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Abstract

Background/Objectives: In this paper, we introduced the concept of aP, integral contractive mappings, which is a new
class of integral contractive mappings and using this notion we establish a new fixed point theorem. Findings: Our paper
represents a generalization and extension of fixed point theorems for mappings satisfying contractive conditions of integral
type where the contractive inequality depends on rational and irrational expression. In particular, we omitted the condition
of continuity (which is a very strong condition and appear in almost all papers using contractive mapping of rational type)
from many existing results. Application/Improvements: As a direct consequence, some new results of integral type for
rational and irrational contraction maps are presented to illustrate our obtained result.
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1. Introduction and Preliminaries

1. In 2002, Branciari' introduced the notion of contrac-
tive mappings of integral type in complete metric
spaces. Afterwards, many researchers extended this
result to more general contractive conditions of inte-
gral type providing sufficient assumptions which
ensure the existence and uniqueness of fixed points
(see for example Gupta and Saxena?, Liu et al.?, Pathak®,
Rhoades® and Vishal and Ashima!* Vetro).

Throughout this paper, let us consider the following sets:

o,¢:R, — R is locally Lebesgue integrable function and

7= ¢ ,
Jw(t)dt >0 for each >0
4
v, R, =R, is a lower semi—continuous function with
4= w(0)=0,¢/(t)>0for each t >0 and lim y(t)>0
t—o0

In 2014, Liu and al.® extended a result established in
the paper’ by proving the following theorem:

Theorem 1.1. Let (¢, ) bein @ X ®, M e {M,, M,, M,
M,} and T be a mapping from a complete metric space (X,
d) into itself satisfying

*Author for correspondence

d(Tx,Ty) M(x,y) (M(x,y))
j g ¢(t)dtsj  o)dt +'[‘” 7 )t
0 0

Then T has a unique fixed point @ € X such that
lim Twx=aforeachx e X.

n—so0

Where
M, (x, y) = max {d(x, ¥),d(x,Tx),d(y, Ty),%[d(Tx, y)+d(x, Ty)]},

M, (x,y) =max {d(x, Tx),d(y,Ty)},
M,(x,y)= max{d(x,y),d(x,Tx),d(y,Ty)},

M, (x,y)=max {d(x, Tx),d(y, Ty),%[d(Tx, y)+ d(x,Ty)]}.

In®, Dass and Gupta proved a fixed point theorem by
considering a class of mappings where the contractive
inequality depends on rational expressions:

1+d(x,Tx)

d(Tx,Ty) < M, (x, y) = ad(y,Ty) 1+d(x,y)

+ fd(x, y),

A generalization of the above contraction was sug-
gested by Gupta and Saxena’ (among others, see in
particular'® and") by introducing the following class of
mappings:
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1+d(x,Tx)
1+d(x,y)

d(x, Tx)d(y, Ty)
d(x,y)

Another well-known theorem was established by

d(Tx,Ty) < ad(y,Ty) +a, +ayd(x,y).

Jaggi'? which may be considered as an extension of the
two last results. He considered the following class of map-

pings:
d(x, Tx)d(y,Ty)
d(x.)

To prove the main results in’ and'?, authors impose a
very strong and unwanted condition: T is continuous®.

d(Tx,Ty)< q +azd(x,y).

These results have been generalized in many ways over
the years but the condition of continuity appeared in all
the subsequent papers using this type of contractions, as
an essential condition.

In our paper, we introduce the concept of (Xpﬁg inte-
gral contractive mappings, which is a new class of integral
contractive mappings and using this notion we establish
a new fixed point theorem. This class of contractions
extends and generalizes more or less known results
including all previous results®®*'2. In particular, we omit
the condition of continuity of the mapping “T” from the
main result in*'? (see corollary 1). Moreover, by corollar-
ies 2, 3, we introduce a new class of rational and irrational
contractive mappings and give their related theorems.

Throughout this paper, we consider the following
notations:

Notation 1.2. Let f:R>xR' —R, be a function.
I, denotes the set defined by:

Meeyon = {k; ke{x,y,z,t} andkapear inthe equation
of f(x,y,21)}.

