
A Comparative Evaluation of “m-ACO” Technique for
Test Suite Prioritization

Kamna Solanki*, YudhVir Singh and Sandeep Dalal

M. D. University, Rohtak - 124001, Haryana, India

Abstract
Objectives: The novel test case prioritization technique “m-ACO” (“Modified Ant Colony Optimization”) for regression
testing has been comparatively evaluated. Methods: “m-ACO” prioritize the test cases by altering the food source selection
criteria of natural ants to enhance fault diversity. The code for the proposed technique for prioritizing test case “m-ACO” has
been implemented in Perl language. This paper makes a comparative evaluation of proposed “m-ACO” technique for pri-
oritization of test cases with GA (“Genetic Algorithm”), BCO (“Bee Colony Optimization”) Algorithms and ACO (“Ant Colony
Optimization”) Algorithms using three case studies. Two metrics namely APFD (“Average Percentage of Faults Detected”)
and PTR (“Percentage of Test Suite Required for Complete Fault Coverage”) have been used to measure the effectiveness
of the proposed “m-ACO” technique. Findings: The proposed technique “m-ACO” produced optimal or near optimal solu-
tions. The proposed “m-ACO” technique proves its efficiency in comparison to GA, BCO and ACO methods individually.
Improvements: The proposed technique improves the ACO method by altering food source selection criteria of natural
ants. The future work in this direction will comparatively evaluate the proposed “m-ACO” technique using some well known
software testing problems and open source software. An automated tool for the proposed technique is being developed.

*Author for correspondence

1. Introduction
Verification and validation activities are conducted
throughout the entire life cycle of software development
to enhance and evaluate the software quality. Verification
and validation makes sure that the entire software sys-
tem as a whole works as defined in software requirement
specification and satisfies the customer’s needs and
requirements. Verification and validation is a commonly
used term that actually refers to software testing. The
choice of a software testing technique highly affects the
quality of the software. So, the need of the hour is to use
the most efficient and effective testing technique which
can reveal maximum faults within resource constraints
like time, efforts and cost. Software testers carefully

Indian Journal of Science and Technology, Vol 9(30), DOI: 10.17485/ijst/2016/v9i30/86423, August 2016

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

design test suite (or test ensemble) for software testing to
reveal maximum faults. Software has to be re-tested quite
frequently as software code keeps on changing when
revealed faults are fixed by the developers. The re-testing
of the software code is extremely important to uncover
any undesired effect of the amended software code on
working of rest of the code. This re-testing of the soft-
ware is known as regression testing. The original test suite
is re-utilized during regression testing. It is inseparable
step in the software development and, in conjunction
with other protocols, it can influence around half of the
cost for proper software maintenance1–3. However, due to
monetary and temporal constraints, the complete ensem-
ble of tests cannot be re-utilized. Hence, software testing
now uses an approach based on selective analysis of code

Keywords: Fault Coverage, Genetic Algorithm, Regression Testing, Software Testing, Test Suite Prioritization

A Comparative Evaluation of “m-ACO” Technique for Test Suite Prioritization

Indian Journal of Science and TechnologyVol 9 (30) | August 2016 | www.indjst.org2

modules having highest priority as per code coverage
rate, fault detection rate, order of failure propensity or
order of expected rate of employment. These approaches
are jointly known as “Test case prioritization techniques”.
Recently, a novel technique “m-ACO” for prioritization of
test cases has been proposed for regression testing4. This
paper presents a comparative evaluation of the proposed
“m-ACO” technique with existing techniques like Genetic
Algorithm, Bee Colony Optimization and Ant Colony
Optimization Algorithms for prioritization of test cases
on two parameters namely APFD (“Average Percentage
of Faults Detected”) and PTR (“Percentage of Test Suite
Required for Complete Fault Coverage”).

