
Abstract
Pneumatic Control Valves (PCV) are used in the process industries. In this paper, a Recurrent Fuzzy Wavelet Neural 
Network (RFWNN) is constructed by using Recurrent Wavelet Neural Network (RWNN). In RWNN, temporal relations are 
embedded in the network by adding feedback connections on the first layer of the network, and wavelet basis n is used 
as fuzzy membership function. The proposed method is applied on a PCV. P, PI and PID controllers are also employed For 
comparison. Bondgraph method has been utilized to model the control valve, so as to compare the response characteristics 
of valve. Simulation results have been made for four controllers. 
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1.  Introduction
Process industries involves of control loops all networked 
together to develop a product to be offered for sale. 
The design of each control loop is of great importance. 
It should be in a way that guarantees the quality of the 
end product through keeping such important variables 
as pressure, flow, level, temperature, etc. within required 
operating range. Some disturbances may be received 
and internally caused by any of these loops so that they 
can have a detrimental effect on the process variable; 
Moreover, the interaction of other loops in the network 
leads to the same result. To reduce the effect of distur-
bances, sensors gather information about the variable and 
its relationship to some desired set point. The data is pro-
cessed by a controller to determine what must be done to 
get the process variable back to where it should be after 
the occurrence of a disturbance. A method is chosen by 
the controller to be implemented by a type of final control 
element after all the measuring, comparing, and calculat-
ing are done. 

Control valve is regarded as the most common final 
element in the process control industries. This way, the 
load disturbance is compensated and the regulated process 

variable are kept to the nearest desired set point. Figure 1 
shows an actuator of sliding-stem control valve. 

Now PC valves are used in many industries. So the 
design of CV to be a very challenging task. Valve body 
housing and the actuation unit are two main components 
of the control valves. Champagne et al.1 reviewed the 
pneumatic actuator of CV and positioner parameters that 
affect the control performance. This is done using a con-
trol valve package computer model to assess the dynamic 
performance. The effects of supply pressure, step size, load 
margin, and flow, actuator volume and design style are 
studied using mathematical simulations of PCV dynamic 
performance. Hagglund2 introduced a procedure so as to 
compensate for static friction in PC valves through add-
ing pulses to the control signal. The characteristics of the 
pulses are determined from the control action. The static 
friction in PC valves causes vibration consequently result-
ing in losses in quality and expense of new materials. De 
Souza et al.3 presented a well-known stiction compensation 
method in order to reduce variability both at process vari-
able and pneumatic valve stem movement. Bondgraph is a 
graphical representation of a physical dynamics system.

In other word, bondgraphs are multi domain and 
domain neutral. Morover, a bondgraph can incorporate 
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multiple domains simultaneously. Paynter4 devised 
bondgraphs and subsequently developed into a method-
ology together with Karnopp and Rosenberg5. Thoma6, 
Dixhoorn, and Dransfield are regarded as the early 
prominent promoters of bondgraph modeling tech-
nique among others. To find the proactive fault in 4/3 
way direction control valve, the bondgraph method was 
utilized by Athanasatos and Costopoulos7. By compar-
ing the response of the bondgraph model to the response 
of an actual hydraulic system, its accuracy was verified.
Zuccarini et al.8 utilized the bondgraph for modeling of 
an mitral valve.

A application in cardiovascular modeling was demon-
strated by focusing on a specific example; a 3D model of 
the mitral valve coupled to a lumped parameter model of 
the left ventricle. Heidari and Homaei9 introduced a regu-
lator for control valves using pole-placement strategy, 
optimal control, full-order state observer, and minimum-
order state observer. 

After comparing their responses it was revealed that 
minimum overshoot and settling time was obtained using 
optimal regulator of PCV.

Heidari and Homaei10 presented a neural planin order 
to control an actuator of pneumatic control valve.

To identify and control dynamic systems many stud-
ies have been carried out on using neural networks11-13.

Recurrent neural network14-17 can model the dynami-
cal response of a system.It is a dynamic mapping and 
represents good performance in the presence of such 
uncertainties as parameter variations, external distur-
bance, unmodeled and nonlinear dynamics. Recurrent 
fuzzy neural network18,19 is amodified type of recurrent 

neural network, which uses recurrent neural network 
for realizing fuzzy inference. It is possible to train RFNN 
using the linguistic experience of human operators, and 
interpret the knowledge acquired from training data in 
linguistic for and it is very easy to initialize the structure 
and parameters of RFNN from linguistic rules. Moreover, 
with its own internal feedback connections, RFNN can 
temporarily store dynamic information and deal with 
temporal problems efficiently.

