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Abstract
Objective: To evaluate and compare different hybrid resultant formulations in relation to computational complexity, 
performance and optimality condition. Methods/Statistical Analysis: Hybrid matrices are evaluated using computer algebra 
system. Findings: we have shown that, none of the hybrid formulation works well with the exception of . However, 
after deleting the zero rows and columns the resulting matrix may not be a square matrix, on the other hand, we studied 
and established that none of the hybrid formulation produces a square matrix in general and likewise predicted that, the 
density or sparseness of the polynomial equations does not influence the performance of these hybrid matrix formulations. 
Applications/Improvements: This comparison reveals that,  the existing hybrid methods for computing resultant are not 
efficient and therefore there is need for another formulations with will focus on the current limitations described in this paper.

1. Introduction

Resultant is polynomials in the coefficients of 1 2 , ,..., nf f f  

which vanishes if and only if 1 2 , ,..., nf f f  have a com-

mon solution. The notion is also called eliminant, being 
one of the efficient tools of eliminating a set of parameters 
in a given system of polynomials1. Currently, there are 
two types of constructions which depend on the nature 
of the resultant matrix. The Sylvester-type construction 
uses the coefficients of the system of polynomials, while 
the Cayley or Dixon-type is in the form of Bezout matrix. 
Construction methods such as Macaulay, Newton sparse 
and incremental are considered to be of Sylvester-type, 
while the Dixon matrix as the name implies is regarded 
as Dixon type. Sometime a resultant matrix combines 
the two structures of the constructions and is referred to 
the hybrid resultant matrix. For details on the Sylvester-
type construction, refer to2-4. Details on the Dixon type 

construction can be found in the work of 5-10.The founda-
tion work for hybrid resultant was first introduced in11, 
derived for certain class of the multivariate polynomials. 
Independently, in 199912 had proposed another hybrid 
construction which possibly the first construction that 
can be applied to more general class of the system of poly-
nomials. Apart from the classical hybrid resultant matrix, 
the sparse hybrid formulation was constructed; this is due 
to the frequent appearance of such systems in many engi-
neering applications13.

However, it is not clear whether or not the construc-
tions can generate exact resultant. Another construction 
was given by14 and unlike the work of13, Khetan gives an 
example which he does not solve but gives the dimensions 
of the resultant matrix. His construction only considers 
systems of polynomials with unmixed support and the 
size of the matrix is very large14. A complete implementa-
tion of the Sylvester-Bezout construction is given by15 in 
her PhD thesis and finds out that, one of the shortcom-
ings of the construction is the inability of the method to 
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produce an optimal matrix when the polynomials have 
mixed support.

2. Related Work
The foundation work on polynomial resultant was laid 

in2,5 for univariate system of polynomials and subsequently 
generalized to the multivariate case by10,16, matrix based 
method of computing resultant was popular due to its 
less computational complexity and low memory require-
ment compared to Groebner basis and Ritt-wu method17 
, however matrix based method comprises three routine 
during the computation of the resultant; the computa-
tion of symbolic determinant, identifying the superfluous 
factor and the extraction of the projection operator. The 
performance of the existing matrix based methods are 
compared in7 and reported various limitations with the 
existing method. In ability of all matrix based methods 
to generate the exact resultant lead to the construction of 
hybrid resultant formulations, on the other hand, it is not 
clear whether or not these hybrid formulations could gen-
erates the exact resultants

Example 1: Consider the three bivariate systems of 
polynomial equations.

2 2
1

2 2 2
2

2 2
3

( 2) 3 2
3 3

2 ( 1) 2( 1)

f xy y a x y a a
f ax a xy xy ay

f x y xy a x a y
F

= − + + − + + −
= + + +

= − − + − − −


= 



Eliminating x  and y  in the system of example 1 
using the Groebner basis generate the following:-

10 9 8 7 6 5 46 25 94 26 131 17R a a a a a a a= + − − − + +
3 262 4 8a a a− − +

Which completely contain the common zero of the
example 1, while the matrix based method produced
the following:

2 2(3 2)(2 1)(3 6 1)( 1)a a a a a R+ + + + − .Note that

(3 2), (2 1)a a+ +  and 2( 1)a − are already contain 

in R
and the zeros of 2(3 6 1)a a+ +  did not provide any 

information on the common zero of system of polynomi-
als which make them superfluous, refer to 7 for the details 
of the existing matrix method. Our work compared the 
existing hybrid matrix method of computing resultant 
of multivariate polynomial systems and proposes a new 

method based on the limitations of these hybrid formula-
tions.