Example 1.3.  Let f:R>xXR"—R, be a function
defined by:

fx,y,z, ) =x+t

thenI] ={x,t}.
e

Notation 1.4.  We denote by Y the set of all functions
f:R2 xR* > R, satisfying the following assumptions:

(H)
(H, ) - Function (x, y, z) — f(x, x, y, 2) is non-decreas-
ing in each of its variables.
(H,,) - There exists k € {x, y};{z,k} Hf,(x,y,z,z) .
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(H,) For all sequences {x:, }n,{xi }n,{xz | ,{xﬁ}n in R, there

exists 0 €[0,1] such that, for large values of n:
(Hy) - f(X,)2 0 minQ-{0,x} }if =0,

(H,,)— f(X,)> J min {;x;;x; el /\f=é} i f
one of the following conditions hold true:
o wu#0,{=¢and {=¢ =0.
o wu#0,Ee{é &Y and x) <24

(H,,) - f(X,)< max Qif one of the following condi-
tions hold true:

. {xﬁ < min {x3,2x}1}} and {there exists i € {1,3} such that
G=u#0 and x, ell;y\}
. E=w=g

Where

I,=11,..,4}, Q:{xl. x4}, an(x;,...,x;l),

n>n

& =lirﬁinfx;,ﬂ=max{¢;;i € 14}, &= min{g“yi;iel4 Ax;el_[f’(xn)}.

Definition 1.5. Let f:R> xR* —>R, be a function. If
there exist two functions g, h in Y such that

8(X) <AIX) <h(X)
for all XeR> x R", function fis called Y- addmissible.

Notation 1.6. For all f: Ri xR* — R, , we denote
Py (507) = £l DA T TS [ T+ AT D (L1)

Remark 1.7. Let us observethat the following mappings
g R >R,:

g1(x,,2,t) :max{x,y,z,t}, g, = (x,y,z,t)zmax{y,z},

g (x,y,2,t)= mux{x,y,z}, g.(x, y,2,1) =max{y,z,t},
1+y
1+x

gs(xyzt)=az + /%, g,y z,t)=dy+z],

satisfy assumptions (H,)-(H,) and for all i = 1, ..., 6, we
have

P, (x,y)=g;(d(x, y),d(x,Tx),d()’)Ty),%[d(x,T)’H d(Tx, )1
= M,(x, y).
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Notation 1.8.  We denote by #:R, - R, a function
satisfying the following conditions
A, - Ois non-decreasing and the sequence {0, (1)}, defined

by 4,(t):= &' (t) (n" iterate of 0) is bounded for all teR’,.
A, - There exists (€,7)€[0,1]x[1,+ee], for all(t,7)e R’ x
[0,1+€e[; Ant) </ AY).

Remark 1.9. As we can easily verify, condition (A,) imply
that

o forall aeR, we havelim, At)< Ha).

e 0(0)=0.

o In particular, 0 is continuous from the right at the
point 0.

Remark 1.10. All (c)-comparison function satisfies con-
ditions A and A..

Notation 1.11. Let T be a mapping from a complete met-
ric space (X, d) into itself, we denote by I'(T) the set of all
functions a: X X X — R satisfying the following condi-
tions

1. alx,y)=21= a(Tx,Ty) 21,

alx,y)=1

a(y,2)> 1} = dx2)21,

3. lim_ _d(x,y )=0= liminf

n—oeo

alx,y) =21,

forall x, y,ze Xand {x }, {y } nonnegative sequences.
The following lemmas play an important role to obtain
our result.

Lemma 1.12.” Let ¢ € @, and {r } be a non-negative
sequence with lim __r = a. Then

lim '[Or" At)dt = j: Av)dt.

Lemma 1.13. " Let ¢ € @, and {r } be a nonnegative
sequence. Then

rn
lim | p(t)dt=0,
n—e0d 0
ifand only if lim __r =0.
Lemma 1.14. Letp € ® and {u } ,{v } be two nonnega-

tive sequences such that u <v forallne Nandlim _u
=lim v =le R,then

lim [ At)dt = 0.

n—o0 u,
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Proof. The condition lim __u =lim v =le R with the
fact that p € @ means that

1
Vi I+—

VneN3n, 2 ¥m=ny; [ p0de <[ 1 oot
u, -

L L
- J' " )t — j " ()t
0 0

This, with lemma 1.12, clearly drives to the result.