Numerous researchers in the field of software test-
ing have tried to optimize the prioritization conundrum
and proposed many techniques. Some of the techniques
in this direction were “Total fault-detection technique”
which targeted to uncover all the defects or faults pres-
ent in particular code modules5. The main approaches to
enhance the rate of fault detection referred to “Greedy
algorithms”, which uses a greedy approach for the selec-
tion of the test cases i.e., prioritization of the most
optimum initially6; “Evolutionary algorithms” which uses
a progressive kind of evolution among various combina-
tion of test sub-ensemble to eventually create a prioritized
test suite7; “Non-evolutionary algorithms” which follows
a goal based prioritization8,9. “Need specific algorithms”
have been formulated to satisfy specific needs of the pri-
oritization10. These were not same as the general test suite
prioritization methods, which can be applied on any type
of prioritization problem. Another method for solving
conundrum of prioritization is “Variable analysis algo-
rithms” which considers the analysis of the relationship
among variables which are modified and its utilization in
other fields of code is perceived. Evolutionary Algorithms
often performs well on most of the problems as they do
not make any assumption about the underlying fitness
landscape; however such types of algorithms have higher
computational complexity and generally lack in clear
distinction of genotype-phenotype. Greedy algorithms
are most suitable only for those problems which pos-
sess ‘optimal substructure’. Such algorithms mostly (but
not always) shows failure in finding the global optimal
solutions as they generally do not exhaustively operate
on complete data. Greedy Algorithms make early com-
mitments for certain choices which may prevent these

algorithms from finding the most optimized solution
later.

Natural processes have always inspired people for
development of similar algorithms. These algorithms
have already been employed for optimization of the fault
detection among software modules and to improve the
efficiency of software testing. A number of algorithms
have been developed to identify prioritized test sets for a
given problem. The approaches adopted in these solutions
include statistical techniques; evolutionary approaches,
such as GA (Genetic Algorithms); swarm based collective
behavioural approaches. The last category includes algo-
rithms such as BCO (Bee Colony Optimization) or ACO
(Ant Colony Optimization). These work on the principle
that collective swarm and detection approach can iden-
tify local and global solutions to the problems of test cases
selection and prioritization. A novel technique “m-ACO”
(Modified Ant Colony Optimization) has been proposed
recently to prioritize the test cases in regression testing.
The objective of the current work is to carry out one such
analysis in order to understand the optimal application of
proposed “m-ACO” technique.

Ant Colony Optimization (ACO) approach, which
can be used to solve a variety of problems is a meta-heu-
ristic technique11. Artificial ants have found applications
in numerous applications, often delivering good results
for problems like traffic management. Researchers have
put their efforts towards solving the problem of test case
prioritization by application of ACO algorithm; however
they did not succeed and could only identify a near best
solution12–14. None of the proposed techniques towards
test suite prioritization using Ant Colony Optimization
have ever discussed and utilized the concept of diversity
of food captured by ants. Natural ants select every type
of food source they come across, which decreases the
diversity of food deposited. However, food diversity is
an important factor in case of test suite prioritization as
the diversity of faults captured by a particular test suite
using ACO technique depends highly on the diversity of
food captured by ants. In this regard, a novel test suite
prioritization technique “m-ACO” (Modified Ant Colony
Optimization) has been proposed by altering the food
source selection criteria of natural ants to enhance the
diversity of food captured. Enhanced diversity of food
captured ultimately enhances the diversity of defects
(faults) revealed by a prioritized test suite15.

Kamna Solanki, YudhVir Singh and Sandeep Dalal

Indian Journal of Science and Technology 3Vol 9 (30) | August 2016 | www.indjst.org

2. Comparative Evaluation of
“m-ACO”

The “m-ACO” technique for which prioritize the given
test suite measured the suitability of every node based on
the optimal values of the code covered, number of faults
detected and total time taken for test case execution. The
modified ants approached the faulty modules in a pseudo-
random order and evaluated its suitability. A pheromone
factor was considered and quantified to attract many
other ant like processes. The pheromone trails belonging
to the code module that were most suitable finally became
stronger in later rounds by making progressive coverage.
The pheromone trail belonging to the less visited modules
became weaker in later iterations at a constant rate. Ants
can still move towards these trails which are progressively
weakening; but the probability for the same is very low.

