# Implementation of Tunable G<sub>m</sub>-C High-pass Filter using Linearized Transconductor

#### M. Dayanandha\* and S. AnaniahDurai

School of Electronics Engineering, VIT University, Vellore - 632014, Tamil Nadu, India; daya2091@gmail.com, ananiahdurai.s@vit.ac.in

#### Abstract

Objective: Now a day there is an increase demand for higher linear circuits in a wireless communication system. The linear circuit provides better support for wireless communication. To process the signals and remove unwanted block or interferers, the transmitting end and receiving end must consist of highly linearity circuit. Methods/Statistical Analysis: A tunable G<sub>m</sub> C high-pass filter implemented using linearized transconductor circuitry, is proposed in this paper. By employing a dual path feed forward technique, the transconductor circuitry cancels the term G<sub>m3</sub> thus acting a good linear Voltage-to-Current conversion. This design consists of a voltage buffer which uses only inverters, which can drive transconductor with differential inputs. A higher order admittance method is utilized to synthesize the filter. The high pass filter is implemented in 180nm UMC CMOS technology. Findings: A linearization transconductor circuit system is proposed. Using voltage buffer which incorporates inverters and copied unique transconductors, better linearization is achieved. A wider tuning range of the filter cutoff frequency varying from 0.17 MHz to 0.85 MHz is obtained. A low current consumption of 10 mA to 30 mA over the tuning range is observed. Further, the harmonic distortion analysis revealed that the input-referred third-order intercept point (IIP3) is +25.84 dBm with a 1-dB compression point being +9.35 dBm. A filter linearity of less than one percent (<1%) shows that the proposed design has better linearity. Application/Improvements: The simulation results validates that the filter design is highly linear, thus an efficient line arization technique is proposed. Further, this design methodology can be adapted for transconductors having varied differential inputs, and also provides design feasibility for multiple processes.

Keywords: G<sub>m</sub>-C Filter, High Pass Filter, Linearization Technique, Transconductance

# 1. Introduction

Now a day there is an increase demand for higher linear circuits in a wireless communication system. The linear circuit provides better support for wireless communication. To process the signals and remove unwanted block or interferers, the transmitting end and receiving end should have a highly linear circuit. If the circuits are cascaded, it is feasible to determine the overall linearity of the cascaded circuit<sup>1</sup>. Therefore, to find the linearity of the circuit two parameters are targeted. The input referred third order intercept point (IIP3) and 1 dB compression point must be analyzed to study the linearity of the circuit. In wireless communication system filter is located at the receiver end. This filter is used for filtering the noise of

\*Author for correspondence

the received signal; hence filters are an essential circuit at the receiver stage. Moreover, an amplifier stage is also used for initial amplification. The design of high-performance baseband filter is therefore imperative.

To improve the linearity, the Multi-Gate CMOS Transistors (MGTR) are preferred. This methodology employsmore than two parallel transistors with different W/L (width/length) ratios<sup>2</sup> and varied bias voltages, thus the third-order derivative transconductance( $g_{m3}$ ) of the transistor is eliminated. The value of IIP3 is thus improved, this is achieved by designing  $g_{m3}$  value close to zero. Although the IIP# is improved, the MGTR imposes some design challenges. The precise biased voltage control in this method can pose drawbacks in linearity enhancement during process variation. To remove the

 $g_{m3}$  component, the aspect ratiosand the bias voltage must be fine-tuned to find the best operating point, which results in MGTR sensitivity towards bias variations. On the other hand, linearity can also be enhanced by utilizing feed-forward technique<sup>3</sup>.Inthisanyone of the two methodscan be employed to actively remove the nonlinearity. In extension, proper scaling ratios must be maintained between the signals of the main and the feed-forward paths to perform the exact cancellation. However, scaling circuitry for both paths is not provided in <sup>4</sup>. A technique ofattenuation-predistortionin <sup>5</sup> also uses main path and auxiliary path for improving the linearity. In this method, the auxiliary path has an attenuated input signal and a digitally adjusted phase shifter. This method overcomes the mismatches and the Process Voltage-Temperature (PVT) variations. Alternatively, an active-RC filter<sup>6</sup> can also be used for achieving good linearity, however, switching capacitors and resistors that controls the cutoff frequency gives a discrete frequency tuning. Another possible avenue of improving the linearity is to employ a basic  $G_m$ -C filter<sup>Z</sup>. Eventhough, its linearity lower than active-RC, it can be improved by continuously tuning the bias current. The block diagram of the proposed design is shown in Figure 1.

