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1.  Introduction

Radio pharmaceutical preparations (RPP) with nuclide 
111In (T1/2 = 2,807 d, Eγ = 171,28 кэВ (90,24 %) and 245,39 
кэВ (94,0 %) are among widely used in nuclear medicine 
1. 111In apply for labelling of cellular components of 
blood, monoclonal antibodies, detection of pathologies 
of a myocardium, localisation of abscesses of a cystitis 
of kidneys, radio immunoglobulin therapy, visualisation 
of a swellings, tumours in oncology and in some other 
areas2-19. 111In is interesting for radionuclide therapies 
of oncological diseases because it emits Auger electrons 
having a high linear energy transfer (LET), compared 
with LET α-particles. The cadmium as chemical 
element has 8 stable isotopes: 106Cd(1,25 %), 108Cd(0,89 
%), 110Cd(12,49 %), 111Cd(12,80 %), 112Cd(24,13 %), 
113Cd(12,22 %), 114Cd(28,73 %), 116Cd(7,49 %). 

It is possible to obtain 111In by means of reactions: 
109Ag(α, 2n)111In, 109Ag(He3, n)111In, 111Cd (p, n)111In, 111Cd 
(d, 2n)111In, 112Cd (p, 2n)111In or by obtaining 111Sb the 
predecessor 111In, on reactions:

112Sn(p, 2n)111Sb .EC β+→  111Sn .EC β+→  
111In; 110Cd (He3,2n)111Sn .EC β+→  111In.

Maximal yields of 111In  are provided in direct 
reactions: 111Cd (p, n)111In and 111Cd(d, 2n)111In. Few 
isotopes of indium are resulted when cadmium irradiated 
by means of 11 MeV protons: 111In in reaction 111Cd(p, n); 
113mIn (T1/2 = 1,66 h); 114In (T1/2 = 71,9 s); 114mIn (T1/2 = 49,5 
d); 115m In (T1/2 = 4,87 h). Practically, single radioisotope 
114mIn influences on a radionuclide purity 111In. Other 
radioisotopes have small time of a life. 

Development of methods of obtaining and 
radiochemical separation 111In has been begun since the 
late forties years. The problem of obtaining and separation 
111In without the carrier for commercial delivery has been 
stated in 1955 for the first time in framework of the joint 
program of the Leningrad State University (USSR) and 
Oak Ridge National Laboratory (ORNL) (USA) 20. 15 
MeV deuterons, of cyclotron У-120 and a cadmium target 
were used in this work. Method co sedimentation with 
Fe (OH)3 and extraction by isopropyl ether were used 
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for 111In extraction from the target. The thick target yield 
111In has been measured as 18 ± 12 μCi/μA.h. In 1967 in 
clinic Sloan Kettering Institute for Cancer Research in 
New York production 111In for medicine have been started 
using of natural cadmium target using 15 MeV protons of 
compact cyclotron. 114mIn impurity was as 3 %. 

Measurements of excitation functions of nuclear 
reactions induced proton irradiation of enriched 
109Cd and 112Cd targets 20-22 and the reactions induced 
4He in silver target23-24 have been allowed to evaluate 
possibilities of using these reactions for production 111In 
in commercial scales. Yield 111In equal 515 ± 60 μCi/
μA.h (19,5 ± 2,2 MBq/μA.h) from a thick target of 111CdO 
(111Cd > 96,5 %) at 16 MeV proton irradiation have been 
determined in25. While enriched 111Cd is used impurity 
of 114mIn is minimised. Excitation function and thick 
target yields 111In in reactions 113,114,natCd (p, xn)111In for in 
protons from 3 to 63 MeV have been measured in26. Yield 
111In in reactions 113Cd (p, 3n)111In and 114Cd (p, 4n)111In 
for protons 42 MeV were 1140 and 880 μCi/μA.h with 
accuracy ± 20 %, and the impurity 114mIn yield equal 0.27 
and 1.5 μCi/μAh for targets 113Cd and 114Cd accordingly. 
Cross-sections reactions with various Cd isotopes for 
obtaining 111In have been studied in27-29.

It is necessary to note, that there are some methods 
for obtaining 111In by means of natAg(α, xn) reaction with 
α particles from 16 to 30 MeV30. However the yield 111In in 
this reaction in several times lesser, than in reaction 111Cd 
(p, n)111In. Moreover impurity nuclide 109In are resulted in 
107Ag (α, 2n) reaction, that takes target cooling within 36 
hours before separation 111In. All measured to the present 
time cross-sections of the reactions to obtain 111In are 
accumulated in database IAEA29.

