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Abstract
Background/Objectives: Security is essential concerns in wireless sensor network. To find the stability points when 
worms appear in the wireless sensor network. Methods/Statistical Analysis: By using ODE formulate the SIDR model by 
introducing the concept of dead nodes for wireless sensor network. Find the existence of positive equilibrium and perform 
the stability test with the help of Jacobian matrix. Some theorems are proposed for the analysis of model. Findings: The 
model explains that the inactive nodes are the nodes which die due to battery consumption and cannot be recharged 
because of remotely located in harsh region. Inactive nodes are not capable to transmit data from one sensor node to 
another sensor node. The model describes the nonlinear dynamics of Susceptible, Infectious, Dead and Recovered class of 
nodes. The entire dynamics of the transmission of worms can be analyzed by this mathematical model, propagating feat 
by worms in WSN can be determine with the help of threshold value of Ro. This model validates through extensive results 
by using MATLAB. Application/Improvements: Proposed model is useful to reduce the battery overhead, enhance the 
lifetime of wireless sensor network.

1. Introduction 
 WSN is a collection of small devices called sensor nodes. 

These nodes are deployed at remote places. The sensor 
nodes are able to transmit information from one place to 
another place via neighbor nodes. Sensor nodes are smart, 
self-organized, using radio communication and equipped 
with battery, microcontroller and sensors. WSN have so 
many advantages but also have some limitations like lim-
ited processing capacity, memory, power consumption 
and limited sensing capability1 WSN have various appli-
cations like health care, military, defense, biodiversity, 
and disaster relief services etc2. In WSN, the information 
is transmitted from one senor node (source) to another 
node (sink). Sensor nodes are work in two modes, active 
mode and sleep mode. In sleep mode the node is not 

capable to send or receive the data. On the other hand, 
active node can transmit the data. Since WSN is widely 
use in mission critical applications. Therefore, security is 
vital for WSN. The attackers can attack on sensor node 
without physical contact in WSN. Such attack can create 
various vulnerabilities like buffer overflow, denial of ser-
vices and worm attack3. Worms are self-propagating and 
can recruit the malicious code. Such code can further be 
resent to neighbor node repeatedly. Such kind of attacks 
is very dangerous for WSN. Due to this self-propagating 
nature of worm, there is a need to analyze the nonlinear 
dynamics of worm propagation.

In WSNs, one sensor node communicates to another 
sensor node through neighbor node. During commu-
nication, each sensor node consumes their individual 
energy provided through batteries. These batteries are not 
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recharge because of locations.  After some time, some sen-
sor nodes are become inactive due to exhaust of energy. 
As we know that dead nodes are not capable to propa-
gate the data. The inactive nodes that carry the worms 
are not capable to propagate the worms also. Therefore, 
total number of active nodes changes with time in WSN. 
Whereas the active number of nodes are a key factor in 
worm propagation process modeling. 

          Active node   
•	 Inactive node

Figure 1. Topological structure of WSN.

Some researchers have proposed mathematical model 
of worm propagation in WSNs by considering the dead 
nodes5,6. This model does not consider the commu-
nication radius and node density in WSNs. However, 
communication radius and node density is a key factor of 
worm propagation in WSN by considering communica-
tion radius and node density of sensor nodes in WSN, we 
proposed a more accurate model to discuss the transmis-
sion of worms in WSNs. The proposed model describes 
Susceptible (S), Infectious (I), dead (D), and Recovered 
(R) class of nodes. The entire dynamic of worm propa-
gation can be analyzed by this model. The model also 
explains how communication radius and node density is 
an important factor in worm propagation analysis. Our 
model describes communication radius, distributed den-
sity of nodes and energy consumption of nodes. We also 
analyzed the stability of our model by finding the equilib-
rium and basic reproduction number of the model. 

2. Related Work
There are so many models have been proposed to 
explore the spreading and controlling dynamics in WSN. 
Through introduction of removed state of a host, a new 
model was proposed to overcome the deficiencies of SIS 
model, called SIR model9. In SIR model9, a host in stage 

of one among the three state of susceptible, infectious and 
removed state. 

Recently the research on worm propagation in WSN 
is based on the mathematical models. There are so many 
models have been proposed to control and analyze the 
dynamics of worm propagation in WSN. One of the clas-
sical model was introduced by Kephart & White in 1991 
called SIS model for worm propagation in internet. After 
that SIR (Susceptible, Infected, and Recovered) was also 
proposed by Zou-et al in 2005. These models effectively 
described the worm propagation process on the internet 
with the help of differential equation. The SIS model used 
for worm propagation analysis on internet9. 

In SIR model10 it was assumed that the host node be 
working forever but this concept fails in WSNs due to 
battery power limitation of sensor nodes. To reduce the 
limitations of SIR model, an improved model was pro-
posed by Wang and Li in 2008, called iSIRS model. This 
model has four states susceptible state, infectious node 
state, recovered node state, and dead node state in WSNs. 
At any moment t, the number of nodes in , ,S I R  and 
D is referred as ( ), ( ), ( )S t I t R t and ( )D t , respectively. 
However, the iSIRS model does not discuss about the sta-
bility of model and its dynamic behavior. Therefore, to 
reduce shortcomings of iSIRS model, a new model pro-
poses to investigate the performance and controlling of 
the worm propagation in WSNs.  