3. Multivariate Resultant 
Formulation

Consider the following bivariate polynomials:  

,
0 0

( , )
s t

i j
i j

i j
f x y a x y

= =

=∑∑

,
0 0

( , )
s t

k l
k l

k l
g x y a x y

= =

=∑∑
			        (1)  

,
0 0

( , )
s t

p q
p q

p q
h x y a x y

= =

=∑∑

We shall adopt the format used in18 to construct vari-
ous types of formulations. 

3.1 The  Sylvester Matrix
Let  and  be the matrix of the 
coefficients of   with  and 

which is of Sylvester- type. Fixing a lexi-
cographical order , we have the following:

,1

3 1 1

1

x y

T

u v

s tu v

s t

x y
P

x y

x y

>

+

− −

 
 
 
 
 
 
 
 
 
 
 
  









According to19, the matrix  has dimension 
, such that different variable orderings pro-

duce different matrices which are square matrices in each 
case. The block structure of the matrix   given by20   
is the matrix:

0

1 0

1 0

01

1

,

S

S

S S

S

S

x y
s t

M

M M
M M M

MM M
MM

M

P

−

−

>

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

 

 

 

 

   

   

 

 




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Therefore the resultant is  where each block 
 has the following structure:

,0

,0, 1

,1,

,

i

ii t
i

ii t

i t

J

JJ
M

JJ

J

−

 
 
 
 
 
 =  
 
 
 
 
  

 

 

 

 







, with

, , , ,i j i j i j i jJ a b c =  

3.2 The ,
x y
s tD > Resultant Matrix

Consider the system of polynomials equations (1), the 
Dixon polynomial of the three equations is 

( ) ( ),

( , ) ( , ) ( , )
1, , , ( , ) ( , ) ( , )
( )

( , ) ( , ) ( , )
s t

f x y g x y h x y
x y f y g y h y

x y
f g h

α β α α α
α β

α β α β α β
∆ =

− −

Fixing a lexicographical order ,   and 
due to19, we have the following: 

Therefore,  is the Cayley’s resultant of the 
polynomials ,  and f g h . The matrix ( )

( , )
x y
s tD >  can be rep-

resented by the following18:

0,0 0,0

,

1,0 0,0

.
.

x y
s t

s

B B

D

B B

>

−

 
 
 =
 
 
 

 

  

  

 

with each block =
min( ,2 1 )

0

i s j

i k j k
k

M F
− −

− +
=
∑ , 

 and . The entries of 
the matrix  are computed in`. Another way to com-
pute the entries of ,

x y
s tD > directly is using the following 

formula.

, 1 1

1 2 1 2 1 1

1 1

( , , , )

T

u v u v
x y

s t u v u v

n m n m

x y
x y D

x y

x y

α β >
+ +

− − − −

   
   
   
   
   α β   ∆ =    α β
   
   
   
   

α β      

 

 

 

 

3.3 Hybrid of  and 
In20 different types of the hybrid resultant are formulated 
one of the construction uses the matrices  and 

, which is briefly described as follows:

(2)

0 0,0 0,2 1

01 1,0 1,2 1

1

s

s s s s
j

s

s

M B B

MM B B
HDP

MM

M

−

− − − −

 
 
 
 
 
 =  
 
 
 
 
  

 

    

    

   

 





Here,  is the jth hybrid of  and  and 

consists of the first  columns of  on the left 

combined with the first jth columns of  on the right. 
For a bivariate system of degree two, the following are 
some of the hybrid settings:

0

1 0

2 1 0
0

02 1

12

2

00 0
00
0

0
0 0
0 0 0

M
M M
M M M

HDP
MM M
MM
M

 
 
 
 

=  
 
 
 
  

0 0,0

1 0 1,0

1 02 1

12

2

00
0

0
0 0
0 0 0

M B
M M B

HDP MM M
MM
M

 
 
