
Indian Journal of Science and Technology, Vol 8(36), DOI: 10.17485/ijst/2015/v8i36/90318, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

Abstract
The OpenCL is a standard parallel language which is based on ‘C’ language. It offers users to take full advantage and also
provide the flexibility of high level language. In this paper, we explore the use of OpenCL language to implement the
complex design on FPGAs by describing the design with high level abstraction language. To demonstrate, we consider the
most important benchmarks in financial markets known as Monte-Carlo Black-Scholes implementation to estimate the
stock price option

Keywords: Embedded Unit, FPGA Implementation, Kernel, Monte-Carlo Simulation, OpenCL Standard

Monte-Carlo Black-Scholes Implementation
using OpenCL Standard

Chirag Patel, M. Srikanth, Kalyani Chetan Kumar and S. Sivanantham*

School of Electronics Engineering, VIT University, Vellore - 632014, Tamil Nadu,
India; ssivanantham@vit.ac.in

1. Introduction

The Field Programmable Gate Arrays (FPGAs) consist
of millions of programmable elements and interfaces to
implement any complex designs. We can configure these
FPGAs using low-level hardware description languages
like Verilog Hardware Description Language (HDL) and
Very high speed integrated circuits HDL (VHDL). These
HDLs used to implement highly efficient logic circuits.
However, there is no portability to convert this in to
low-level assembly language for advanced embedded
processors implementation. This limits the productivity
of new design cycle and difficulty in adopting FPGAs for
larger scale circuits’ implementation.

Now-a-days in financial market, computation of
option prices is going on through Monte Carlo method.
Monte-Carlo Black-Scholes is popularly used technique
in stock markets to compute the option price and it
is also considered as a benchmark. This method is
especially useful when solving problems where closed
form solutions are not possible for certain applications.
In this method, the underlying stock prices are evaluated
with random simulation and the expected payoff is
computed by taking the average over millions of different
paths. Monte-Carlo pricing gives the present value based

on random experiments and statistical analysis1. So,
we attempt to implement Monte-Carlo Black-Scholes
algorithms as an application in which design is described
using OpenCL. FPGA’s have offered greater performance
than Central Processing Units (CPUs) which are useful
for computational tasks like Monte-Carlo simulation2.

In this paper, we explore the feature of OpenCL
language to program on FPGAs for real-time applications.
This is first kind of work using the OpenCL feature.

2. OpenCL Language

An OpenCL description based FPGA implementation
provides many advantages cover conventional HDL based
implementations. In OpenCL based implementation,
the specification for the proposed application is coded
using conventional programming languages like C
of C++, where as HDL based implementation need
complex architectural information to describe the
design. OpenCL Programmable technologies consist of
different programmability options. Being programming
on processors, it contains list of instructions executed in
the sequential order. Sometimes at the run time, some of
the advance processors convert sequential instructions

Vol 8 (36) | December 2015 | www.indjst.org Indian Journal of Science and Technology2

Monte-Carlo Black-Scholes Implementation using OpenCL Standard

into parallel instructions. The other one being completely
parallel execution of program it creates hardware circuit
on FPGA. Recently, many technologies came into
existence which allows parallel execution of program that
is faster than sequential execution of a program3. Host
program which is written in standard C/C++ language
can communicate to FPGA through the kernel program
which is programmed on the FPGA. Host program has
access to Application Programming Interface (API) of
OpenCL. It allows data transfer between the FPGA board
and OpenCL with the help of kernel program. These
kernel parallel threads to inputs which are provided by
the host program. The parallel thread operates on each
element of the input and computes the operations more
quickly which is accelerated by parallelism such as FPGA.

Figure 1. Portability of OpenCL.

Figure 2. Hardware acceleration.

Open Computing Language (OpenCL) is a platform
for writing programs and are executed in parallel manner
that are independent of the platform, which means it will
be executed on Central Processing Unit (CPU), FPGA,
Graphic Processing Unit (GPU) as shown in Figure 1.
The performance optimization can be achieved in FPGA
with integrated CPU. This will enable even more efficient
implementation of acceleration of FPGA’s in the future.
OpenCL programming consists of two parts, 1. Kernel,

and 2. Host program as shown in Figure 2. Host program
can be a standard C or C++ in Visual studio environment
or GCC compiler that runs on any microprocessor like
DSP, CPU, GPU etc. At some point during execution of
this host program, there are some functions which are
complex in computations and which get benefit from the
parallel acceleration on parallel devices like FPGA’s4. The
function which is used to accelerate is OpenCL kernel.
However, this OpenCL kernel program is written in the
standard C language.