Lemma 1.15. Let ¢ € @ and {r} be a nonnegative
bounded sequence and a,b € R’, such that

T Ty b
j At)dt < ﬂU ¢(t)dt)—aj Av)dt,
0 0 0
for all n € N. Then
INeN |Vn2=N;r =0.

Proof Let p € @, and {r} be a nonnegative bounded
sequence. Assume that there exist a,b€ R, , such that

_[Or"“ At < H(J.or ¢(t)dt) - a_[: p(t)dt.

Taking into account condition A, and the fact that {r }
is bounded, we get

Jow At)dt < ﬂ( ﬂU(:l w(t)dt)[] - (a .[ob At)dt / ﬂ( J()sup(m w)dt)JD - uJ.: p(t)dt.

Without loss of generality, we can suppose that

ﬂU: ¢(t)dt) > aj: Av)dt.

b sup{r,}
Then, putting & :=1—(ajo ¢(t)dt/:9“0 ! Mt)dt))

and using condition A, we obtain
Tl Tl b
j At < O P U ¢;(t)dt)—aj ALt
0 0 0

Continuing in this way, we obtain

[ ode < 9" UO At)dt ) - “Job POt

From the fact that the sequence {0"(¢)} is bounded for
all £, 9, < L and r 2 1, we deduce that the right hand side
of the last inequality tends to —ai p(t)dt while n — oo,
which is a clear contradiction with’the fact that a,b eRi
andpe @,.

Indian Journal of Science and Technology I 3 -



Fixed Point Result for aPﬁg—IntegraI Contractive Mappings with Applications

We next define the concept of aP, —integral contrac-
tive mappings:
Definition 1.16. Let (¢, w) bein @, x @, f,g:R* >R,
a:XxX—>R, be a functions and T a mapping from a
complete metric space (X, d) into itself satisfying the inte-
gral inequality:

alx, y)jom Ty)w(t)dtsﬂ(.[ e )dt) j‘” Dt (1.2)

for all x, y in X. Then T'is called aP, -integral contractive
mapping.

2. Main Result

Theorem2.1.  Let T be an aP; , integral contrac-
tive mapping from a complete metric space (X, d) into
itself, where a is in 7(T) and f, f, are two Y-admissible
functions. If a(xo, Txo) > 1 for some x, € X then, T has a
fixed point a € X and the sequence {T"x}, converges to
a. Moreover, if for all fixed points x and y of the mapping
T, we have a(x, y) = 1, the mapping T has a unique fixed
point.

Proof. First suppose -without loss of generality- that
X, # x,,,and a(x,,x,)>1, (2.1)

for any positive integers n,m, where x :=T"x. On the
other hand, by the facts that f, f, are two Y-admissible
functions, they can be regarded as two elements of T
without anyloss of generality.

Now, denoting by d := d(x , x ), let'’s show that the
sequence {d } isdecreasing to 0 after some rank. For this,
assume that for all n € N, there exists n >n such thatd <
d .. The case {d } isan unbounded sequence leads to an
obvious contradiction. In fact, considera non-decreasing
subsequence {dnk }k with the following properties:

+ d_tends to +oo.
« d, >d, forallke N.
1

Invoking assumptions (H ) and relation (1.1) we

obtain

1a,1b,2b

sz(xnk—l’xnk):fz[dnk—l’dn 4 d(x l’xnk+1)j

2 fz (O’O’dnk ’%(dnk _dnkl)]
> o, |

B 4 | Vo (7) | February 2016 | www.indjst.org

which with the fact that we @, means
limk%wy/(sz (x,, ,xnk+l)) €[0,+o0].