 
 =
 
 
  

0 0,0 0,1

1 0 1,0 1,1
2

2 1

2

0

0 0
0 0 0

M B B
M M B B

HDP
M M

M

 
 
 =
 
 
 

0 0,0 0,1 0,2

3 1 1,0 1,1 1,2

2 0 0 0

M B B B
HDP M B B B

M

 
 =  
  

and

0,0 0,1 0,2 0,3
4 ,

1,0 1,1 1,2 1,3

x y
s t

B B B B
HDP D

B B B B
>  

=  
 



Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 4

Comparison of Some Multivariable Hybrid Resultant Matrix Formulations

where each block  has size  and 
each , for example

0,0

10,01,00 10,02,00
10,01,00 11,01,00 10,02,01 11,02,00
11,02,00 12,01,00 11,02,01 12,02,00

12,02,00 12,02,01

B

 
 + + =
 + +
 
  

where each block is given by a bracket define in (3)

(3)
, , ,

, , ,

, , ,

, ,
i j i j i j

k l k l k l

p q p q p q

a b c
ij kl pq a b c

a b c
=

3.4 Khetan’s Hybrid Matrix
Consider the systems of polynomials 

1 1
1 2 3 1 2 1 2, , [ , , , ]f f f x x x x− −∈  that is if  are Laurent polyno-

mials in  variables. The set of exponents of the given 
system is called the support and the Newton polytope of 
the system is the convex hull of the support of such poly-
nomials. The main result of 

Theorem 114 The resultant of a system
1 1

1 2 3 1 2 1 2, , [ , , , ]f f f x x x x− −∈   with a common Newton 
polytope  is the determinant of the block matrix

0

B L

L


 
 
  

, 

where L  and L  are the coefficients of the polynomials 
and the entries of  are of the form

[ ]
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

C C C
abc C C C

C C C
=

According to Theorem 1, the hybrid matrix for the system  

 

such that , is give by

11

12

13

14

15

1

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

0 [124] 0 [126] [234] [234] [236]
0 0 0 0 0 0
0 [126] [135] 0 [146] [236] [156] [345] [346]
0 [145] 0 [156] [345] [256] [356]
0 0 0 0 0 0
0 [156] 0 [356] [456] 0

C
C
C
C
C
C

C C C C C C
C C C C C C
C C C C C C

− − −

− − +
− −

21 31

22 32

23 33

24 34

25 35

6 26 36

0 0 0
0 0 0
0 0 0

C C
C C
C C
C C
C C
C C

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Result and Discussions
In this section, we shall evaluate different types of hybrid 
formulations and present the advantages as well as limita-
tions of each setting.   

4.1 Fifth Hybrid Formulation
Consider the hybrid setting (2) from Section 3.3, the fifth 
hybrid resultant matrix consists of eight blocks each hav-
ing   dimensions with entries of the block given 
as the sum of the brackets is given by (3). We will illus-
trate the performance of this setting using the following 
example.

Example 2 Consider the three bivariate systems of 
polynomial equations of degree two

(4)( )
( )

2 2 2 2
1

2 2 2
2

2 2 2
3

( ) 1

2 2 2

f u u w x u w w u

f u u w y u w u w

f u u w z u

F

w

= + − + + +

= + − − +

=


= 

+ − + +



Eliminating  using  gives the following 
matrix in terms of which is of dimension , but the 
determinant of this matrix fails to give the required infor-
mation since the determinant is zero. However deleting 
the zero rows and columns produces a maximal minor 
whose determinant contains the resultant. Therefore the 
resultant  is:-

4 3 2 2 3 416 16 12 8 4R x x z x z xz z= − − + + −
2 3 2144 4 240 1152 192yz z x xy xz− + − + −

3 2 2 2176 288 96 144 84x x y x z xyz xz− + − + + .
2 21296 288 12 656 1152y yz z x y− + + − +