In this paper, a tunable  $G_m$ -C high-pass filter implemented by using linearized transconductor circuit is proposed.

A feed-forward technique that actively removes the  $G_{m3}$  component of the transconductor is employed in the proposed design. The  $G_{m3}$  cancellation technique is explained in section II. In section III, high-pass filter design which is tunable to various tuning range to achieve linearized transconductor is presented. In section



**Figure 1.** Block diagram of the proposed trans conductor linearization method.

IV, obtained simulation resultswere discussed and the validated and section V concludes the paper.

#### 2. Linearization Method

Operational transconductance amplifier (OTA) isan essential building block for the design of various analog CMOS circuitry, analog systems, digital systems and signal processing micro-systems. Most of these applications demands highly linear amplifiers for the purpose of amplifications. Specifically, these applications require highly linear voltage to current converters, which is commonly known as operational transcondutance amplifier. OTA, generally have a differential pair as the input stage. An OTA that employs feed-forward techniques greatly enhances the performance of the target application. In many instances these feed-forward loops are employed to minimize nonlinear effects in amplifiers and the filters that incorporate OTA. Further, frequency compensation can also be achived in OTAs with a feed-forward path.

The transfer characteristics of a OTA expressed as a voltage controlled current source can be given by

$$I_{out} = \mathbf{G}_{\mathbf{m}} V_{d} \tag{1}$$

$$I_{out} = \mathbf{G}_{\mathbf{m}}(V_1 - V_2)$$
(2)

Hence, the output current is given by the differences of the input voltage, with an ideally constant transconductance  $G_m$ . Therefore  $G_m$  is the proportionality factor between the two of the input voltage. The transconductancecan hence be concluded as the function of the input differential voltage. An ideal OTA has two differential voltage inputs with input impedance being infinite, which leads to zero input current. Ideal common mode input range is also infinite, whereas the differential signal controls an ideal current source. Therefore it is evident that the differential output current does not depend on the differential output voltage for a fully differential OTA.  $G_m$ being the proportionality factor between output current and input differential voltage is called transconductance<sup>2</sup>.

Using Taylor expansions, the drain current of the MSFET devices be given as<sup>2</sup>:

$$I_{d} = g_{m1} v_{gs} + g_{m2} v_{gs}^{2} + g_{m3} v_{gs}^{3} + \dots$$
(3)

where,  $V_{\rm gs}$  is the voltage across the gate to source of the device, and  $g_{\rm mn}$  is the n-th order derivatives of the drain current  $I_{\rm d}$  with  $V_{\rm gs}$ . Similar to a MOSFET device, the entire transconductor circuit can be modeled using the

Taylor's expansion in (3). The output drain current of the circuit consists of a polynomial of the gate input voltage  $V_{in}$  and the transconductance  $G_m$ , which becomes<sup>1</sup>;

$$I_{out} = g_{m1} v_{gs} + g_{m2} v_{gs}^2 + g_{m3} v_{gs}^3 + \dots$$
(4)

For linearization in a V to I conversion, the  $I_{out}$  term should include the term  $G_{m1}$  and  $V_{in}$  alone.Generally, in a differential input pair the even order coefficients gets eliminated; hence by (4) only  $G_{m3}$  contributes to nonlinearity.Based on these assumptions a transconductor circuit can be modeled as<sup>2</sup>;

$$I_{out} \approx G_{m1} v_{in} + G_{m3} v_{in}^3$$
(5)

Hence it is evident that the linearization can be enhanced by eliminating the  $G_{m3}V_{in}^3$  component. The proposed linearization enhancement technique for the transconductorincludes main and auxiliary paths. Different  $G_m$  values are designed for the transconductors that are located in the main and auxiliary path. The output currents  $I_1$  and  $I_2$  of the main and auxiliary paths respectively can be modeled with (3). The third-order intermodulation distortion (IMD3) components of both main and auxiliary path are designed so that they are subtracted and eliminated in the output current  $I_{out}^{-1}$ . Figure 2 shows the unit transconductor circuit<sup>1</sup>.

