and 50 mm respec-
tively. The experimental data are collected based on the 
operating parameters shown in Table 1. The experimen-
tal data are recorded by a multichannel data acquisition 
system. Cooling water and refrigerant R-245fa vapor 
are circulated in the counter flow direction inside the 
each test section. Some mass of R-245fa vapor gets con-
densed in test sections. The refrigerant vapor then passed 
through post condenser where entire vapor condensed. 
This entirely condensed refrigerant passes through the 
evaporator. The evaporator is a stainless steel tube hav-

ing 16 mm inside diameter, 1.5 mm thickness and 3.6 m 
length. The quality of vapor produced in evaporator was 
controlled by a step-down transformer. The refrigerant 
is circulated through a bank of three gears connected in 
series. The refrigerant mass flow rate is controlled using 
a corioles mass flow meter. To get the fair temperature of 
inner tube four T-type thermocouples are installed at four 
axial locations of each test section. The refrigerant pres-
sure at the entry and exit of test section was measured 
by pressure gauge. The pressure difference across the test 
condenser was measured using a differential pressure 
transducer. 

Figure 8.  	 1. Test-section		  9. Post-condenser			  17. Voltmeter	          
		  2. Outer tube		  10.Coriolis mass flow meter	 18.   Power analyser P Pressure gauge
		  3. Flanged joint		  11.  By-pass valve			  19. Cable DG differential pressure gauge
		  4. Visual section		  12.  Pump			   20. Transformer DT pressure -transducer
		  5. Thermocouple		  13. Frequency controller		  21. Variac
		  6. Thermopile		  14. HP cut-out			   22. Filter
		  7. Turbine flow- meter	 15. Electrical isolator		  23. Charging valve
		  8. 24 V DC power supply	 16. Evaporator			   24. Purge valve 
									         25. Data acquisition system
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4.  Problem Formulation
Several empirical correlations have been developed to 
determine two-phase condensation heat transfer coeffi-
cient during condensation of refrigerants flowing through 
a smooth horizontal tube. In13,14 correlations better pre-
dicts the heat transfer coefficient during the condensation 
of R-245fa flowing through a plain horizontal tube. 

The objective function formulated for the optimiza-
tion of R-245fa condensation heat transfer coefficient is 
based on Shah Correlation which is calculated by using 
Equations 2-6.
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5.  Results and Discussion

5.1 � Variation in Heat Transfer Coefficient 
with Refrigerant Mass Flux and Vapor 
Quality

The Figure 4 represents the influence of refrigerant mass 
flux and vapor quality on the heat transfer coefficient 
during condensation of R-25fa inside plain horizontal 
tube. As could be inferred from the figure, the heat transfer 

Figure 4.  Variation in heat transfer coefficient with vapor quality.
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coefficient increases with increase in refrigerant mass 
flux and vapor quality. The increase in refrigerant mass 
flux creates more turbulence in the flow inside the tube, 
resulting in better mixing of refrigerant vapor, producing 
high heat transfer coefficient. At high refrigerant vapor 
quality there is a thinner liquid film on the inner wall of 
the tube offering low thermal resistance leads to the high 
value of heat transfer coefficient while at low vapor quality 
the condensate accumulated at the lower part of the tube 
leads low heat transfer coefficient as reported by15,16.

5.2 � Teaching-Learning based Optimization 
Results

The Teaching-Learning based Optimization Algorithm 
is run, Equation 2 as the optimization function to opti-

mize the heat transfer coefficient during condensation of 
R-245fa inside horizontal tube. The variables with their 
bounds are listed in Table 2. The TLBO algorithm is run 
using the following parameters.