128 208z− −
This resultant agrees with the result of Dixon formula-

tion obtained in (1).
Limitations: The resultant matrix after deleting the 

zero rows and columns may not be a square, refer to the 

0 0 2 4 0 0 02 2 2 6 4
0 0 2 2 0 0 4 6 2 02 2

00 0 0 0 0 00
00 0 0 0 0 00

2 2 22 4 0 2 4 0 0 02 6 4
02 2 0 2 2 0 4 6 2 0 0

0 00 0 0 0 0 0
0 00 0 0 0 0 0

x z x z x y z
x z x y zx z

x zx z x z x y z
x z x z x y z

− + − − − + + − 
− − − + − −− − 

 
 
 − −− + − + − + + −
 − − − − − + − −
 
  
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table 1 system C4 for example. The size of the matrix 
is large when compared with the existing method such 
as Dixon matrix and the complexity of computing this 
hybrid matrix is high.

4.2 Fourth Hybrid Formulation
Adopting the system (4) from example 1, this formulation 
produces a 12×12 3HDP resultant matrixes of which four 
of the rows and three of the columns have zero entries. 
However, deleting these zero rows and columns generate 
a matrix with 8× 9 dimensions, 

1 0 2 0 0 0 2 4 2 2 2 6 4
1 1 2 1 0 2 2 2 2 2 4 6 2
0 0 0 1 1 2 0 0 0
0 1 0 0 0 0 2 4 2 6 4 2 2 2
0 0 0 0 1 0 2 2 4 6 2 0

1 2 0 0 0 0 0 0
1 1 1 2 0 0 0

0 0 0 1 1 0 0 0

x z x z x y z
x z x z x y z

x z x y z x z
x z x y z

x y z
x y z x y z

x y z

 
− + − − − + + − 

 − − − − − + − − 
 
 

− − + − + + − − + 
 − − − − + − − 
 + −
 
− − + − 

 − − 

which implies that the determinant cannot be com-
puted.

Limitations: The size of the resultant matrix is very 
large and the setting fails to provide any information on 
the common roots of the polynomials when the systems 
are sparse. The complexity during the computation is high 
which include the removal of the zero rows and columns 
from the hybrid matrix. 

4.3 Third Hybrid Formulation
For the same system in example 1, the third hybrid for-
mulation produces a 16 16×  matrix of which four 
of the rows and two of the columns have zero entries, 
however, deleting the zero rows and columns generates 
a matrix of dimensions 12 14× , refer to figure 1 of the 
next page, since the matrix is not square, the determinant 
cannot be found.

4.4 Second Hybrid Formulation
For the same system in example 1, the third hybrid for-
mulation produces a 20 20× 1HDP matrix of which five 
rows and one of the column are zeros, however, deleting 
the zero rows and column generates a matrix of dimen-
sions 15 19×  (the matrix is too large to be included here) 
which implies that the resultant cannot be extracted from 
the projection operator, since the determinant cannot be 
computed.

Limitations: The size of this resultant matrix is very 
large and could hardly produce a square matrix which 
makes the computation of the projection operator very 
difficult and increase the computational complexity of the 
hybrid matrix.

4.5 First Hybrid Formulation
Referring to the system of example 1, the first hybrid for-
mulation produces a 24 24× 0HDP  matrix of which six 
of the rows have zero entries, on the other hand, deleting 
the zero rows generates a matrix of dimensions18 24×  
(the matrix is too large to be included here), which also 
implies that the determinant cannot be computed.

Limitations: The size of this hybrid matrix is extra 
large and sparse in nature which easily leads this matrix to 
be singular. Even though, we can apply the method pro-
posed in8to extract the projection operator, however the 
complexity involves in that process is very high.  

4.6 Khetan’s Hybrid Formulation
We shall use another example to evaluate this resultant 
formulation and compare the result with the previous for-
mulations.

Example 3:Consider the three systems of polynomial 
equations 

2 2 2
1

2 2 4 3
2

2 2
3

2 1
2 3 2

1

f x y xy yz xz
f x y xy xyz xz y

f x y x
F

y xy xz z

= − + + +
+ + − +
+ + − − −


= =
 =

Computing the resultant using Khetan’s formulation 
yields a hybrid resultant matrix, whose determinant pro-
duces the following resultant

26 25 24 22 211024 1024 512 3136 4672R z z z z z= + + + +
20 19 18 17 16960 4000 1936 2384 760z z z z z+ − − + −

15 14 13 12 111888 1748 5192 11294 16606z z z z z− − + + +
10 9 8 7 63555 23208 28154 17260 912z z z z z+ − −− −

5 4 3 213475 12371 4768 100z z z z+ + + − 144 36.z+ +
This multivariate resultant agrees with the result 

obtained by the hybrid   and Groebner basis, which 
in both cases produced an irreducible polynomial of 
degree 26.