Figure 4 shows the linearized OTA used for thee Linearization purpose. The input voltage of the main path is  $V_{in}$ , and the transconductance of this path is designed to be  $2G_m$ , this implies that both the transconductorsare in parallel. On the other hand, the input voltage of the auxiliary path transconductor is  $(\sqrt[3]{2}V_{in})$ , whereas, its transconductance is designed to be only  $G_m$ . It can be noted that the auxiliary path is nothing but a unit transconductor. Due to the opposite polarities between

**Figure 2.** Unit transconductor circuit.

the input and the output at the amplifier output is inverted.  $I_{out}$  with the influence of feed forward auxiliary path can be given by<sup>1</sup>;

$$I_1 = 2 G_{m1} V_{in} + 2 G_{m3} V_{in}^3$$
 (6)

$$I_{2} = -\sqrt[3]{2} G_{m1} V_{in} - \sqrt[3]{2} G_{m3} V_{in}^{3}$$
(7)

$$\mathbf{I}_{\text{out}} = \mathbf{I}_1 + \mathbf{I}_2 \tag{8}$$

$$I_{out} = (2 - \sqrt[3]{2}) G_{m1} V_{in}$$
 (9)

Hence, a linear voltage to current conversion is achieved. The linear conversion is obtained by minimizing the power consumption and of  $G_m(2-\sqrt[3]{2})$ .

For perfect cancellation of the Gm3 component, gate input voltages of *Vin* and  $(-\sqrt[3]{2}V_{in})$  must be applied to each input of a transconductor. Therefore, for achieving an input voltage of  $(-\sqrt[3]{2}V_{in})$ , the linear voltage amplifier circuit is designed as shown in Figure 3. The voltage amplifier consists of a driving and a loading inverters<sup>8</sup>. A self-biased inverter is employed that can act as voltage buffer circuit. This designed buffer amplifies the input voltage linearly.

A linear voltage amplifier designed with a gain of (-1), is included in the main path so as to reduce the phase mismatch of main and auxiliary path, thus achieving a perfect cancellation. To get opposite polarities in the two paths transconductor circuits with differential inputs are used. A basic CMOS differential pair with a current mirror load is implemented to obtain a differential to single-ended conversion. The tail current can be varied to set a desired transconductance. This is achieved by designinga separate mirrorthat mirrors the current of an



Figure 3. Schematic of a linear voltage amplifier.

external reference current source. The proposed circuits are shown in Figures 4, 5 and 6.

The original transconductance is no way altered by active  $G_{m3}$  cancelling architecture; hence, this technique can implemented in most of the transconductors with differential inputs. Further, this linearization technique is independent of the bias variations of the transconductor. The gain of the designed linear voltage amplifier can be given by the  $G_m$  of the inverters and  $R_{fb}$ . Hence, the ratio of the main and auxiliary paths is insensitive to the bias voltages variation, this implies that any value of the  $G_{m3}G_{m3}$  component can be cancelled, whereas, the main and auxiliary paths maintain a voltage amplification ratio of 1:  $\sqrt[3]{2}$ .



**Figure 4.** Block diagram of main and auxiliary paths  $G_{m3}$  cancellation using a linear voltage amplifier.



**Figure 5.** Block diagram of second-order unit high pass filter.





#### 3. Tunable High-pass Filter

In a radar system frequency modulated continuous wave (FMCW)<sup>9</sup>, the distance between the target and the baseband frequency proportional to each other. To reject the antenna coupling a filter is necessary in the receiver end baseband of a through the wall FMCW radar system<sup>10</sup> and wall reflected waves. In a situation where the target is present at the other end beyond the wall, a high-pass filter can be employed to attenuate the unwanted wall-reflected waves. A tunable cutoff frequency high-pass filter is necessary, as there is always a variable distance from the through-the-wall radar to the wall. A tunable Gm-C high-pass filter in <sup>11,12</sup> is designed using the linearized trans conductors.