Number of runs = 50
Number of population = 10
Number of iterations = 10
Teaching factor (T F) = 2

At first the optimization algorithm is run at con-
stant refrigerant mass flux while vapor quality varies as 
according to Table 2. The refrigerant mass flux value is 
started from 100 kg/m2s and increased by 50 kg/m2s up 
to 500 kg/m2s. The consistency of results predicted by the 

Variables   Bounds

Mass flux of refrigerant (kg/
m2s)  

100 - 500

Vapor quality     0.1 – 0.9

Table 2.  Variables and their bounds

Mass flux (kg/m2s)
Vapour quality Heat transfer coefficient (kW/m2K)

Experimental TLBO Experimental TLBO

100 0.9 0.88 1.96 2.13

150 0.9 0.89 2.35 2.72

200 0.9 0.88 2.88 3.26

250 0.9 0.89 3.51 3.91

300 0.9 0.87 4.16 4.59

350 0.9 0.89 4.98 5.15

400 0.9 0.895 5.84 6.17

450 0.9 0.893 6.24 6.86

500 0.9 0.88 6.92 7.65

Table 3.  Comparison between TLBO predicted and experimental 
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Figure 5.  TLBO predicted heat transfer coefficient versus experimental heat transfer coefficient.

algorithm is checked by running the algorithm 25 times 
at each condition and the average result is calculated 
for every mass flux. This average calculated value is the 
optimized value of the heat transfer coefficient at every 
mass flux. The optimum value of heat transfer coefficient 
and vapor quality predicted by TLBO algorithm is com-
pared with the experimental results. Table 3 displays the 

comparison in TLBO and experimental results. As could 
be witnessed from the table the maximum heat transfer 
coefficient predicted at vapor quality almost equal to 0.9 
which is similar to experimental. To know the deviation 
between the TLBO predicted and the experimental heat 
transfer coefficient a graph is plotted against the experi-
mental results as shown in Figure 5. As could be observed 

Parameters   Experimental TLBO

Mass flow rate of refrigerant (kg/m2s) 500 493

Vapor quality 0.9 0.87

Optimum value of heat transfer coefficient (kW/m2K)      6.92 7.56

Table 4.  Comparison of optimized results
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from this figure all predicted results fall within an error 
band of +10%.

The TLBO algorithm is run again to optimize the heat 
transfer coefficient for variable refrigerant mass flux and 
vapor quality. The refrigerant mass flux and vapor quality 
vary as according to Table 2. The set of optimized values 
predicted by TLBO algorithm is compared with the exper-
imental values. Table 4 depicts the comparison between 
TLBO and experimental. The value of maximum heat 
transfer coefficient 7.56 kW/m2K is reported at refriger-
ant mass flux 493 kg/m2s and vapor quality 0.87. These 
values of heat transfer coefficient, refrigerant mass flux 
and vapor quality are also almost equal to experimental.

6.  Conclusions
In the present work condensation heat transfer is opti-
mized. Teaching-Learning based Optimization Algorithm 
is employed for the optimization of heat transfer coeffi-
cient during condensation of R-245fa inside plain tube. 
The value of maximum heat transfer predicted by the 
algorithm is 7.56 kW/m2K for refrigerant mass flux 493 
kg/m2s and vapor quality 0.87. The TLBO results are com-
pared with experimental and found in good agreement 
with each other. It may be inferred that the TLBO is capa-
ble of predicting the optimized heat transfer coefficient 
during condensation of refrigerant. This makes TLBO an 
effective optimization technique to optimize the design 
and operating parameters to optimize the condensation 
heat transfer.

7.  Nomenclature

Cp	 Specific heat (kJ / kg K).
D	 Outer tube diameter of inner tube (mm).
d	 Inner tube diameter of inner tube (mm).
G	 Mass flux (kg/m2.s).
h	 Heat transfer coefficient (kW/m2 K).
k	 Thermal conductivity (W/m K).
x	 Vapor quality.
µ	 Viscosity (µPas).

Re	 Reynolds number.
Pr	 Reduced pressure.
Pr	 Prandtl number.
l	 liquid.
g	 gas.
L	 left.
T	 top.
B	 bottom.
R	 right.
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