
Abstract 
The direct implementation of parallel particle swarm optimization algorithm on field programmable gate array (FPGA)
is presented in this paper. In the proposed design, the particle unit architecture is independent of fitness unit and hence
the particle unit is reusable and flexible for different fitness function. The parallel co-processor implementation of each
particle accelerates the execution speed and reduces the operating power as compared to the software execution of the
design on a general purpose processor. The proposed implementation reduces the number of registers by 2.76% and the
number of look-up-tables by 0.62% on average. 

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(36), DOI: 10.17485/ijst/2015/v8i36/90316, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Design of Parallel Architecture Co-Processor for
Particle Swarm Optimization Algorithm  

S. Aravind Babu, S. Babu Ramki and S. Sivanantham* 

ASIC Design Laboratory, School of Electronics Engineering, VIT University, Vellore – 632014, Tamil Nadu, India;
ssivanantham@vit.ac.in

Keywords:  Co-processor, FPGA Implementation, Particle Swarm Optimization, Parallel Architecture

1. Introduction

Particle Swarm Optimization (PSO) algorithm is basically
a heuristic based evolutionary algorithm proposed by
Kennedy et al.,1, after studying behavior of flock of birds.
Each particle in PSO corresponds to a bird in flock. The
particle updates its location in a multidimensional space
by evaluating its fitness of current position and updating
its velocity and position. PSO can be used to solve opti-
mization problems. PSO is computationally complex, so
the PSO algorithm on hardware can provide solution
faster compared to running it on a compiler in general
purpose processor. Different architectures have been
tried to implement PSO on hardware2,3. In massively par-
allel architecture2, co-processor architecture is proposed
which creates as many instances of particles as required.
The drawback in the design is that fitness function mod-
ule is designed into the particle, which requires redesign
of particle for every function. In this paper a modified
architecture for particle design is proposed, which can
operate faster than and is independent of fitness func-
tion2. Special architectures are required to implement

floating-point multipliers for low-power integrated cir-
cuits applications3,4. The field programmable gate arrays
(FPGA) implementation of the PSO algorithm along with
fitness unit and Floating point unit shows better perfor-
mance than the software execution on a general purpose
processor5.

2. PSO Algorithm

The PSO algorithm is basically inspired by the social
behavior of organisms for finding rich sources of food
using an 'information sharing' approach. Each swarm
consists of number of particles, and these fly around
multidimensional search space. Each particle consists of 

three memory units namely, position ( k
ip - position of ith

particle in kth iteration), velocity ( i
kvel  ) and its previous 

best experience ( i
kpbest  ). Position and velocity are con-

stantly based on its memory and the global best position 

( gbest  ) information available in the swarm as shown in
Equations (1) and (2).



Design of Parallel Architecture Co-Processor for Particle Swarm Optimization Algorithm

Indian Journal of Science and TechnologyVol 8 (36) | December 2015 | www.indjst.org2

)( 22 )( 1111
i
k

i
k

i
k

i
k

i 
k pgbest rc ppbest rcvelw ×vel − + × −× × +× = ++

i
k

i
k

i 
k velp p 1 1 ++ +=

where c1 and c2 represent the acceleration coefficients
and  the terms r1 and r2 represent uniformly distrib-
uted random numbers in [0,0.5]. The gbest is the best
position information available in the swarm in the cur-
rent iteration.Each particle is stochastically accelerated
towards either its own best position or towards the global
best position6. The PSO algorithm quickly converges to
reasonably acceptable solution. But, due to its searching
behavior of the particles, it may be trapped in the local
optimum especially while solving complex problems1.
During PSO algorithm execution, particles are initialized
with initial position and velocity value in all dimensions.
Each particle evaluates its fitness and if the fitness of cur-
rent position is better than fitness of previous best (pbest)
position, then current position is updated.  After calcu-
lating the pbest value for all particles, these pbest  are
compared with each other. The fittest of these positions is
compared with gbest and it is updated, if the fittest posi-
tion is better than gbest position in the swarm’s memory. 
Once the gbest value is updated, the position and veloc-
ity values are also updated based on Equations (1) and 
(2).  The iteration is repeated until the terminating condi-
tion is achieved. The termination condition can be either
number of iteration or a particular fitness value for gbest.
Figure 1 describes the flowchart of PSO algorithm.