This research is organized as follows: Section 2 recalls 
the bondgraph model of the valve and proposes equa-
tions of motion of valve. Section 3 presents the RFWNN. 
Standard PID control method is presented in Section 4. 
Section 5 shows the results of P, PI, PID and RWFNN 
controllers for the valve and finally some conclusions are 
given in section 6.

2. � Bondgraph Model of Valve and 
Equations

Figure 2 shows the bondgraph model of the valve. SE is 
the input pressure of the valve. The pressure changes to 
force by multiplying in effect area of the diaphragm. The 
T.F. shows this transformer in the Bondgraph model of 
the valve. Friction of the valve is R. 

Element I is the movable mass of valve and diaphragm. 
Element C represents the spring of the valve actuator. 

Also 1-junction is a common flow junction. 1-junc-
tions have equality of flows and the efforts sum up to zero 
with the same power orientation. 

In fact, junctions can connect two or more bonds. The 
direction of the half arrows () denotes the direction of 
power flow given by the product of the effort and flow vari-
ables associated with the power bond. The two 1-junctions 
in the bondgraph shown can be uniquely determined as 
(S 1 2) and (S 4 5 6); similarly symbols like SE1, R6 can be 
used to identify a particular element. P4 and q5  are two 
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as follows. Input layer accepts input variables. Its nodes 
transmit input values to the next layer. Feedback connec-
tions are added in this layer to embed temporal relations 
in the network.

	
u k x k w O k

O k u k
i i i i

i i
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= � (7)

In equation (7), i=1,2,… n; k is the number ofitera-
tions and w1

i is the recurrent weights.
Each node performs a wavelet basis function.
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where i = 1,2,…, nand j = 1,2,…m.
h(.) is a mother wavelet used in this paper,which is 

defined as follows:
h(x) = cos(0.25x) exp(–x2)

aij and bij in (8) are the dilation and translation param-
eters of the wavelet function, the subscript ij indicates 
the jth term of the ith input variable. Rule layer forms 
the fuzzy rule base and realizes the fuzzy inference. Each 
node is corresponding to a fuzzy rule. Links before each 
node represent the preconditions of the corresponding 
rule, and the node output represents the firing strength 
of corresponding rule. The qth node of layer 3 performs 
the AND operation in qth rule. It multiplies the input sig-
nals and output the product. Using O q miq ii

2 1 2, { , , }∈  , to 
denote the membership of xi to its corresponding linguis-
tic term in qth rule, then the input and output of qth node 
can be defined as:

state variable of this model. q5 is the displacement of valve 

stem and the variation of the spring length. Also v
P
I4

4
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is the velocity of the valve stem. The equations of motion 
using bondgraph method are as follows:
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The transfer function of the valve is obtained by deri-
vation of equation (2) with respect to time:
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With substitution of P
.
4 from equation (1) in to equation (3):
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By substitution of P4 from equation (2) in to equation (4):
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By applying the laplace transform to equation (5):
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Equation (6) is the transfer function of the valve. 
The results of bondgraph model of valve show that the 
response of the system is identical with the result in9,10,21.

3.  Construction of RFWNN
Figure 3 shows the topology of the RFWNN, which 
comprises n input variables, m term nodes for each input 
variable, l rule nodes, and p output nodes. Using ui

k and 
Ok

i to denote the input and output of the ith node in the 
kth layer separately, the signal propagation and the opera-
tion functions of the nodes in each layer are introduced 

Figure 3.  Topology of RFWNN.
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Each node performs a wavelet basis function. 
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Where s = 1,2,…, p and 𝑤𝑠𝑞
4  is the weight, which indicates the output action strength of the 

sth output associated with the qth rule. So it is evident that the proposed RFWNN is a fuzzy 
logic model with memory elements in the first layer.  
 
4. PID Controller 
 
The PID control can be defined as: 
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The input and output of sth node can be calculated as 
follows:
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Where s = 1,2,…, p and w4
sq is the weight, which indicates 

the output action strength of the sth output associated with 
the qth rule. So it is evident that the proposed RFWNN is a 
fuzzy logic model with memory elements in the first layer. 

4.  PID Controller
The PID control can be defined as:
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In equation (10), u(t) and e(t) are the controller out-
put and error signal. In equation (10), Ti  and Td  are the 
integral time and derivative time constants respectively. 
The Laplace transform from equation (11) is:
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So the PID controller transfer function is:
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KP is the proportional gain. KI, the integral gain and KD  
the derivative gain can be defined as follows:

	 K
K
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A performance index can be calculated and used to 
assess the performance of the valve model. A system is 
regarded asan optimum control system when the sys-
tem parameters are adjusted so that the index reaches an 
extreme, commonly a minimum value. 