To conduct the experimental evaluation of “m-ACO”,
three case studies have been taken. These three case stud-
ies have been implemented in Perl language for “m-ACO”,
BCO, GA and ACO technique. The following param-
eters have been calculated for comparative evaluation of
“m-ACO” technique against GA, BCO and ACO tech-
niques for test case prioritization:

• APFD (“Average Percentage of Faults Detected”).
• PTR (“Percentage of Test Suite Required for

Complete Fault Coverage”).

APFD metric basically deals with quantifying the goal
of optimizing rate of fault detection by using various test
suites combination10,11. This metric measures the average
rate of fault (defect) detection rate per percentage of test
suite execution. Higher value of APFD means higher per-
centage of faults detected. A comparatively high APFD
means a better prioritization technique.

Notion for APFD calculations are:
‘T’ refers to the test suite under Observation (evalua-

tion), ‘m’ refers to total no. of defects (faults) in a system
under test, ‘n’ refers to total number of test cases in any
test suite and TFj refers to the position of the first test case
in T which uncovers fault j. PTR (“Percentage of Test

Cases Required for Complete Fault Coverage”) is a met-
ric which can be used to calculate the effectiveness of the
test suite prioritization technique12. An effective test suite
prioritization will position the test cases which are most
likely to find faults at the starting of the prioritized test
sequence. So, it would be helpful to calculate the percent-
age of those test cases which must run before all faults of
the application are revealed. A comparatively low value of
PTR means a better prioritization technique.

Notion for PTR calculations are:

PTR =

To make the comparative analysis of the proposed
“m-ACO” technique for test suite prioritization, three
case studies4 have been taken namely “Case Study
1-College Program for Admission in Courses”, “Case
Study 2-Library Management” and “Case Study 3-Hotel
Reservation System”. Case Study 1 has initially has 10
test cases with initial un-prioritized execution order
“N1->N2->N3->N4> N5->N6->N7->N8->N9->N10”
covering 10 faults. Case Study 2 has 5 test cases with
initial un-prioritized execution order as “N1->N2->N3-
>N4->N5” covering 5 faults. Case Studty 3 has 9 test cases
with initial un-prioritized execution order as “N1->N2-
>N3->N4->N5->N5->N6->N7->N8->N9” covering 5
faults.

2.1 Application of GA
GA is a search heuristic based on the process of natural
selection which generate solutions of many optimization
and search problems. GA uses the phenomenon of natural
evolution techniques like inheritance, mutation, selection
and crossover. Genetic Algorithm has found application
in the area of software testing for test data generation and
to solve test optimization problems21–23. The three case
studies taken were executed using a test suite prioritiza-
tion technique using Genetic Algorithm implemented in
Perl language.

APFD values for three case studies: APFD values
yielded for the above mentioned three Case Studies were
0.73 for case study1, 0.86 for Case Study 2 and 0.86 for
Case Study 3 respectively as shown in Table 1.

A Comparative Evaluation of “m-ACO” Technique for Test Suite Prioritization

Indian Journal of Science and TechnologyVol 9 (30) | August 2016 | www.indjst.org4

PTR values for three case studies: The following Figure
1 depicts that execution of 70% of test cases for case
study1, 20% of test cases for Case Study 2 and 30% of test
cases for case study3 in prioritized order generated using
GA ensures complete fault coverage.

2.2 Application of BCO
The BCO is a nature inspired technique that follows the
foraging behaviour in honeybees. The main objective
of the BCO is using multi agent technology (“colony of
artificial bees”) for effectively solving many types of hard
combinatorial optimization problems. BCO has a specific
ability of finding high quality solutions within a reason-
able amount of computer time for difficult combinatorial

problems. The Bee Colony Algorithm is a stochastic
search technique. Bee Colony Optimization has been
applied successfully by researchers for test case optimiza-
tion and prioritization24–26. So, the three case studies taken
were executed using a test suite prioritization technique
using Bee Colony Optimization Algorithm.

APFD values for three case studies: APFD values
yielded for the above mentioned three Case Studies were
0.71 for case study1, 0.82 for Case Study 2 and 0.86 for
Case Study 3 respectively as shown in Table 2.