3. Model Formulation
Different subclass of sensor nodes at any time ,t are 
Susceptible ( )S t , Infectious ( ),I t  Dead ( )D t and 
Recovered ( )R t  of total size ( )N t  i.e.,

( ) ( ) ( ) ( ) ( )N t S t I t R t D t= + + + 		  (3.1)

 for any time 0.t ≥
In Figure 2, we describe the dynamical transfer of sub 

class. The SIRD  model is given by:
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where, b is the constant recruitment to susceptible,   a   
is coefficient of transmission of worms, r  is  the recov-
ery rate,d  is the rate at which a recovered node become 
susceptible, , ,l m h  is the rate at which all node suscep-
tible, infectious  and recovered  become dead node due to 
worm attack respectively and k  is the mean  number of 
worms per unit time in  an infectious state.

Figure 2. Transition diagram for the flow of worms in 
wireless sensor network.

For convenience, let 
2

2

r k
R

f a=  ,then the system of 

equation (3.2) can be written as:
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	 (3.3)

Clearly the above first four equation of (3.3) are inde-
pendent of D so we will discuss the reduced system in 
the domain { }3( , , , )S I R +Γ = ∈ℜ .It can be verified that
Γ is positively invariant for all t greater than or equal to 
zero.

4. Local Stability and Existence of 
Positive Equilibrium

For equilibrium points, we have 0; 0; 0;S I R
• • •

= = =
and after a straight forward calculation ,we set

equilibrium point as: 0 0 0 0( , , ) ( ,0,0)bP S I R
l

= =

for worm free state and * * * *( , , )P S I R= for endemic 
state, with, 

{ }
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where 0R is the basic reproduction number12 given by

0 .
( )

bR f
l m r

=
+

It is clear that *P exist and unique if 

and only if 0R greater than one.

5. Worm Free Equilibrium and its 
Stability
Theorem 1. If basic reproduction number 0R is less than 
unity then the system (3.1) is locally asymptotically stable 
at worm free equilibrium 0.P  

Proof. The Jacobian matrix at worm free equilibrium 
point 0P is 

0

0 0( ) 0 ( ) 0
0 ( )

S
J P S

l f d
f r m

r h d

− − 
 = − + 
 − + 

	(5.1)

Eigenvalues of (5.1) are: 

1 2 0 3, ( ), ( ).Sw l w f r m w d h= − = − + = − +

It is clear that 1 30, 0,w w< < and 2 0w < if 

0( ) 0 1S Rf r m− + < ⇒ < .Therefore the system is 

locally asymptotically stable at worm free equilibrium 
point 0 ,P which proves the theorem.

Theorem 2. The system (3.1) is globally asymptoti-

cally stable if  0R is less than or equal to one at worm free 

equilibrium 0P .

Proof. Consider the Lyapunov function 
3( ) :L t +ℜ → ℜ  defined by defined by   ( ) .L t Iw= Its  

( ) ( )0
0 0( ) 1 1

( ) ( )
SL I S R Ifww w f r m

r m r m

• •  
= = − + ≤ − ≤ − + + 

derivative w.r.t. time  t, we get

If 0 1R ≤  then 0L
•

≤ holds. Furthermore 0L
•

≤ iff 

0I = .Therefore, the largest invariant set in 
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( )
.

, , : 0S I R L
•  ∈Γ ≤ 

  

is the singleton set { }0 .P Hence 

the global stability of 0P  follows from LaSalle’s invariance 

principle11, when 0 1R ≤ . 

6. Stability of the Endemic 
Equilibrium
Theorem 3. The system (3.1) locally asymptotically stable 
when its all  eigen  values are less than zero at endemic 
equilibrium *P .

Proof. The Jacobian matrix associated with the 
endemic equilibrium is

* *

* * *

( )
( ) ( ) 0

0 ( )

I S
J P I S

f l f d
f f r m

r h d

 − + −
 = − + 
 − + 

	 (6.1)	
				  

Eigenvalues of (6.1) are the roots of the characteristic 
equation 

 3 2
1 2 3 0b b bn n n+ + + = 			   (6.2)

where, 1 1 ,b h d l= + + + 2 ( ),b l h d= +  

3b rh dm hm= + + .All the coefficient of the equation 
(6.2)  are positive therefore according to  Routh-Hurwitz 
criteria it follows that all the roots of  equation (6.2) have 
negative real parts. Therefore, the endemic equilibrium 
point *P  is locally asymptotically stable. This completes 
the proof.