3. Proposed Architecture

The proposed architecture for PSO on hardware con-
sists of three modules namely, Swarm Unit (SU), Particle
Processing Element Unit (PPE) and Fitness Evaluation
Unit (FEU). These units together perform the initializa-
tion of algorithm and evaluation of algorithm till required
value is reached or till the iterations are completed. These
processes are given as pseudo code in Figure 2.

3.1   Swarm Unit

The Swarm Unit (SU) is a collection of PPE and FE units.
In addition, it contains a comparator and registers to store
gbest position and fitness value. The comparator com-
pares the gbest value with the pbest fitness value from all
PPEs. If better position exists the position and its fitness

value are stored in the gbest register. The architecture of
Swarm Unit is shown in Figure 4.

3.1.1 Swarm Control Unit

The swarm control unit is the core of the entire proposed
hardware. All particle units and fitness unit are controlled
by swarm unit in addition to the initialization block and
gbest unit. The PE_ctrl and FE_ctrl are the signal used
for controlling the particle processing Element and fit-
ness evaluation unit. The swarm control unit performs
the entire PSO operation by feeding the control signals
inn synchronization with clock until stopping criteria is
achieved.

3.1.2 Initialization Block

This block initializes the position and velocity of each
particle. It also initializes the value of different variables
used in design operation. The initialization block is con-
trolled by the Swarm unit and it works in synchronization
with clock. The number of particles and dimension of
each particle decided by the swarm unit is given as input
to initialization block. Based on the received data the ini-
tialization operation is performed.

3.1.3 The gbest Comparator Unit

The gbest comparator unit is designed to compare the
IEEE-754 floating point inputs. The gbest value stored in
the gbest register is compared with the pbest value stored
in pbest register. If the current pbest fitness is better than
gbest, En signal is asserted and the current position along
with the corresponding fitness are stored in the gbest reg-
isters, else the gbest register values are not updated. The
updated gbest is given as input to the particle unit.

3.2   Particle Processing Element Unit

A Particle Processing Element (PPE) unit performs the
core PSO algorithm and input/output are controlled by
SU. The proposed architecture of PPE is shown in Figure 
3. The PPE has the following units: Particle control unit
(PCU), floating point unit (FLPU), pbest comparator
unit, pbest registers and a linear feedback shift register
(LFSR). A PCU in turn contains a Particle core unit and
register bank to store the current position and velocity.
The SU initializes the PPE and its register to reset values
through initialization unit of SU.



S. Aravind Babu, S. Babu Ramki and S. Sivanantham

Indian Journal of Science and Technology 3Vol 8 (36) | December 2015 | www.indjst.org

Figure 1. Flow-chart for PSO.
After initialization, the coefficients w, c1 and c2 are pro-
vided by SU to all PPE. Also the gbest register position is
given as input. Based on these inputs and pbest register
the PCU sends appropriate values to the FLPU for cal-
culations. This task is done by Particle core unit present
in PCU. Both velocity and position are computed for the
current iteration and stored in the memory bank inside
PPE. The position value is given to FE, present outside the
PPE. The PPE evaluates the fitness of the current position
and returns a fitness value.

3.2.1 Floating Point Unit (FLPU)

The Floating point unit is designed to perform arithmetic
operation on normalized IEEE-754 based floating point
inputs (A and B) with single precision format7. 