PTR values for three case studies: The following Figure
2 depicts that execution of 60% of test cases for case
study1, 20% of test cases for Case Study 2 and 45% of
test cases for Case Study 3 in prioritized order generated
using BCO ensures complete fault coverage.

Prioritization Order using GA APFD Values

Case Study1 {N4->N3->N1->N9->N6->N2->N7->N10->N3->N8} 0.73

Case Study2 {N5->N1->N3->N4->N2} 0.86

Case Study3 {N1->N6->N8->N3->N4->N5->N9->N2->N7} 0.86

Table 1. APFD values using GA

Figure 1. PTR Chart for all case studies using GA.

Kamna Solanki, YudhVir Singh and Sandeep Dalal

Indian Journal of Science and Technology 5Vol 9 (30) | August 2016 | www.indjst.org

2.3 Application of ACO
ACO is a nature inspired technique for solving combinato-
rial optimization problems. It uses food source searching
pattern of natural ants to find the optimized path to reach
to its food source. As discussed earlier, ACO has already
been used for solving many types of optimization and pri-
oritization problems.

APFD values for three case studies: When the three

case studies were executed using ACO for test case pri-
oritization, the APFD values yielded for the three Case
Studies were 0.76, 0.82 and 0.88 respectively for three case
studies considered as shown in Table 3.

PTR values for three case studies: As evident from fol-
lowing Figure 3, the execution of 50% of test cases for case
study1, 20% of test cases for Case Study 2 and 30% of test
cases for Case study3 in prioritized order generated using
ACO ensures complete fault coverage.

Prioritized Order using BCO APFD Values

Case Study1 {N4->N3->N1->N2->N7->N6->N5->N8->N9->N10} 0.71

Case Study2 {N3-> N5-> N1-> N4-> N2}. 0.82

Case Study3 {N6->N1->N4->N8->N3->N2->N9->N5->N7}. 0.86

Table 2. APFD values using BCO

Figure 2. PTR Chart for all case studies using BCO.

A Comparative Evaluation of “m-ACO” Technique for Test Suite Prioritization

Indian Journal of Science and TechnologyVol 9 (30) | August 2016 | www.indjst.org6

2.4 Application of “m-ACO”
The proposed “m-ACO” technique prioritizes the ensem-
ble of test cases by changing the food source searching
behavior of natural ants to enhance the diversity of food
accumulated in its nest by evaluating the food fitness
before selection. This helps in covering the diverse faults
earlier in a prioritized test suite thereby reducing the time
taken to cover the faults. The proposed “m-ACO” tech-
nique has been experimentally evaluated using the three
case studies discussed earlier.

APFD values for three case studies: When the three
case studies were executed using “m-ACO”, the APFD
values yielded for the three Case Studies were 0.81, 0.86
and 0.88 as shown in Table 4.

PTR values for three case studies: The following Figure
4 depicts that execution of 50% of test cases in prioritized
order for Case Study 1, 20% test cases for Case Study 2
and 30% test cases for Case Study 3 ensures complete fault
coverage.

Prioritized Order using BCO APFD Values

Case Study1 {N4->N2->N3->N7->N6->N1->N5->N9->N8->N10} 0.76

Case Study2 {N3-> N5-> N1-> N4-> N2}. 0.82

Case Study3 {N4->N3->N1->N6->N8->N2->N5->N7->N9}. 0.88

Table 3. APFD values using ACO

Figure 3. PTR chart for all case studies using ACO.

Kamna Solanki, YudhVir Singh and Sandeep Dalal

Indian Journal of Science and Technology 7Vol 9 (30) | August 2016 | www.indjst.org

Prioritized Order using m-BCO APFD Values

Case Study1 {N4->N2->N1->N7->N6->N9->N10->N5->N8->N3} 0.81

Case Study2 {N5-> N3-> N1-> N4-> N2}. 0.86

Case Study3 {N6->N1->N4->N8->N3->N2->N5->N9->N7}. 0.88

Table 3. APFD values using m-ACO

Figure 4. PTR chart for all case studies using m-ACO.