Moreover, due to assumptions (H, ) and the first

property of the sequence {d,, }; we have

1
Pf1 (xnk—l’xnk) < fl [dnk—l’dnk—l dn ’E(d”k +dnk—1)]
<fd,.d, .d, .d,)
<d,.

The last two results, with the integral inequality (1.2),
relation (2.1) and condition A, imply that

[ ot <ef [~ oo ‘me{ A P

which is in contradiction with Lemma 1.15. Now, return-
ing to identity 1.1 and assumptions (H, ,
obtain

) we easily

Pﬁ(x )< max{dn,dn+1},

n+1

and by assumptions (H ), we get

1a,1b,2a,2b

1
Pf, () %,00) = f; [dn dn’dn+l’5d(xn’xn+2)]

d,—d d,—d
> mux{ﬁ [dn,dn,0,|"2"“|],ﬁ[o,o,dw+l,|”2”*l|]},

>, (minfd, d,,.,, BOR"),

where & = liminf,__d, . Consequently
3, (min{d, d,,,. &} AR )< P, (x,,x,,) <max (d,.d,.. |, (2.2)

for all n € N and i = 1, 2. Doing the recap of the fore-
going, we can assert that there exists a sub-sequence

{dnk }k c {dn }n and M,c>0 such that

d <d

ny n+1°

( )
d, <M, lzm d, LS lim infdnkHJ ,
- k—o

and
c .
o, 5 < d,min {dnk ,c} <P (x, %, .,)<d, <M,
for sufficiently large values of k and i = 1,2.. Using this last

result and having in mind relations (1.2), (2.1) and condi-
tion Al, Wwe can write

Indian Journal of Science and Technology
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.[ " 0dt < (9( j e w(t)dtj - j sl ’x"k“))ﬂt)dt.
0 0 0

c
Remember that d,-~<P(x,,x,,,)<M, and
in view the assumed lower semi-continuity of w,

c
we deduce that there exists % €[9) E’M] such that
wla)=inf  _ 1p(x), therefore
M

xe{(f

25’
dnk+1 dnk+1 ( )

j Ab)dt < H( ¢(t)dt) - j " e,
0 0 0

which is a contradiction with lemma (1.15). Thus the
sequence {d } is decreasing and it'’s bounded below by 0,
hence {d } converges to some c > 0, we write for suffi-
ciently large values of n

d,>d and limd, =c. (2.3)

n—0

n+12

Taking into account (2.3) and the double inequal-
ity (2.2), we obtain for sufficiently large values of » that
e <Py (xn,xnﬂ)SZc, then there exists a, €[d, c,2c]
such that W(a2)= in wd ();C’Zngy(x). Now, supposing that
¢ > 0. By virtue of (1.2) and (2.2) it follows that

_[:M p(t)dt < GU:" ¢(t)dt) —J.OW(%) o(t)dt,

from which with relations (2.1), (2.3) and lemma (1.15)
we deduce that y(a,) = 0 and consequently ¢ = 0, which
means

limd, =0. (2.4)

n—»0

Now, we need to assert that the sequence {x } has the
Cauchy property. Assume the contrary. Then, by virtue of

the last limit, we can extract two subsequences {xnk }k and
{xmk }k from the sequence {x } such that

3e>0,Vw, Sg,ElNW eN,Vk2N, .3, >m 2k

d(xnk ’xmk ) > & (2'5)

with
d(‘xnk —l’xmk ) < & (26)

and
d(xl.,xi+1)< W, »ViZN, . (2.7)
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With consideration to estimates (2.5) and (2.7) we
deduce that

d(xnrl,xmkfl) Zd(xnk 3 X )—d(xnkfl,xmk )—d(xnk >xmk71)
S L Oy L W B AR Ee i |

e=2w,
> &

&
-,
3 4

And, by (2.6), that

d(xnk_l,xmk_l)ﬁ d(xnk_l,xmk )+ dmk—l
<etw,,

Which give
e
Zﬁd(xnkA’xmkA)S&"‘Wa’ (2.8)

forall k>N, . Similarly we obtain
1
E[d(xnrl’xmk )+ d(xnk X 1 )} < d(xnkfl,xmk71)+ ——
<e+2w,.

