
Abstract:
For processing signals and in control application filters are essential, linear optimums discrete time filters such as wiener 
filter and Kalman filter are on orthogonal principle. For non stationary cases of having a presence of noise, adaptive wiener 
filter has to be applied using Monte Carlo Simulation 250 samples were used for 50 runs. Coefficients of linear filter are 
used to estimate the additive white noise. Error is calculated and RMS value of each error is added to the sample for desired 
signal. FIR wiener filters of order 6, 12, 24 were chosen for adaptive operators .Simulation results were quite encourage in 
the sense that noise was suppressed to maximum extends. Adaptive methods noisy higher number of samples and more 
than 100 runs are linear to yield better results. 

Noise Cancellation in Monte Carlo Simulation
A. Sampath Dakshina Murthy1*, S. Koteswara Rao2, G. Thiagarajan1, and V. Suresh3

1Department of ECE, Vignan’s Institute of Information Technology, Beside VSEZ, Duvvada, Gajuwaka,  
Visakhapatnam - 530046, Andhra Pradesh, India; sampathdakshinamurthy@gmail.com,  

gtrajan.thiagarajan@gmail.com 
2Department of ECE, K L University, Green Fields, Vaddeswaram, Guntur District - 522502, Andhra Pradesh, India; 

rao.sk9@gmail.com 
3Department of CSE, Vignan’s Institute of Information Technology, Beside VSEZ, Duvvada, Gajuwaka,  

Visakhapatnam - 530046, Andhra Pradesh, India; vayasisuresh@gmail.com

Keywords: Noise Cancellation, Monte Carlo Simulation, Wiener Filter, Optimal Filter, Wiener-Hopf Equations, Wide-Sense 
Stationary Random Processes, Discrete Wiener Filter, Discrete Kalman Filter

1. Introduction
The idea of utilizing a filter to remove a preferred signal 
as of noisy information measurements, change signals, 
hold back noise, take apart two signals which might be 
assorted in single size, and so on. Most advantageous 
 filters1 are exploiting for gain a superlative guesstimate of 
aspiration signal from noisy measurements. A particu-
lar normal filters like low pass, high pass and band pass 
 filters2. The most effective filters studied in this paper are 
linear optimum DTF3, which include DWF4 and DKF5. 
Theory arose because of the in adequacy of the Wiener-
Kolmogorov theory for coping with certain applications 
in which non stationary of the signal and/or noise was 
intrinsic to the problem6,7. Predicament of devise a filter 
that would bring into being the optimum estimate of a 
signal from a noisy measurements or observations. The 
discrete appearance of the WF problem, represented in 
Figure 1. It is to design a filter to recover a signal d (n) 
from noisy studies,

  (1)

assuming that both c(l) and d(l) are WSSRP.

2. Mathematical Formulation

2.1 Wiener-Hopf Equations
FIRWF that produces the MMSE8 of a prearranged 
process c(l), by pass through a set of study transmitted 
process m(k). It is assumed that m(l) and c(l) are jointly 
WSS with known autocorrelations, rx(k) and rd(k), and 
known cross-correlation rdx(k).

  (2)

With m (k) the input to the filter, the output, which we 
denote by  ,

  (3) 
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With

  (4)

Here error e represented as 
it follows that

  (5)

And Eq. (4) becomes

  (6)

By applying the projection theorem. Substituting 
Equation. (5) into Equation. (6) 

 (7) 
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which is the matrix form of the WHE. 

 x dxR w r=  (9)

Where Rx is a p×p Hermitian Toeplitz matrix9 
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Using vector notation,

 min (0) H
d dxr r wξ = −  (12) 

Alternatively, since

1
x dxw R r−=

 1
min (0) H

d dx x dxr r R rξ −= −  (13) 

2.2 Noise Cancellation
One of the applications of WF is the problem assign to 
as noise10 termination. The aspiration of a noise canceller 
is to guesstimate a signal c(l) beginning a noise altered 
inspection

  (14) 

That is recorded by a primary sensor as shown in 
Figure 2. With a noise canceller, the autocorrelation of the 
noise is obtained from a less important sensor that is laid 
within the noise field7. 

  (15) 

The (WHE) for the noise termination system may be 
derived as follows. 

 212 vvrwvR =
 (16) 

For the cross-correlation between d1(k) and d2(k) we 
have

 (17)

Therefore, the WHE are

  (18)

3.  Implementation of Noise 
Cancellation

Let the desired signal be c(l)=sin(n0.05π) and the noise 
sequences be v1 (k) and v2 (k) as shown in Figure 2. 

Figure 1. Representing operation of Wiener filtering.

Figure 2. Wiener noise cancellations using a secondary 
sensor to measure the additive noise v1 (k).
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 v1 (w) =0.8v1 (c-1) + h (l) (19) 

 v2 (w) =- 0.6v1 (c-1) + h (l) (20) 

The autocorrelation of v2(k) is estimated using the 
sample autocorrelation as shown in Eq.(22). 

  (21) 

Similarly, for  the sample cross correlation as 
shown Eq. (23).

  (22)

4.  Monte Carlo Simulation and 
Results

For the purpose of presentation of the results in 
 simulation, 256 samples are considered. Monte Carlo 
simulation11,12 is carried out with 50 numbers of runs. 256 
samples of desired signal c (l) is generated. For 50 runs, 
256 samples of noise signal g(n) , noise in the primary 
sensor v1(l), reference signal used by secondary sensor 
v2(l) and the corrupted signal are 
generated. For 50 runs, the biased autocorrelation matrix 
of v2 (l) i.e., Rv2 and the biased cross correlation among 
m (l) and v2 (l) i.e., rxv2 are estimated. The coefficients of 
the WF w (k) are found by using the Equation (19). The 
estimate )(ˆ1 lv of additive white noise v1 (l) is generated 
by filtering v2(n) using Wiener filter. Finally, the approxi-
mation of desired signal d (l) is computed by subtracting 

)(ˆ1 lv  from primary signal m (k).50 estimates of desired 
signal are produced. For each of the 50 runs, error is 
calculated by subtracting the estimate of desired signal 
from d (l). The Root Mean Square (RMS) value of error 
at each sample is calculated. The RMS value of error13,14 
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Figure 3. Noise Cancellation. (a) Output of 6th order 
Wiener noise canceller, (b) Output of 12th order Wiener noise 
canceller, (c) Output of 24th order Wiener noise canceller
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at each sample is added to each sample of desired signal 
and  plotted. FIR Wiener filters of orders 6, 12 and 24 were 
found by solving Equation (21). The results are publicized 
in Figures 3. 

5. Conclusion
The Wiener filter is insufficient for dealing through 
 situations in which non stationary of the signal noise is 
essential to the problem. In such circumstances,  adaptive 
Wiener filter is required and it is in realization. Results of 
adaptive techniques of linear are quite matching to our 
expectation. For higher number of samples are greater 
seen, SNR is likely to improve the method  proposed 
in this paper is an efficient method of filtering with 
 comparatively less complication.
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