
Abstract 
Objectives: To calculate the load flow analysis by using Artificial Neural Networks (ANN) and the Cascade Architecture 
(CC) with Levenberg-Marquardt (LM) algorithm is used for this proposed system. Methods/Statistical Analysis: Many 
conventional methods such as Newton-Raphson method, Gauss-Seidel method, AC load flow analysis etc., are used 
to estimate the load flow analysis of a power system. The major backdrops in using these methods are, using complex 
non-linear equations, iterative methods and time consuming. To overcome these problems, this paper discusses using 
Artificial Neural Networks (ANN) which reduces the time consumption in calculating load flow analysis. Findings: In the 
real-time planning and operation of a power system the major consideration is voltage stability assessment. The voltage 
instability in a power system will lead to a blackout condition. The continuous increase in load demand, changes in system 
conditions causes voltage collapse. So the on-line monitoring of voltage stability is a necessary condition. Application/
Improvements: The output of the load flow analysis is used to calculate the Index that is used to maintain the system in 
stable limits.
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1. Introduction
The ability of the system to maintain voltage levels in sta-
ble both in normal conditions as well as after subjected to 
any kind of disturbance can be termed as voltage stabil-
ity1. In recent times, there is fast growth in the increase of 
load demand. As the demand keeps on increasing than 
the actual generation, system voltage faces instability con-
dition which causes voltage collapse2. To maintain voltage 
stability, Voltage Stability Margin (VSM) is calculated. 
VSM can be defined as the distance between the present 
operating point to the maximum voltage stability limit. 
From Figure 1, the VSM can be observed3,4. To calculate 
voltage stability, stability index has to be defined. Thereare 
many stability indices, in this paper L-Index is used5. The 
inputs to the L-Index are obtained from the outputs of the 
load flow analysis. The load flow analysis is carried out 
using NR method. An IEEE 30 bus system is considered 
in this paper6,7. Load flow analysis is done using ANN and 
the obtained results are compared with the outputs of the 

conventional method used. The error between the two 
methods can be observed from the graphs shown in later 
sections of the paper. 

To calculate the load flow analysis using ANN, many 
architectures are available. In this paper cascade architec-
ture (CC) with Levenberg-Marquardt (LM) algorithm is 
used. The Number of hidden layers is selected by using 
trial and error method8.

2. Voltage Stability Index
The voltage stability index is used to define the stabil-
ity limits of the system. There are many stability indices 
available. Some of the stability indices are listed.

L-Index.•	
Line stability index.•	
Fast voltage stability index.•	
Line voltage stability index.•	
Voltage Collapse prediction index.•	
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to the neural network and adjustment of weights is done 
accordingly, while in unsupervised training process the 
desired output is unknown to the neural network12. There 
are different types of neural network architectures avail-
able, such as Single Layer Feed Forward Network (SLFF), 
Multi-Layer Feed Forward Network (MLFF), and Cascade 
Correlation architecture (CC). Network with an input 
layer, one or more hidden layers and an output layer are 
called as feed forward networks. In feed forward networks 
the signal moves only in one direction. Network with only 
one hidden layer is known as SLFF, while a network with 
a multiple number of hidden layers is called as MLFF13. 
In CC architecture, a neuron receives system inputs and 
all the outputs of the preceding layers. There are several 
advantages of using CC over feed forward networks, such 
as the learning process is quick, the network determines 
its own size and topology and requires no back propaga-
tion of error signals. 

4. Result and Discussion
In this paper, an IEEE 30-bus system is considered for 
assessment of voltage stability. Load-flow analysis is car-
ried out using Newton-Raphson method. The output of 
the load-flow analysis is used for calculating the L-Index 
of the system, which defines the voltage stability of the 
system. The calculation of L-Index is discussed in the 
previous sections of this paper. The system is said to be 
in the unstable state if the L-Index at any bus is greater 
than unity. For the base case study of the considered IEEE 
30-bus system the L-Index at each is bus is calculated and 
tabulated in Table 1. Consider the following cases,

Case 1: Base Case.
Case 2: Increase Pd at bus 14 alone.
Case 3: Increase Pd at bus 19 alone.
Case 4: Increase Pd at bus 21 alone.
Case 5: Increase Qd at bus 7 alone.
Hence in real-time, the system parameters are not con-

stant and are variable time to time, contingency analysis 
should also be considered. The active and reactive power 
demand Pd and Qd are increased in steps at each bus and 
L-Index is calculated again. This increment of Pd and Qd 

is done till L-Index at the bus cross the unity. This incre-
ment is carried out to check for the limits of Pd and Qd to 
which the system can hold its stability.