Remark 2.2. This inequality implies that

1 liminf[d (xnk 1%, ) + d(xnk s X 1 )J < liminfd(xnf1 s X 1 )

2 ko» k—o
<e+2w,.
On the other hand, we have
1 dn -1 +dm -1
f[d(xn X, )+d(xn X, 71)]2al(x,1 X, 71)—7k .
2 k k k k k k 2
&
>—.
8
Then
& 1

3 < E[d(xnrl’xmk)+d(xnk’xmk*lﬂ < e+2w,.(2.9)
Now, thanks to relations (1.1), (2.4), (2.8), (2.9),
remark 2.2, assumptions (H, ,) and studying the two

cases: X erl(x)y’Z’t) and x Enfi(x,y,z,t) , it follows that

( )
b, (xnk,p)xmk,l < Ld(xnk,pxmk,l)»dnk,pdmk,p d(x,,k ,xmk,l);rd(x,,ﬂ,xmk )J

fi [dnkl’dnkl’dmkl’ d(x"‘ ’xmk_l)Jr d(xnk_] ’xmk )}}

< e+2w,,

(2.10)

Indian Journal of Science and Technology I 5 -



Fixed Point Result for aPﬁg—IntegraI Contractive Mappings with Applications

forall k=N, . Lets suppose that{x t}mH (xraat) = =,
hence going back to relations (1.2), (2.1), (2. 3) condition

A we obtain for n < m
t)dt] _J.OV/(sz(x,,,xm))w(t)dt

d(xm-l ’xmﬂ) Py (Xn ”‘m)
JO p(t)dt < © U
fl(dn d,d,» dn V(sz (Xn’xm))
L (t)dt} —IO p(t)dt,

o

invoking assumption (H, ) we derive
d(xnﬂ’xmﬂ) [ d, j
L p(t)dt<© IO p(t)dt|.

Which -in view of relation (2.4) and remark 1.9 - means
that the sequence {x } has the Cauchy property. Assume
now that {%t}ATl, . #@. By (2.4), (2.8), (2.9),
remark 2.2 and assumption (H,,), we estimate

( d(xk X )+d(x X

)|
Py (" 1%, 1)> fL ( 1> Ko, — 1)’dnk71’dmk4’ 2 - : J
) d(xk » X )+d(xnk,l,xmk)
1) ,

2

> min{d(xnk,,xmh

liminf d(x"k )xmk")er(xnk—pxmk )}

koo 2

> ();E,szNWf (2.11)

From estimates (2.10)-(2.11) andand invoking the
fact that w is a lower semi-continuous function, we

&
deduce that there exists a, eliog §’€+ 2w, | such that,

;//(%)z inf E[ o
X€ y—,e+2w

8
(1.2), (2.5), (2.10) and condition A yields

I:¢(’)dt < @UOMW ¢(t)dt) _I:/(a;)w(t)dt
< ®U:¢(t)dt H ¢(t)dt] _ J.OW(a})ﬁ(t)dt

< @([J:y(t)dt] [1 + (_[0“ dt\

Which with condition A, gives

J.:¢(t)dt <0 Uogw(t)dt] - _fow(a3)¢(t)dt,

}W(x) this together with relations

t)dt b J.W‘

where

j j+2W£@(t)dt

Y, =1+ . o1

w,—0

Uz(p (t)dtj

B ¢ | oo (7) | February 2016 | www.indjst.org

Continuing in this way, we obtain

J-:¢ (¢)dt < o2 o Uogw(t)dt] - J.OV(%)w(t)dt.

Having in mind conditions A, and A, we get for suf-
ficiently small values of ¢ and w,

[[ol)ar < e sup[ " 1) ([ ote)ae)” [ ey

( Ve

o ) = G0 (RO R MO

The right hand side of the previous inequality tends to
—J V(%)y(t)dt while m — oo, or
0

[[ ple)ae <= pfe)a,

which is a contradiction with the fact that ¢ > 0 and (¢, v)
€ ® X ®,. This contradiction, with the fact that X is com-
plete - leads to the result ({x } isa convergent sequence).
Consider

a:=limx,. (2.12)

n—»0

Remark 2.3. With this last result we can assert that there
exists a subsequence {x,, }; from {x } satisfying the fol-
lowing property:

d(xmk,a)zéd(xmk,xmkﬂ) (2.13)

forall ke N.