The N-th order high-pass filter with high-order admittance element integrated, making the transfer function from input to output as follows.

$$H(s) = \frac{v_{out}}{v_{in}}$$
(10)

$$H(s) = \frac{v_{out}}{v_{in}} = \left[ s^n / \left( s^n + \frac{G_{mn}}{c_1} s^{n-1} + \frac{G_{m(n-1)}G_{mn}}{c_1 c_n} + \frac{G_{m(n-2)}G_{m(n-1)}G_{mn}}{c_1 c_{n-1} c_n} S^{n-3} + \dots + \frac{G_{m1}G_{m2} \dots G_{mn}}{c_1 c_2 \dots G_{mn}} \right) \right]$$
(11)

The cascaded second order high pass filters are employed to make the higher order filter to maintainlinearity in all ranges. The second-order high-pass filter with the same Gm values has transfer function as given below2

$$H(s) = \frac{v_{out}}{v_{in}} = \frac{s^2}{s^2 + c_{21}s + c_{22}}$$
(12)

The fifth order high pass filters are cascaded to make higher order filter not to fall from the linearization. The fifth order high-pass filter with the similar Gm values has transfer function3.

$$H(s) = \frac{v_{out}}{v_{in}} = \frac{s^5}{s^5 + c_{51}s^4 + c_{52}s^3 + c_{53}s^2 + c_{54}s + c_{55}}$$
(13)

The designed filters is implemented with differential inputs and outputs. To prevent loading effect on the frequency response of the filter, a voltage buffer is designed as the output stage.

## 4. Simulation Results

The simulations and analysis are carried out using the Cadence CAD tool and is implemented in UMC 0.18-µm

CMOS technology. The observed large power consumption is mostly due to the CMOS inverters in the linearization circuit. This can be overcome by reducing the size of the inverters in the voltage amplifier. Figure 7 shows the simulation output of the 5<sup>th</sup> order high-pass filter. The enhanced linearity of the 5<sup>th</sup> order high-pass filter is validated using the parameter IIP3 value and 1-db compression point. In this figure the intersection point of input power versus output power showsat which point thatthe amplifier has saturated. This has been analyzed using 1-db compression point.



Figure 7. IIP3 measurement of5<sup>th</sup>order high-pass filter.

The simulation results of second order high pass filter is shown in Figure 8. It depicts the IIP3 values of two tone frequency. The input signals of 2.5 MHz and 3 MHz tones were applied to the input and the IIP3 determined. A moderate IIP3 value of +25.85 dBm shows that the linearity has been enhanced. The single tone linearity for 1-dB compression point is observed as +9.35 dBm, which further validates the linearity.

The comparison of second and fifth order high-pass filter performance with the other research work is shown in Table 1.



Figure 8. IIP3 measurement of 2<sup>nd</sup> order high-pass filter.

| parameters                   | [3]                            | [5]                         | [6]                              | This work (for 2 nd order filter) | This work(for 5 <sup>th</sup><br>order filter) |
|------------------------------|--------------------------------|-----------------------------|----------------------------------|-----------------------------------|------------------------------------------------|
| Technology(µm)               | 0.18                           | 0.18                        | 0.18                             | 0.18                              | 0.18                                           |
| Filter topology              | RC-G <sub>m</sub> -C low- pass | G <sub>m</sub> -C low- pass | Active G <sub>m</sub> -Clow-pass | G <sub>m</sub> -C high-pass       | G <sub>m</sub> -C high-pass                    |
| Linearization<br>Technique   | MGTR                           | Attenuation predistortion   | -                                | Feed forward                      | Feed forward                                   |
| Supply<br>Voltage (V)        | 1.8                            | 1.8                         | 1.8                              | 1.8                               | 1.8                                            |
| Filter order                 | 3                              | 2                           | 4                                | 2                                 | 5                                              |
| Cutoff frequency<br>(MHz)    | 50-200                         | 200                         | 11.3                             | 0.15-0.75                         | 0.15-0.75                                      |
| Power<br>Consumption<br>(mW) | 23.4                           | 20.8                        | 3.5                              | 14.2-40.32                        | 14.2-40.32                                     |
| P1 dB<br>(dBm)               | -                              | -                           | 0.5                              | +9.35                             | -                                              |
| IIP3<br>(dBm)                | 17.3                           | 14                          | 10                               | +25.85                            | 11.5                                           |