2.   Theoretic Estimations of 111 
in Obtaining using 120 cm 
Cyclotron.

Activity of obtained radionuclide after charged 
particles bombardment of a target is determined by the 
equation (1)31: 

( )) ,(1 in

out

E
E

E dEdE
dx

A nl e λτ σ− ∫= −        (1)

where: A – activity of a radionuclide, с-1; n = NA/M 
- number of nuclei in 1 g of a target, NA - an Avogadro 

number, M - atomic weight, аtomic units; I - intensity 
of charged particles, с-1; λ - a decay constant, λ = (ln2/
T1/2), с

-1, T1/2 - a half-life time, t - irradiation time; σ (E) 
- cross-section of the reaction for particle with energy Е, 
cm2; dE/dx - LET, MeVcm2/g; Ein, Eout - energy of particles 
at entrance and at leaving of the target accordingly, MeV. 
For thick target Eout is equal to reaction threshold. Yield 
of radionuclide is being increased with increasing of 
irradiation time approaching to saturation value.

To obtain maximum yield it takes choose target 
thickness d by equation (2):

d = (R(Eo) – R(Eth))sin ϑ,         (2)

where: R(Eo) = R(Ein) - range in target material of 
proton with energy Eo; R(Eth) = R(Eout) –range of the 
protons with energy of threshold Eth.; ϑ - angle between a 
surface of a target and a beam. 

Range of protons in metallic Cd is presented in Figure 
1. Using Eq. 2 it is possible to determine necessary 111Cd 
target mass for given proton energies Ein and Eout and beam 
cross section area. For example, for proton with initial 
energy 11 MeV, energy of a threshold 111Cd(p,n) reaction 
of 1,6 MeV and ϑ = 6o it takes thickness of metal 111Cd 
target 0,032 g/cm2 (37 μm). If the beam area on the target 
is 8 cm2 it takes 0,032 ∙8 = 0,256 g 111Cd. As protons are 
accelerated up to 11 MeV using the cyclotron of Tomsk 
Polytechnic University 111Cd (p, n)111In reaction has been 
chosen for 111In manufacture.

It is necessary to notice, that internal proton beam 
current in cyclotron chamber at least in 2 times larger 
than in extracted beam and energy of particles in beam 
could be easily changed by means of changing radius of 
target. Energy of protons Ep(r) in cyclotron is determined 
be orbit radius r, cm and frequency of electric field - f, 
MHz by equation (3)32-33:

Ep(r) = 2.05*10-11f2r2,         (3)

If we use activity of saturation A2 by a current 1 μA at 
end of bombardment ( EOB ) for thick target in 111Cd (p, 
n)111In reaction evaluated 29, we may evaluate activity 111In 
ЕОВ A after irradiation by current i [μA], during time t 
[hour] for the target containing ρ isotope abundance of 
111Cd be Equation 4:

A = i*A2(1 – e-λt),          (4)
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where: 0.693ln2 1 2.807*24
2

T
λ ==  = 0.010829h-1 – decay constant 

for 111In. 

Figure 1.    Range of protons in metal cadmium.
For example, for a target from metal cadmium (100 

%, 111Cd) irradiated by protons with energy 10,5 MeV 
A2 is equal 2183 MBq/μA1. Theoretical possible activity 
A(111In), for beam current i = 60 μA in cyclotron Р7М 
TPU, in dependence of irradiation time t for target from 
enriched cadmium 111Cd (95,92 ±0,06) % and natural 
cadmium (111Cd, 12,8 %) is presented in Table 1.

Table 1.    Expected activity 111In ЕОВ at an 
irradiation of a target a beam of protons 60 μA
t, h A (111In), MBq, for 

enriched Cd: 111Cd, 
(95,92±0,06%) 

A (111In) , MBq, for 
natural Cd: 111Cd, 12,8%, 

5  6439  859
10  13442  1793
15  18836  2513
20  24465  3264
25  29797  3976

It follows from Table 2 that to obtain enough for 
applications activity 111In there needs to use target of 
enriched isotope 111Cd (95,92 ± 0,06) %. 