Considering the draw backs of using the conventional 
methods, the load flow analysis is carried out using ANN. 

In this paper, the L-Index is used. The inputs to the 
index are obtained from the output of the load flow analy-
sis9. To calculate the L-Index, separate the buses in the 
system into two groups. All load buses are brought to 
head and denoted as L while the PV buses are brought to 
tail and denoted as G.

A hybrid system equation can be formed as

Where ZLL, FLG, KGL, YGG are the sub-block of matrix H
VL, IG, IL, VG are the voltages and currents of the PV 

and load buses.
Voltage stability of any load bus in the system can be 

defined by 

The maximum limit of L-Index is set as unity. If the 
L-Index of any bus is beyond unity the system is said to be 
in unstable condition. The range of L-Index is given.

3. Artificial Neural Networks
An Artificial Neural Network (ANN) is a processing net-
work, which receives an input signal, process them and 
send output signals. Initially the ANNs undergo learning 
or training process, which is adjusting the weight co-ef-
ficient to full-fill the output conditions10,11. There are two 
types of training process, supervised and unsupervised. In 
supervised training process the desired output is known 

Figure 1. Voltage Stability Margin (VSM).
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A Cascade-Correlation architecture with Levenberg-
Marquardt algorithm is used to calculate the load-flow 
of the IEEE 30-bus system and the results are compared 
with the conventional method. The error between the 
ANN output and the conventional output are shown in 
Figure 2.

The shown Figure describes the voltage and angles 
obtained from the load-flow results and the compari-
son of conventional and ANN method. Since it is clearly 
shown that the compared results show the error close to 
zero, the ANN results can be used for the calculation of 
L-Index. 

5. Conclusion
Since voltage stability of a system becomes major con-
cern, on-line monitoring of the system is essential. In 
this paper, the voltage stability of an IEEE30 bus system 
is monitored in both normal and contingency conditions. 
This paper deals with calculating load-flow studies using 
ANN to overcome the drawbacks faced in using the con-
ventional methods and the output of the load-flow studies 
is used to monitor voltage stability limits using the pro-
posed Index. The results obtained in conventional and 
ANN are tabulated in above sections and compared. The 
contingency analysis is carried out to monitor the system 
in real-time operation.
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30 0.1437 0.2246 0.2421 0.3945 0.2144

Figure 2. Comparison of conventional and ANN load-
flow results at various buses.
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Appendix
Table A1. Bus data

Bus Voltage Generation Load Lambda
($/MVA-hr)

Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) P Q
1 1.060 0.000 212.23 0.00 - - 36.313 -0.128
2 1.039 -4.198 36.23 27.17 21.70 12.70 38.114 -
3 1.021 -6.197 - - 2.40 1.20 38.823 0.254
4 1.012 -7.621 - - 7.60 1.60 39.562 0.274
5 1.013 -10.825 29.35 29.95 94.20 19.00 40.587 -
6 1.011 -8.990 - - - - 40.084 0.193
7 1.004 -10.271 - - 22.80 10.90 40.570 0.256
8 1.013 -9.491 12.94 40.00 30.00 30.00 40.259 0.101
9 1.042 -11.806 - - - - 40.089 0.146

10 1.038 -13.545 - - 5.80 2.00 40.094 0.201
11 1.060 -11.332 4.40 9.09 - - 40.088 -
12 1.050 -13.050 - - 11.20 7.50 39.652 0.090
13 1.060 -13.050 0.00 7.73 - - 39.652 -
14 1.035 -13.922 - - 6.20 1.60 40.318 0.292
15 1.031 -13.985 - - 8.20 2.50 40.507 0.403
16 1.038 -13.526 - - 3.50 1.80 40.107 0.293
17 1.033 -13.757 - - 9.00 5.80 40.240 0.323
18 1.021 -14.534 - - 3.20 0.90 40.938 0.533
19 1.019 -14.666 - - 9.50 3.40 41.033 0.562
20 1.023 -14.444 - - 2.20 0.70 40.822 0.483
21 1.026 -14.005 - - 17.50 11.20 40.523 0.456
22 1.027 -13.995 - - - - 40.508 0.439
23 1.021 -14.323 - - 3.20 1.60 40.879 0.582
24 1.016 -14.424 - - 8.70 6.70 41.037 0.647
25 1.014 -14.003 - - - - 40.782 0.712
26 0.996 -14.425 - - 3.50 2.30 41.543 1.220
27 1.022 -13.479 - - - - 40.319 0.520
28 1.008 -9.558 - - - - 40.321 0.242
29 1.002 -14.713 - - 2.40 0.90 41.450 0.837
30 0.990 -15.599 - - 10.60 1.90 42.233 0.967