Table 1.Comparison of results

#### 5. Conclusion

A linearization transconductor circuitry is thus proposed. Using voltage buffer, which incorporates inverters and copied unique transconductors, linearization is effectively enhanced. This technique effectively cancels the  $G_{m3}$  component oftransconductorby employing thefeed-forward technique. The designed inverter-based linearization circuit is found to be insensitive to the bias variation, and the ratio of both main and auxiliary path is scaled to desired value accurately. To implement the linearization technique, a tunable Gm-C high-pass filter is proposed designed and validated using Cadence Specter simulator. The filter is integrated using a high-order admittance element. The measurement results show a highly linear filter operation as well as that the linearization technique is efficient. This technique can be adjusting to transconductors with differential inputs, and it has an advantage in process scaling.

## 6. Acknowledgement

Authors would like to thank the anonymous reviewers for their comments in improving the paper and also we extend our gratitude to VIT University, Chennai for their support.

# 7. References

- 1. Razavi B. RF Microelectronics. 2nd ed., NJ: Pearson; 2012.
- Aparin V, Larson LE. Modified derivative superposition method for linearizing FET low-noise amplifiers.IEEE Transactions onMicrowave Theory and Techniques.2005 Feb;53(2):571–81.

- 3. Kwon K, Lee K. A 23.4 mW 68 dB dynamic range low band CMOS hybrid tracking filter for ATSC digital TV tuner adopting RC and Gm-C topology.IEEE Transactions on Circuits and Systems I:Regular Papers. 2011Oct;58(10):2346–54.
- Ding Y, Harjani R. A +18 dBm IIP3 LNA in 0.35 μm CMOS.IEEE International Solid-State Circuits Conference; 2001Feb. p. 162–3.
- 5. Mobarak M, Onabajo M, Silva-Martinez J,Sanchez-Sinencio E. Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications.IEEEJournal of Solid-State Circuits. 2010Feb;45(2):351–67.
- 6. De Matteis M, D'Amico S,Baschirotto A. A 0.55 V 60 dB-DR fourth-order analog baseband filter.IEEE Journal of Solid-StateCircuits. 2009Sep;44(9):2525–34.
- Khorramabadi H, Gray PR. High-frequency CMOS continuous-time filters.IEEE Journal of Solid-State Circuits.1984 Dec;19(6):939–48.
- RuZ, Klumperink EAM, SaavedraCE, Nauta B. A 300–800 MHz tunable filter and linearized LNA applied in a low-noise harmonic-rejection RF-sampling receiver.IEEE Journal of Solid-State Circuits. 2010May 2010;45(5):967–78.
- Sunitha, Amrithapriyam.Mobile user position system for indoor technologies using application of RADAR.Indian Journal of Science and Technology. 2016Aug;9(32):1–6.
- LimY, Nam S. Target-to-clutter ratio enhancement of images in through-the-wall radar using a radiation patternbased delayed-sum algorithm.Journal of Electromagnetic Engineering and Science.2014 Dec;14(4):405–10.
- Devapal D, Kumar SS, Christy Jojy.Comprehensive Survey on SAR image Despeckling Technique,Indian Journal of Science and Technology.2015 Sep;8(24):1–5.
- Olsak M, Matejicek L, Vrba K, Smekal Z. Realization of Nth-order electronically tunable highpass filter employing only N OTAs.10<sup>th</sup> International Conference on Telecommunications,2003 Feb 23 – Mar 1;2003. p. 671–6.