OpenCL host CPU and FPGA interfacing can be done
two ways.
•	 External Host - Accelerators which are implement-

ed on FPGA using kernel program can interact with
Host CPU with the external environment through
OpenCL host program.

•	 Embedded Host - in this Host, the CPU and FPGA
are embedded on the SoC (System on Chip) which
is a single integrated chip. Communication between
them becomes easier without loss of data. No extra
hardware is required for FPGA in the embedded host,
which decreases the area.

Figure 3. Pipeline of vector addition.

For example, Let A and B are considered as two arrays
which perform vector addition. This addition operation
can be performed on general microprocessor and FPGA.
In microprocessor, the parallel threads which are created
and executed on the different cores are bit slower than
the FPGA. But the FPGA offer different strategies.
Kernel function which is implemented on the FPGA is
transformed into pipelined hardware circuits that use
multithreading i.e., parallelism. In the first clock, the
thread 0 is executed which means fetching of data is done

Vol 8 (36) | December 2015 | www.indjst.org Indian Journal of Science and Technology 3

Chirag Patel, M. Srikanth, Kalyani Chetan Kumar and S. Sivanantham

from the array A and B as shown in Figure 3. The thread
1 is clocked during second clock cycles, and at the same
time, thread 0 has completed its addition operation as
well as the result is stored in the register. The thread 2 is
clocked during the third clock cycle, thread 1 completes
its addition operations as well as the thread 0 returns its
value. This is how the pipeline is done on FPGA using
kernel program.

3. Monte Carlo Simulation for the
European Stock Option

Underlying algorithm is an OpenCL (kernel) that
combines three algorithms:

3.1 Mersenne Twister - Generation of
Uniformly Distributed Pseudorandom
Numbers

The Mersenne twister is used to generate a pseudo random
number5. It generates very high- quality pseudorandom
integers, compared to other algorithms. The variants
of the algorithm differ only in the size of the Mersenne
primes used. The newer and more commonly used is 32-
bit word width. There is also a variant with 64-bit word
width, which generates a different sequence. For k bit
word width, the Mersenne Twister generates integers
with an almost uniform distribution in the range. The
Mersenne Twister has been optimized for use with Monte
Carlo simulations in a number of fields using Matlab,
Python, C++ and PHP. MT is the default random number
generator.

3.2 Box-Muller Transform
Monte Carlo option algorithm requires normally
distributed pseudorandom numbers for possible price
paths generation. Mersenne twister provides uniformly
distributed numbers, and then the Box-Muller transform
converts this uniformly distributed numbers to normally
distributed numbers which is required for Monte-carol
option algorithm. It is commonly expressed as z1 and
z2 and are defined as a normally distribution shown in
Equations (1) and (2), with Mean = 0, Variance = 1.

1 2 ln(1) cos(2)Z x x= - ´ ´ Õ (1)

2 2x ln(x1)xsin(x2)Z = - Õ (2)

3.3 Monte-Carlo Method and Black-Scholes
Model

European options pricing has the exact closed form given
by the Black-Scholes equation. This uses exact Black-
Scholes formula implemented in C code on the host
i.e., on PC to determine correctness of the Monte Carlo
method. Black-Scholes equation computes the European
option price shown in the Equation (3). The prices of call
option are as follows:

()() (1) (2) r T tS t N x S N x Ke- -= -
 (3)

21 Sx1 ln r (T t)
T t K 2

s
s

é ùæ öæ ö ÷ç÷ê úç= + + -÷ç÷ç ÷ ÷ç ÷ê úçè ø è ø- ë û

 (4)

21 Sx2 ln r (T t)
T t K 2

s
s

é ùæ öæ ö ÷ç÷ê úç= + - -÷ç÷ç ÷ ÷ç ÷ê úçè ø è ø- ë û
 (5)

where N() is cumulative distributive function, S is the
Price, K is Strike Price, T-t is time to expiry, r is risk free
rate. Monte-Carlo method is a computational algorithm
to obtain numerical results, shown in Equation (6).
Consider that price S,
dS Sdt S dta s e= + (6)

where εis standard normal deviation, αis capital
gain rate, and σis volatility of stock price S. For,

dS ()Sdt S dtm a g m g s e= + = - + and For ,
r dS (r)Sdt S dtm g s e= = - + . The solution for the

above equation,

()2
t 0S S 0.5 N(0,1) ta sé ù= - D Dê úë û

 (7)