Total 295.14 113.94 283.40 126.20
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Table A2. Branch data

Branch From Bus To Bus
From Bus Injection To Bus Injection Loss (I^2 * Z)

P(MW) Q(MVAr) P(MW) Q(MVAr) P(MW) Q(MVAr)
1 1 2 139.12 -6.44 -135.81 10.53 3.309 9.91
2 1 3 73.12 6.44 -70.93 -2.89 2.181 7.97
3 2 4 37.86 3.2 -37.09 -4.73 0.770 2.35
4 3 4 68.53 1.69 -67.94 -0.85 0.595 1.71
5 2 5 61.93 0.46 -60.25 2.19 1.679 7.05
6 2 6 50.54 0.28 -49.17 -0.03 1.376 4.18
7 4 6 55.31 -13.24 -54.94 13.62 0.375 1.30
8 5 7 -4.60 8.76 4.65 -10.7 0.053 0.13
9 6 7 27.65 -0.91 -27.45 -0.20 0.20 0.61

10 6 8 18.44 -10.64 -18.39 9.90 0.052 0.18
11 6 9 25.45 -3.65 -25.45 4.93 0 1.29
12 6 10 15.47 1.5 -15.47 -0.26 0 1.23
13 9 11 -4.40 -8.90 4.40 9.09 0 0.19
14 9 10 29.85 3.97 -29.85 -3.05 0 0.92
15 4 12 42.12 17.21 -42.12 -12.72 0 4.50
16 12 13 0 -7.65 0 7.73 0 0.07
17 12 14 7.64 2.46 -7.57 -2.31 0.072 0.15
18 12 15 17.03 6.87 -16.83 -6.47 0.203 0.40
19 12 16 6.24 3.54 -6.2 -3.45 0.044 0.09
20 14 15 1.37 0.71 -1.37 -0.70 0.005 0
21 16 17 2.70 1.65 -2.69 -1.63 0.005 0.02
22 15 18 5.49 1.79 -5.46 -1.72 0.034 0.07
23 18 19 2.26 0.82 -2.26 -0.81 0.004 0.01
24 19 20 -7.24 -2.59 7.26 2.63 0.019 0.04
25 10 20 9.55 3.53 -9.46 -3.33 0.09 0.20
26 10 17 6.32 4.21 -6.31 -4.17 0.017 0.05
27 10 21 15.93 9.68 -15.82 -9.44 0.112 0.24
28 10 22 7.71 4.38 -7.66 -4.27 0.053 0.11
29 21 22 -1.68 -1.76 1.68 1.76 0.001 0
30 15 23 4.50 2.89 -4.48 -2.83 0.027 0.05
31 22 24 5.98 2.51 -5.93 -2.44 0.046 0.07
32 23 24 1.28 1.23 -1.27 -1.22 0.004 0.01
33 24 25 -1.50 1.4 1.51 -1.39 0.008 0.01
34 25 26 3.54 2.37 -3.50 -2.30 0.045 0.07
35 25 27 -5.05 -0.98 5.08 1.03 0.028 0.05
36 28 27 18.36 5.72 -18.36 -4.37 0 1.35
37 27 29 6.19 1.67 -6.10 -1.51 0.087 0.16
38 27 30 7.09 1.66 -6.93 -1.36 0.163 0.31
39 29 30 3.70 0.61 -3.67 -0.54 0.034 0.06
40 8 28 1.32 0.09 -1.32 -4.45 0.004 0.01
41 6 28 17.09 0.12 -17.04 -1.27 0.048 0.17

Total 11.742 47.31