Limitations: If any of the system has a Newton poly-
tope parallel to either the  axis or  axis, they fail 
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to generate the Bezout matrix which makes the computa-
tion impossible.

4.7 Analysis of the result
We measure the sparseness of the matrix using the rela-
tion proposed in21,22 as

density
  number of non zero elements

number of all elements
−

= . 

Table 1 compares the performance of the two for-
mulations using some selected examples (refer to an 
appendix), it is clear that  performs better com-
pared to the remaining hybrid, even though for the system 
C3, the determinant of the hybrid matrix after remov-
ing the zero rows and columns gives exactly zero which 
gives no information at all while for the same system a 
projection operator can be obtain using some method 
other than the hybrid formulation, on the other hand, 
the Khetan’s formulation solved only one out of the ten 

selected examples, failing to provide the required result 
for the rest of the nine questions. The hybrid formulations 
such as 0 1 2 3, ,  and  HDP HDP HDP HDP   fails to provide 
any information on the resultant for the system (4) where 
the settings are purely sparse in nature. However these 
formulations produce some extraneous factors when the 
polynomials are dense. Although  performs per-
fectly after deleting the zero rows and columns giving a 
square matrix with a non-zero determinant, it is actually 
another way of expressing the Dixon formulation. For 
any system of polynomials,  also produces extra-
neous factors or fail to give the square matrix whenever 
Dixon formulation does (see C4 from table 1), as such 
all the limitations of the Dixon are inherited by
. The Khetan’s formulation produces exact resultant for 
an unmixed system of polynomials. However, if any of 
the system has a Newton polytope parallel to either the 

axis or axis, the polynomials fail to generate the 

Appendix Some selected system of polynomials
Cases System of polynomial equations
C1  

and   

C2  and  
C3  and  
C4 and 

C5  and 

C6

C7    and

C8  and 
C9 ,  and 
C10  and 
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Bezout matrix24. On the other hand, these systems are not 
often encountered in the real life application25.

1 0 2 0 0 0 0 0 0 0 0 0 0
1 1 2 1 0 2 0 0 0 0 0 0 0
0 0 0 1 1 2 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 2 0 0 0
0 0 0 0 1 0 1 1 2 1 0 2
0 0 0 0 0 0 0 0 0 1 1 2 0

1 2 0 0 0 0 1 0 0 0 0 0
1 1 1 2 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 1 1 1 2
0 0 0 0

2 4
2

0 0 0 0 0 1

2

1

x y z
x y z x y z

x

x z

y z
x y z
x y z x y z

x y z

x z
−

−

+ − −
− − + − −

− −
+ −
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Figure 1. Resultant matrix of HDP2

5. Future work
Dixon method is known for considerable size of its matrix, 
even though the entries are more complicated compared 
to other formulations, however, Jouanolou matrix is also 
known to produce the small matrix and the entries are not 
as complicated as that of Dixon matrix, combing the two 
matrices will also produce another matrix with consider-
able size, the determinant of this matrix will likely produce 
a projection operator with little or no extraneous factors.

6. Conclusion
In this paper we have shown that, hybrid formulations 
considered for this comparison do not work well with the 

exception of  which in general produce gives a square 
matrix after reducing it to a maximal minor. However, the 
determinant of  resultant matrix can still be zero, it 
is known from19 that these hybrid setting have less com-
putational complexity compared to the standard existing 
method, perhaps this is the only advantage of this hybrid 
formulation. On the other hand Khetan’s hybrid resultant 
produces exact resultant for unmixed polynomials. This is 
not surprising as it is shown in23 that the Dixon resultant 
formulation can also produce exact resultant for the same 
generic unmixed polynomials. However, comparing the 
two hybrids  and Khetan’s formulation reveals that 

 performs better than Khetan’s formulation (
works for both mixed and unmixed).    
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