The FLPU performs desired arithmetic operation based
on the control signal (op). IEEE-754 standard is a 32 bit
format and has three parts namely signed (1- bit), expo-
nent (8-bits) and mantissa (23-bits) and exponent part is
represented as E-Bias (where bias value is 127). Initially,
normalized floating point inputs are aligned before per-
forming floating point operation. The mantissa part of the
smallest exponent input is right shifted by the difference
value of the two exponents. After aligning, the desired
arithmetic operation is performed on the mantissa part
of the inputs based on the signed bit. Finally, the man-
tissa part is rounded-off and then normalized. The unit
is designed to work for normalized floating point inputs
and special flags are asserted when any overflow occurs or
when an out of bound inputs are detected 8.



Design of Parallel Architecture Co-Processor for Particle Swarm Optimization Algorithm

Indian Journal of Science and TechnologyVol 8 (36) | December 2015 | www.indjst.org4

Figure 2. Particle swarm optimization algorithm.

Figure 3. Proposed architecture for PSO algorithm implementation.



S. Aravind Babu, S. Babu Ramki and S. Sivanantham

Indian Journal of Science and Technology 5Vol 8 (36) | December 2015 | www.indjst.org

3.2.2 Particle Control Unit (PCU)

The PCU updates the position and velocity of each parti-
cle in the multi-dimensional space based on equation (1)
and (2). A PCU consists of Particle core unit and register
bank. Register bank stores the position and velocity infor-
mation of the current iteration. These values are updated
on each iteration. Value from these register, random val-
ues from LFSR and the coefficient inputs from SU are sent
to the FLPU serially by Particle core unit and the outputs
are directed to appropriate registers by it. It decides when
to send the input to FE for evaluation. It also activates the
pbest comparator to update pbest position. The computa-
tion happens iteratively until the terminating criterion is
achieved.

3.2.3 Linear Feedback Shift Register (LFSR)

A LFSR acts as a random number generator to generate
the random values r1 and r2 required in Equation (1). The
LFSR is a series of 32 successive registers with XOR taps
at specified position to obtain random values required for
the algorithm. LFSR generates pseudo-random values in
the range [0, 0.5] and is implemented as given in Equation 
(3).

137 ++= x xp                                                  (3)
3.2.4 pbest Comparator Unit

fitness value from the pbest register with the fitness value
from the FE register. The En signal is asserted once cur-
rent fitness becomes better as compared with pbest, and
the current position and corresponding fitness are stored
in the pbest registers, else the pbest register values are not
updated.

3.3 Fitness Evaluation Unit (FE)

Figure 4. Swarm unit of particle swarm optimization.

The comparator unit compares the IEEE 754 floating
point inputs. The comparator unit compares the pbest

In the proposed architecture fitness unit is designed out-
side the particle unit so that the architecture of the particle
unit is constant for different fitness function. The fitness
functions implemented in the FE is logic implementation
of a function or a microcode block that produces output
based on the inputs. Consequently, the FE can have its own
FLPU if it is a hardware implementation. In this paper,
hardware FE is implemented. Also the fitness function
implemented is one of the following: Rosenbrock func-
tion, Sphere function, F6 function or DeJong F2 function 
(7) as described in Equations (4) through (7) respectively.
These functions are two dimensional functions with
objective to find position that provides minimum fitness
value.

1) ()100 ( , ) (1 2 2 − +− ×= xxyy xf                      (4)
22 y + x =, ) ( 2 yx f                                              (5)

2 22

2 22

))001 ( . 01 (

.5 0 )(sin
5. 0) ,( 3 

yx

y x
y x

×
f

+ +
−+

− =
            (6)

   x) -(1 +y) - (x* 100) ,( 4 222= yx f                  (8)



Design of Parallel Architecture Co-Processor for Particle Swarm Optimization Algorithm

Indian Journal of Science and TechnologyVol 8 (36) | December 2015 | www.indjst.org6

The independent particle unit designed outside the
Fitness Evaluation unit makes the design reusable for dif-
ferent fitness function. The process is terminated when
the stopping criteria is reached. After the process termi-
nation the gbest along with its position is returned. The
returned gbest is the optimum solution for designed fit-
ness function.