It can be clearly observed that the proposed “m-ACO”
technique for prioritization of test suite either performs
equally good or better than other contemporary meta-heu-
ristic techniques based test suite prioritization techniques
on two parameters i.e., APFD and PTR as shown in fol-
lowing Figure 5 and Figure 6. The food uniqueness fitness
function of the proposed “m-ACO” technique works by
selecting only the unique food so that unique faults are
covered earlier by a prioritized test sequence which ulti-
mately reduces the PTR values of the prioritized test suite

and enhances the APFD values i.e., enhanced fault detec-
tion rate of the prioritized test sequence.

The efficiency and effectiveness of regression testing
is determined by many factors including automation of
test sequence generation27, the percentage of original test
suite required to achieve complete fault coverage and
percentage of faults detected per unit time28. So, the pro-
posed “m-ACO” technique for prioritizes the test suite
and improves the effectiveness of regression testing by
producing optimal or near optimal solutions.

A Comparative Evaluation of “m-ACO” Technique for Test Suite Prioritization

Indian Journal of Science and TechnologyVol 9 (30) | August 2016 | www.indjst.org8

3. Conclusion
Regression testing basically re-authenticates the older
version of the functional software to avoid un-necessary
side effects of the amendments in the software code. It is

most crucial and time consuming testing activity which
requires a lot of resources. Test Suite Prioritization is one
of the most widely used technique for regression testing
which enhances the fault detection rate of a test suite by
re-scheduling the order of execution of test cases and

Figure 5. Comparative APFD values of m-ACO, BCO, GA and ACO.

Figure 6. Comparative PTR values of GA, m-ACO, BCO and ACO.

Kamna Solanki, YudhVir Singh and Sandeep Dalal

Indian Journal of Science and Technology 9Vol 9 (30) | August 2016 | www.indjst.org

reduces testing efforts by reducing the fraction of test
suite needed to achieve complete fault coverage (i.e.,
PTR values). The proposed algorithm “m-ACO” modifies
the ACO algorithm and alters the food source selection
criteria of natural ants for prioritizing test cases. This
paper makes a comparative evaluation of the proposed
“m-ACO” algorithm against GA, BCO and ACO based
test case prioritization techniques using three case stud-
ies. The performance of the proposed “m-ACO” algorithm
clearly demonstrates its power. The future work in this
direction will try to comparatively evaluate the proposed
“m-ACO” technique against some other techniques using
well known software testing problems as well as open
source software problems. The application of “m-ACO”
technique can be of utmost importance for boosting the
effectiveness and efficiency of a test suite.

4. References
1. Onoma K, Tsai WT, Poonawala M, Suganuma H. Regression

testing in an industrial environment. Communications of
the ACM. 1998 May; 41(5):81–6.

2. Beizer B. Software testing techniques. 2nd ed. India:
Dreamtech Press; 2003.

3. Leung H, White L. Insights into regression testing.
Proceedings of the IEEE International Conference on
Software Maintenance; 1989 Oct. p. 60–9.

4. Solanki K, Singh Y, Dalal S. Test case prioritization: An
approach based on modified ant colony optimization.
Proceedings of IEEE International Conference on Computer,
Communication and Control; Indore, India. 2015 Sep.
Available at IEEE-xplore Digital Library.

5. Rothermel GU, Chu C, Harrold MJ. Test case prioritiza-
tion: An empirical study. Proceedings of the International
Conference on Software Maintenance; Oxford, UK. 1999. p.
179–88.

6. Li Z, Harman M, Hierons RM. Search algorithms for regres-
sion test case prioritization. IEEE Transactions on Software
Engineering. 2007; 33(4):225–37.

7. Salami AL. Evolutionary algorithm definition. American
Journal of Engineering and Applied Science. 2009;
2(4):789–95.

8. Byson N. A goal programming method for generating pri-
orities vectors. Journal of Operational Research, England.
1995; 46(5):641–8.