Let us show that a is a fixed point of T. Assume the
contrary. Using relations (1.1), (2.4), (2.12), (2.13) and
assumptions (H we obtain for sufficiently large val-
ues of k

1h,2c)’

P

( o)edls, )
7 (enoa) = fitd(xmk,a),dmk,d(a,Ta),d(T)zd(’")J
< d(a,Ta) (2.14)

On the other hand, thanks to limits (2.4), (2.12) and

assumptions (H |, , ) we obtain

Xy ,Tu) +d (xmk+1 , a)\

2 J (2.15)

( d(
P (xmk,a) = fitd(xmk,a),dmk,d(a,Ta),
> dld(a,Ta)

The two estimates (2.14) and (2.15) mean that
Pﬁ (xmk,a) e[dld(a,Ta),d(a,Taﬂ, then there exists
e[dld(a,Ta),d(a,Ta)] such that

Indian Journal of Science and Technology
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{//(614) = xe{();d(ai}lﬂg»d(“’n)

] gy(x).

This result with (1.2), (2.14) and condition A  imply
that

a(xmk ,a) I :(xmk”’Ta) p(t)dt<® [Iod(u’Ta) w(t)dtJ - j W(a4)¢(t)dt,

0
for sufficiently large values of k. Observing that
d(x Ta)Zd(a,Ta)—d(xmkH,a)

m+1?
The previous inequality gives
d(a,Ta) d(a,Ta) d(a,Ta)
a(xmk,u)J‘o p(t)dt G)UO w(t)dt) +a(xm")a)-'.d(a,Ta)fd(x wa)w(t)dt

)
_ -[o y(t)dt,

IA

taking into account thelimit (2.12) and lemma 1.14, this
last inequality become

a(xmk ,a)jod(a’Ta) o(t)dt <© Uod(m) ¢(t)dt] - % j OW(a4)¢(t)dt.

for sufficiently large values of k. Using again the fact that
limkéwxmk =a and that a € I(T), we obtain

d(a,Ta) d(u,Ta) 1 V(IIA)
_[ p(t)dt<® U ¢(t)dt] - Z-[ p(t)dt.

0 0

This is a contradiction with lemma 1.15. Then a is a
fixed point of T. To conclude the proof, we need to show
that under assumption: “for all fixed points x and y of the
mapping T, we have a(x, y) = 17, a is the unique fixed point
of T. Assume the contrary, i.e.

Ab+aeX;Ta=a,Tb=>b and a(a,b)Zl.

Going back to 1.2 we can write

d(Tx,,Tb)

a(xn,h)_[:(wa)w(t)dt = a(xn,h)J‘o ! w(t)dt
< @[JOP/l(xmb)w(t)dt] _J'OV(sz(xmb))W(t)dt. (2.16)

Noting first that if {x, t} ! A
(H,,,), relation (2.16) become

a(xn,b)_[d(w)w(t)dt < @)[ | f‘(d"'d"‘o’d")ﬁ(t)dt] -|

0 0 0

< of [/ o) [ iy

0

) (.f:" W(t)dt) - J‘:(P& (X"'b))w(t)dt

=@,by(1.2) and

x,y,z,t)

& (x"'h))w(t)dt

IN
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Having in mind that liminf __ a(x , b) > 1 we get
AN eN,Vn2>N;a(x,,a)>1

From which, with the fact that a(a, b) > 1 we deduce
that

a(x, b)>1 (2.17)

for sufficiently large values of n. Using this result, lemma
1.12, remark 1.9 and passing to the limit as n tends to
infinity in the last inequality, we get

d(a,b)
I . p(t)dt <o,

which is a contradiction with the fact that a # b. Then we
can suppose that

{x’t}mnf(x,y,z,t) #J. (218)

Relations (1.1), (2.4) together with assumptions (H
allow us to write

P, (x,.b) = fl.(d(xn,b),dn,o,%[d(xn,b)+d(xnﬂ,bﬂj
< max{d(xn,b),%[d(xn,b)m(xm,b)],
(02l 0]

< max{d(xn,b),%[d(xn,b)+d(xn+l,b)],

f(&&&9)

lu,Zc)

Where
¢=max{d(x,.b),d(x,,,,b)}
Therefore
P, (x,.b) < max{d(x,.b).d(x,.,.b)}
< 2d(a,b), (2.19)

for sufficiently large values of #n and i = 1, 2, which means
that the sequence {sz (xn,b)} is bounded. On the other

hand, thanks to relations (1.1)(2.19) and assumption (H,,)
we deduce that

Py () = £ (0] (s, b))