4. Results and Discussion

5. Conclusion 

The 4th and 5th column shows the LUT’s synthesized for
our proposed design and the previous existing work.

Function Range Itrations

Sphere [-100, 100] 200
DeJong [-5, 5] 200

Rosenbrock [-16, 16] 500

F6 [-100, 100] 500

Table 1. Range of position and criteria to terminate
algorithm for the functions

Table 2. FPGA synthesis result of PSO algorithm

Fitness
Function

Registers Max LuT’s Max
Our Work Reference [2] Our work Reference [2] 

Sphere 14780 15100 38200 38498

DeJong 14920 15572 38480 38670

Rosenbrock 14810 15168 38640 38873

F6 14810 15168 38640 38873

In proposed architecture, by designing FLPU unit to
complete an operation in one clock cycle, we can reduce
the sphere evaluation and particle updates to 23 clock
cycles. One clock cycle is required to generate pbest and
one to check the number of iterations remaining. Hence
within 25 clock cycles a particle can update its position,
compared to existing architecture 2.The 1st column of the
Table 1 list the fitness functions that are implemented in
the Fitness Unit. The range for the position of particle
and the maximum number of iterations of execution is
given in 2nd and 3rd column of the Table 1. The algo-
rithm was implemented on Altera Development and
Educational–II (DE-II) board which has Cyclone-II
FPGA (EP2C20F484C7). The comparison of synthesis
result for the existing and proposed architecture is pro-
vided in Table 2. The 1st column of Table 2 lists the fitness
functions. The 2nd and 3rd column shows maximum reg-
ister consumed by our proposeddesign and exiting work. 

The operating speed is increased and operating power of
the proposed design is reduced due to parallelization of
the PSO algorithm, thus making the design more flexible
compared to the existing architecture.

The independent FE placed outside the PPE makes it as a
reusable design entity, thereby reducing the design cycle
time. The FPGA implementation of parallel PSO algo-
rithm has increased the execution speed compared to
existing architecture. 

6. References 
1. Kennedy J, Eberhart R. Particle swarm optimization. IEEE

International Conference on Neural Networks; 1995; 4: p.
1942–8. 

2. de Moraes Calazan R, Nedjah N, de Macedo Mourelle 
L. A massively parallel reconfigurable co-processor for
computationally demanding Particle Swarm Optimization.
IEEE Third Latin American Symposium on Circuits and
Systems (LASCAS); 2012; p. 1–4.

3. Sivanantham S. Design of low power floating point
multiplier with reduced switching activity in deep
submicron technology. Int J Appl Eng Res. 2013;  8(7):851–
59. 

4. Sivanantham S, Jagannadha Naidu K, Balamurugan
S, Bhuvana Phaneendra D. Low power floating point
computation sharing multiplier for signal processing
applications.  (IJET) Int J Eng Tech. 2013; 5(2):979–85

5. Munoz DM, Llanos CH, Coelho LD S, Ayala-Rincon M.
Hardware Architecture for Particle Swarm Optimization
Using Floating-Point Arithmetic. Ninth International
Conference on Intelligent Systems Design and Applications,
ISDA '09; 2009;  p. 243–48.



S. Aravind Babu, S. Babu Ramki and S. Sivanantham

Indian Journal of Science and Technology 7Vol 8 (36) | December 2015 | www.indjst.org

6. Ratnaweera A, Halgamuge S, Watson HC. Self-organizing
hierarchical particle swarm optimizer with time-varying
acceleration coefficients.  IEEE Trans Evol Comput; 2004;
8(3):240–55. 

7. IEEE Standards Board; IEEE-754, IEEE Standard for
Binary Floating- Point Arithmetic. New York: IEEE; 1985.

8. Al-Ashrafy M, Salem A, Anis W. An efficient
implementation of floating point multiplier. Saudi
International Electronics, Communications and Photonics
Conference (SIECPC); 2011; p. 1–5.