4. Implementation Results and
Discussions

Figure 4 shows the overall implementation flow for
the proposed work. Host program which is written in
standard C language needs to link the OpenCL host
library file. This host library will map all its files to
host program which converts to executable file. Kernel
program is written in the OpenCL environment which
has .cl extension. When kernel program is compiled it
is converted to intermediate project, this step will takes

Vol 8 (36) | December 2015 | www.indjst.org Indian Journal of Science and Technology4

Monte-Carlo Black-Scholes Implementation using OpenCL Standard

couple of minutes6. Now intermediate project which
has created in the last step is compiled, this converts to
hardware programming file which takes few hours on a
fast workstation. Generated hardware programming file
is programmed on the DE4 board. Launching the host
program will enable the communication between them as
shown in Figure 4.

Figure 4. Implementation flow-chart.

Figure 5 shows an overall OpenCL system
implementation architecture. It consists of multiple
kernel pipelines and their peripherals7. Apart from kernel
pipeline, OpenCL compiler creates interface between
the external and internal memory. During each pipeline
stage, global interconnection establishes the connections
to external memory from both load and store units.

Figure 5. OpenCL system implementation.

We have implemented Monte-Carlo and Black-
Scholes algorithm on Matlab environment and results are
as shown Figure 6(a). Figure 6(b) shows the Monte Carlo
results, where the output matches to the Black-Scholes. As
the numbers of underlying paths are increased, Monte-
Carlo almost matches to the Black-Scholes result.

Figure 6. (a) Black-Scholes simulation. (b) Monte-Carlo
simulation.

In our implementation, we have used the Mersenne
twister random number generator to obtain uniformly
distributed values. Then normally distributed sequences
are produced by taking inverse normal cumulative dens-
ity function. With the help of these random number, a
Geometric Brownian motion based varying stock prices
are estimated by performing simulation. The final call
option payoff is recorded and averaged from the simula-
tion results to produce an expected value for the payoff.

5. Conclusion

We have implemented the Monte-Carlo Black-Scholes
algorithm using OpenCL standard. We also compared
the obtained results from the Matlab and OpenCL, the
output is approximately same. But the algorithm which
is developed on Matlab takes more computational time
in order of few seconds to compute the price where as
the algorithm written on OpenCL platform computes in
less time in order of milliseconds. The host code calls the
OpenCL kernel which is programmed in FPGA and the
OpenCL accelerates the FPGA makes computation faster.
An OpenCL based FPGA implementation provided

Vol 8 (36) | December 2015 | www.indjst.org Indian Journal of Science and Technology 5

Chirag Patel, M. Srikanth, Kalyani Chetan Kumar and S. Sivanantham

significantly better performance than other hardware
architectures implementations like CPU, GPUs, etc.
Furthermore, an FPGA-based heterogeneous system
(CPU + FPGA) described with OpenCL standard also
lead to reduce the time-to-market pressure to the design
implementation teak which is a common problem in
design industries.

6. References
1. Thomas D. Acceleration of financial monte-carlo simu-

lations using FPGAs. IEEE Workshop on in High Perfor-
mance Computational Finance (WHPCF); New Orleans,
LA, USA. 2010 Nov 14. p. 1–6.

2. Shagrithaya K, Kepa K, Athanas P. Enabling development
of OpenCL applications on FPGA platforms. IEEE 24th
International Conference on Application-Specific Systems,
Architectures and Processors (ASAP); Washington, DC.
2013. p. 26–30.

3. Fraire J, Ferreyra P, Marques C. OpenCL overview, im-
plementation, and performance comparison. IEEE Latin
America Transactions, (Revista IEEE America Latina).
2013; 11(1):274–80.

4. Tian X, Benkrid K. Design and implementation of a high
performance financial monte-carlo simulation engine on
an FPGA supercomputer. International Conference on
ICECE Technology, FPT 2008; Taipei. 2008. p. 81–8.

5. Chen J, Feng L. Using lower and upper bounds to increase
the computing accuracy of monte carlo method. Interna-
tional Conference on Computational and Information Sci-
ences (ICCIS); 2010. p. 630–3.

6. Sakamoto R, Sato M, Koizumi Y, Amano H, Namiki M.
An OpenCL runtime library for embedded multi-core ac-
celerator. IEEE 18th International Conference on Embed-
ded and Real-Time Computing Systems and Applications
(RTCSA); Seoul. 2012. p. 419–22.

7. Grewe D, Wang Z, O’Boyle M. Portable mapping of data
parallel programs to OpenCL for heterogeneous systems.
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO); 2013. p. 1–10.

	I-A OpenCL