To decrease the part of the large initial error to the 
value of the performance integral, as well as to emphasize 
errors occurring later in the response, the following index 
has been proposed20. 

	 ITAE t e t dt=
∞

∫ ( )
0

� (15)

In equation (15), t, is time and e(t) is absolute error. 
The ITAE criterion, is the one that minimizes the per-
formance index that has been given in equation (15). A 
system designed by use of the ITAE criterion has a char-
acteristic that the overshoot (OS) in the transient response 
is small and oscillations are well damped.

5.  Results and Discussion 
Table 1 shows the parameters for a sample sliding-stem 
PCV. By substitution of Table 1 parameters in equation 
(6), we have:
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The performance of the control stratagy is proposed 
in this part through a series of simulations. The PID con-
trol is perhaps the most widely used control method. It 
can provide fast response, good system stability and small 
steady state errors in linear system with known param-
eters. The simulation results are presented below. They 
demonstrate the effects of different controllers on the 
performance of the control system. We want to design 
the P, PI and PID controllers such that in the Unit Step 
Response (USR) the maximum overshoot is less than 10% 
and settling time is equal to 0.5 sec.

Figure 4 shows results of the USR of valve without any 
controller. In this case, the OS is very high and the settling 
time is also 0.178 second. The output has an OS less than 
90% and rise time (RT) is 0.00337 seconds. Using the P 
controller for valve system, the results of the OS and set-
tling time for closed loop system is shown in Figure 5. The 
best gain parameter is 1.012. The OS is very big and it is 
89.6%. Also the settling and RT are 0.178 and 0.00337 sec-
ond respectively. So the P controller is not suitable for this 
problem. Figure 6 shows the results for the PI control-
ler. The gain parameters of the PI controllers were chosen 

Table 1.  Valve parameters21

Name of Variable Parameter Value
Effective area of diaphragm A 0.196 ft 2

Spring constant K 6790
Movable mass I (M) 0.03 slug

Resistance and friction 
coefficient

R 1lb.S/ft

Air pressure SE 140 lb/ ft 2 
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with singular frequency method and the gains are set to 
KP = 20, KI = 8000.

Singular frequency method implements robust con-
trol design strategy to locate stabilizing PID regions in 
parameter space22. 

From Figure 6, OS and settling time are 6.63% and 
0.376 second and the RT is 0.0831 sec. 

Figure 7 shows the PID controller results for OS and 
settling time. The tuning algorithm is singular frequency22 
and performance metric was Integral Time Absolute 
Error (ITAE). The gain parameters of the PID such as, KP, 
KI and KD obtained and set to KP = 7570, KI = 1.514e – 4 
and KD = 15.21. From the figure 7, the settling time is 0.22 
second and OS is very small. The output has an OS less 
than 5%. The RT is 0.0967 sec. 

Figure 8, shows the USRof PCVwith RFWNN. In this 
case, the OS is very small and the settling time is also 
0.209 second. The output has an OS less than 0.55% and 
RT is 0.226 seconds.

Table 2 shows the results of four controllers for the 
penumatic control valve. 

Figure 4.  The USR of valve without any controller.
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Figure 8. The USR of valve (RFWNN controller). 
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Table 2 shows the results of four controllers for the penumatic control valve.  
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6. Conclusion 
 
In this research an RFWNN is used for control of PCV. The RFWNN consists of  layers and 
the feedback connections are added in first layer. Wavelet mother is used as fuzzy 
membership. This RFWNN can be used for control of the valve. For identification, RFWNN 
only needs the current inputs and most recent outputs of plant as its inputs. Finally, in this 
paper, the proposed control scheme based on RFWNN is used to control the pneumatic 
control valve system and simulation results verified its effectiveness. 
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6.  Conclusion
In this research an RFWNN is used for control of PCV. The 
RFWNN consists of layers and the feedback connections 
are added in first layer. Wavelet mother is used as fuzzy 
membership. This RFWNN can be used for control of the 
valve. For identification, RFWNN only needs the cur-
rent inputs and most recent outputs of plant as its inputs. 
Finally, in this paper, the proposed control scheme based 
on RFWNN is used to control the pneumatic control valve 
system and simulation results verified its effectiveness.
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Table 2.  Results of controllers for valve

Controller Overshoot (%)
Setteling 

time (sec)
RT (sec)

P 89.6 0.178 0.00337
PI 6.63 0.376 0.0831

PID 4.85 0.22 0.0967
RFWNN 0.543 0.209 0.226