7. Simulation and Result

Figure 3. Dynamic demeanor of the system for different 
classes.

b=0.33;

 

k  =7;

 

a =0.01;

 

r =0.13; R = 600; l =0.0006; m =0.0008; r
=15;              h  =0.006;

 

d =0.6

Figure 4. Dynamic demeanor of infectious class with time 
and variation in radius. 
A) b=0.33; k  =7;a =0.01; r =0.13; R = 600; l =0.0006; m =0.0008; 
r =15; h  =0.006;

 

d =0.6;
B) b=0.33; k  =7;a =0.01; r =0.13; R = 600; l =0.0006; m =0.0008; 
r =14; h  =0.006;

 

d =0.6;
C) b=0.33; k  =7;a =0.01; r =0.13; R = 600; l =0.0006; m =0.0008; 
r =13; h  =0.006;

 

d =0.6

Figure 5. Dynamical demeanor of infectious class with time 
and variation in coverage area.
(A) b=0.33; k  =7;a =0.01; r =0.13; R = 600; l =0.0006; m =0.0008; 
r =15;          h  =0.006;

 

d =0.6:
(B) b=0.33; k  =7;a =0.01; r =0.13; R = 620; l =0.0006; m =0.0008; 
r =15;          h  =0.006;

 

d =0.6;
(C) b=0.33; k  =7;a =0.01; r =0.13; R = 640; l =0.0006; m =0.0008; 
r =15;          h  =0.006;

 

d =0.6;

    

Figure 6. Dynamical demeanor of infectious class with 
respect to time and variation in k
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(A)b=0.33; k  =7;a =0.01; r =0.13; R = 600; l =0.0006; m =0.0008; 
r =15;           h  =0.006;

 

d =0.6;
(B) b=0.33; k  =6;a =0.01; r =0.13; R = 600; l =0.0006; m =0.0008; 
r =15;          h  =0.006;

 

d =0.6;
(C) b=0.33; k  =5;a =0.01; r =0.13; R = 600; l =0.0006; m =0.0008; 
r =15;          h  =0.006;

 

d =0.6;

8. Conclusion 
In modern research, mathematical modeling is an 
important tool for analyzing and controlling the worm 
propagation in wireless sensor network. In this model, 
different behavior of network has studied. We derive an 
expression for basic reproduction number 0R .Analytical 
result shows that if 0 1R ≤ the worm free equilibrium 0P  
is locally and  globally asymptotically stable in worms can 
be eliminated from the wireless sensor network, when 

0 1R ≥ then worms will persist in system. For this to cal-
culate the threshold value for communication radius on 
the basis we can fix the node to consume less energy as 
well as control the worm spreading. Here also studied that 
if coverage area of node is large infection rate is also large 
this is shown with the help of simulation. Node density 
effect is also studied and shown by simulation. This model 
also studied the energy consumption with variation of 
radius and node density. If coverage radius is large energy 
consumption will be large. 

9. Acknowledgement
I would like to express my sincere gratitude to everyone: 
including my parent, teachers, family, and friends who 
directly and indirectly supported us to write this research 
paper. Finally, my sincere thanks to Hon’ble Mr. Pankaj 
Agrawal (Vice Chairman, G.L. Bajaj) for his valuable 
advice and pecuniary support. 

10. References
1.	 Lai WK, Fan CS, Lin LY. Arranging cluster sizes and trans-

mission ranges for wireless sensor networks. Information 
Sciences. 2012; 183:117–31

2.	 Koren I, Krishna CM. Fault tolerant systems. Morgan 
Kaufman Publishers Inc., San Francisco, CA: USA; 2007.

3.	 Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. 
Wireless sensor networks: a survey. Computer Networks. 
2002; 38(4):393–422.

4.	 Zhang J, Lee H-N. Energy-efficient utility maximization for 
wireless networks with/without multipath  routing. AEU—
International Journal of Electronics and Communications. 
2010; 64(2):99–111.

5.	 Shi H, Wang W, Kwok N. Energy dependent divisible load 
theory for wireless sensor network workload allocation. 
Mathematical Problems in Engineering. 2012; 2012.

6.	 Khouzani MH, Sarkar S. Maximum damage battery deple-
tion attack in mobile sensor networks. IEEE Transactions 
on Automatic Control. 2011; 56(10):2358–68.

7.	 Szor P. The art of computer virus research and defense. 
Symantec Press; 2006.

8.	 Sanders JL. Quantitative guidelines for communicable dis-
ease control programs. Biometrics. 1971 Dec; 27:883–93.

9.	 Kim J, Radhakrishnan S, Dhall SK. Measurement and 
analysis of worm propagation on internet network topol-
ogy. Proceedings of IEEE International Conference on 
Computer Communications and Networks, Chicago, 
Illinois: USA. 2004; p. 495–500.

10.	 Wang X, Yingshu L. A improved SIR model for analyzing 
the dynamic of worm propagation in wireless sensor net-
works. Chinese Journal of Electronics. 2009 Jan; 18.

11.	 LaSalle JP. The stability of dynamical system, SIAM, 
Philadelphia; 1976.

12.	 van den Driessche P, Watmough J. Reproduction numbers 
and sub-threshold endemic equilibria for compartmental 
models of disease transmission. Mathematical Biosciences. 
2002 No–Dec; 180(1–2):29–48.        DOI: 10.1016/S0025-
5564(02)00108-6.