> 0 min{d(a,b),d(xn,b),;[d(wa)*d(xnwbﬂ}

Indian Journal of Science and Technology I 7 -



Fixed Point Result for aPﬁg—IntegraI Contractive Mappings with Applications

from which

2
P, (x,0) = —d(ab).

Then, there exists a e{%d (a, b),Zd (a,b)} such

that /(g )=inf { ;

x). Now, recalling rela-
x id(a,b),zd(a,b)} W< ) 8

tions (2.15), (2.16), (2.18) and examining the two cases
d(x,.1,b)2d(x,,b) and d(x,.b)>d(x,,,,b). we get

either

[ eteaeso{ [ oty [t

0

[ ot p(t)dt < @[ [ d(x"’b)gﬂ(t)dt] -| V(%)?(t)dt,

0 0 0

for sufficiently large values of n. From where, we get a
contradiction with Lemma 1.3. This finishes the proof.

3. Application

From the main theorem, we can easily get the following
corollaries (we omit its proof for simplicity):

Corollary 3.1. Let (¢, ) bein ® X ®, and T'be a mapping
from a complete metric space (X, d) into itself satisfying
the integral inequality:

jd(Tx’Ty)¢(t)dt < _[ ) o(t)dt —J-OV(M(x’y))¢(t)dt,

0 0
for all x, y in X. Where

1+d(x,Tx)
1+d(x,y)

d(x, Tx)d(y,Ty)
d(x,y)

N(x,y) = ald(y,Ty) + + a3d(x,y),
if x # y and N(x,y)zd(x,y)+d(y,Ty) if x=y,

|2
(al,az,a3)eR+ X(R;) areconstantswith g +2a, + ¢, <1
and

Me {M, M, M, M, M, M}.

Then T has a unique fixed point a € X. Moreover, for
all x € X, the sequence {T"x} converges to a.
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Remark 3.2. This corollary extend both main results in*°
at the case where mapping T is not continuous.

Corollary 3.3. Let (¢, ) be in @ X @ and T'be a mapping
from a complete metric space (X, d) into itself satisfying
the integral inequality

d(Tx.Ty) N(x.) M (x.y))
IO p(t)dt sjo p(t)dt - .[ X o(t)dt,
for all x, y in X. Where

N(x,y)zmax{d(x,y),%(w,d(yfy)},

if x # yand N(x, y) = d(x, y) + d(y, Ty) if x = y and
Me {M, M, M,, M, M,, M }.

Then T has a unique fixed point a € X. Moreover, for
all x € X, the sequence {T"x} converges to a.

Corollary 3.4. L et (¢, y) be in @ x @, and T be a map-
ping from a complete metric space (X, d) into itself
satisfying the integral inequality

J«d(Tx,Ty) @(t)dt SJ-ON(x,,'v) @(t)dt _JAow(M(x,)’)) ¢(l‘)dt,

0

for all x, y in X. Where

1+d(x,Tx)
1+d(x,y)

d(x,Tx)+d(y,T
+a2\/d(x’y)d(x’Tx) d(x>y))+d(iT;}))

N(x,y)=ad(y.Ty)

+ cgd(x,y),

if x # y and N(x, y) = d(x, y) + d(y, Ty) if x=y,
(al,az,a3) eR, x(R, | are constants with a, +a, + a,
<land

Me {M, M, M, M, M, M}.

Then T has a unique fixed point a € X. Moreover, for
all x € X, the sequence {T"x}, converges to a.

Corollary 3.5. Let (¢, ) be in @ X @, and T'be a mapping
from a complete metric space (X, d) into itself satisfying
the integral inequality

jd(TX)Ty) p(t)dt < J' ON(M) o(t)dt —J':(M(x’y)) o(t)dt,

0
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for all x, y in X. Where

N(x, y) = ZaId(x, Tx)

[d(Tx)~d(x.)

deTy)ra(iny) " 0D adler)

if x # y and N(x, y) = d(x, y) + d(y, Ty) if x=y,
)2

(al,az,a3) eR, X(R+) are constants with a, + a, + a, <

1 and

Me {M,M, M, M, M, M_}.

Then T has a unique fixed point a € X. Moreover, for

all x € X, the sequence {T"x} converges to a.
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