3.   Facility for Target Irradiation 
on Internal Cyclotron Beam

Target in cyclotron used to be irradiated by extracted 
beam or by internal one in accelerating chamber31. The 
choice what kind of irradiation to apply depends on 
available charged particles in the beam (charged positively 

or negatively), technical characteristics of a cyclotron and 
device for a target irradiation. Irradiation of target in 
cyclotron accelerating chamber is preferably used to avoid 
positive particles beam losses under extraction. There 
are devices for target irradiation in Р7М cyclotron, both 
with using extracted and internal beam. Ion source of the 
cyclotron with additional rod for target irradiation on 
internal beam is presented in Figure 2. Under irradiation 
of a target it needs to provide: 
•	 An irradiation of the target which are on a head of a 

rod, by means of tangential beam of protons. 
•	 Heat removal from the target, by cooling by water of 

an underside. 
•	 Measurement of beam current on the target. 

Figure 2.    (a) A source of protons in cyclotron Р7М, 
(b) with an additional rod with head fordepodition Cd 
target on copper support with golden layer 
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Distilled water at rate 10 l/min, 8 bar was used to cool 
target head. The copper support, covered thin golden layer 
with deposited cadmium was fastened to the target head 
by pins and nuts. Cadmium deposited on support surface 
by means of cadmium melting. In compare with galvanic 
deposition melting provides deposit well definited 
amount of enrich metal Cd on the target. Cadmium 
surface was carefully polished, washed and dried. After 
irradiation a source of ions take off from the cyclotron 
chamber and place on a table (the Figure 2а), target 
support was separated from the head and was transported 
to radiochemical laboratory for separation 111In.

4.   The Experiments on Obtaining 
111In on Cyclotron Р7М

4.1 Target of natural cadmium
The target was made of 330 mg natural cadmium that has 
been deposited on support surface by melting of 20 x 0,5 
mm Cd foil. Target has been placed in cyclotron chamber 
on 52 cm radius. Energy of protons is equal 11,2 MeV 
for that target position and 14,197 MHz frequency of 

accelerating field. Beam was stroke to the target surface at 
6 °. Beam current on the target was 40 μA. Irradiation time 
- 20 minutes. The beam charge at bombarding radiation 
is equal 13,3 μAh34-35. After irradiation cadmium target 
has been dissoluted in 8М НBr acid. Total activity 111In of 
the solution was 26,3 MBq EOB. Activity ЕОВ another In 
radioisotopes were: 114In - 4 %, 115In - 12 % of 111In activity. 
In recalculation on a target enriched to it is possible to 
expect that activity 111In EOB for such target will be equal 
197,5 MBq. Technical yield of 111In for 96 % on 111Сd target 
was evaluated as 197,5 MBq /13,3 μA.h = 14,8 MBq/μA.h.

4.2 Target of Enriched by 111Cd Cadmium
The target was made of cadmium enriched to 
(95,92±0,06%) 111Cd and deposited on support by melting. 
The target was placed on pathway of internal beam in the 
cyclotron to manufacture 111In 

Proton beam current was 45-50 μA, bombardment 
time was 1 h.

Data for experimental obtaining of 111In in 3 
independent experimental runs are given in Table 2.

Maximum technical yield of 111In is equal 627 MBq/h 
(12,5 MBq/μAh).

Table 2.    Experimental obtaining of 111In by means of irradiation 95,92% 111Сd targets
№ bombarding 

radiations
Mass of cadmium,  

95,92% 111Сd, g
Current of a beam 

of protons, μA
Irradiation 

time, h
Activity (ЕОВ) 

111In, MBq
1 0,335 45 1 462,4
2 0,345 45 1 238,5
3 0,350 50 1 627,0

These preliminary results can be used for prediction 
111In obtaining. For example, to have 7 GBq it takes to 
irradiate target by 50 μA proton beam for about 11,2 
hours. It is necessary to notice that there is a possibility to 
increase 111In production rate due to adjustment of target 
position and rising beam current.

5.  Conclusion

The review techniques for obtaining of 111In and 
preparation of indium [111In] chloride, experimental 
results feasibility study and peculiarity for 111In obtaining 
for irradiations natCd and enriched 111Cd targets is 
presented. It was shown, that technical production rate of 
111In no less then 627 MBq/h can be provided with using 
120 cm cyclotron P7M of Tomsk Polytechnic University. 

To increase production rate it needs to increase technical 
yield 111In in the target under irradiation, under its 
separation from the target and synthesise RPP. 
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