9. Crawford G, Williams C. A note on the analysis of subjective
judgment matrices. Journal of Mathematical Psychology.
Elsevier Publications. 1985; 29(4):387–405.

10. Singh Y, Kaur A, Suri B. Regression test selection and
prioritization using variables: Analysis and experimenta-
tion. Software Quality Professional Magazine. 2009 Mar;
11(2):1–15.

11. Dorigo M, Maniezzo V, Colorni A. The ant system:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics. 1996;
26(1):29–41.

12. Suri B, Singhal S. Implementing ant colony optimization
for test case selection and prioritization. International
Journal of Computer Science and Engineering. 2011 May;
3(5):1924–32.

13. Srivastava PR, Baby K. Automated software testing using
meta-heuristic technique based on an ant colony optimi-
zation. International Symposium on Electronic System
Design (ISED); Bhubaneshwar, India. 2010 Dec. p. 235–40.

14. Singh Y, Kaur A, Suri B, Singhal S. Test case prioritization
using ant colony optimization. ACM SIGSOFT Software
Engineering Notes. 2012; 35(4):1–7.

15. Chandu PMSS, Sasikala T. Implementation of regression
testing of test case prioritization. Indian Journal of Science
and Technology. 2015 Apr; 8(S8):290–3. DOI: 10.17485/
ijst/2015/v8iS8/61922.

16. Elbaum S, Malishevsky A, Rothermel G. Test case prioriti-
zation: A family of empirical studies. IEEE Transactions on
Software Engineering. 2002; 28(2):159–82.

17. Elbaum S, Rothermel G, Kanduri S, Malishevsky AG.
Selecting a cost-effective test case prioritization technique.
Software Quality Journal. 2004; 12(3):185–210.

18. Malishevsky AG, Ruthruff JR, Rothermel G, Elbaum S.
Cost Cognizant Test Case Prioritization, Technical Report.
University of Nabraska Lincoln, 2006.

19. Srivastava PR. Test case prioritization. Journal of Theoretical
and Applied Information Technology. 2008; 4(3):178–81.

20. Raju S, Uma GV. Factors oriented test case prioritization
technique in regression testing using genetic algorithm.
European Journal of Scientific Research. 2012; 74(3):389–
402.

21. Berndt DJ, Watkins A. Investigating the performance of
genetic algorithm based software test case generation.
Proceedings of IEEE International Symposium on High
Assurance Systems Engineering; 2004. p. 261–2.

22. Xanthakis S, Ellis C, Gall AL, Karapoulios K. Application
of genetic algorithms to software testing. Proceedings of

A Comparative Evaluation of “m-ACO” Technique for Test Suite Prioritization

Indian Journal of Science and TechnologyVol 9 (30) | August 2016 | www.indjst.org10

International Conference on Software Engineering and its
Applications; 1992. p. 625–36.

23. Maheswari RU, Mala DJ. Combined genetic and simulated
annealing approach for test case prioritization. Indian
Journal of Science and Technology. 2015 Dec; 8(35):1–5.
DOI: 10.17485/ijst/2015/v8i35/81102.

24. Kaur A, Goyal S. A bee colony optimization algorithm for
code coverage test suite prioritization. International Journal
of Engineering Science and Technology. 2011; 3(4):2786–
795.

25. Jeyamala D, Mohan V. ABC-artificial bee colony optimiza-
tion based test suite optimization technique. International
Journal of Software Engineering. 2009; 2(2):1–33.

26. McCaffrey JD. Generation of pair-wise test sets using a
simulated bee colony algorithm. Proceedings of IEEE
International Conference on Information Reuse and
Integration; 2009 Aug. p. 115–9.

27. Maheshwari V, Prasanna M. Generation of test case using
automation in software systems: A review. Indian Journal
of Science and Technology. 2015 Dec; 8(35):1–9. DOI:
10.17485/ijst/2015/v8i35/72881.

28. Jacob TP, Ravi. An optimal technique for reducing the
effort of regression test. Indian Journal of Science and
Technology. 2013 Aug; 6(8):5065–9. DOI:10.17485/
ijst/2013/v6i8/36345.

