
Abstract
Validation of the robustness, efficiency of allocation and scheduling heuristics in large scale parallel and distributed systems
is usually done using synthetic randomly generated workloads, represented by task graphs. Randomly generated graph
are required for verification of algorithms in multidisciplinary streams. This requires that the number of nodes and the
connections can be large ranging from few nodes to thousand nodes, which is demands the machine assisted development.
These graphs are used as input format for many domains and require the simplest format for parsing. This research work
focuses on generation of such graphs in IBM Graphviz dot format by defining the user requirement in simple formats.
Three algorithms have been proposed which generate graph with proper inter connections. The task nodes are placement
randomly using a layer-by-layer approach and then connected randomly. The developed generator called Modular Random
Task Graph generator (MRTG) can generate task sets containing several different types of task graphs like rooted trees,
isomorphic graphs and similar graphs with same node placement but different connections, with the flexibility to dictate
the type of graph generated. The developed tool allows the user to generate simulated input and can be extended to any
format as it is written in modular format in C++.

A Modular Approach to Random Task Graph
Generation

Mishra Ashish1*, Sharma Aditya1, Verma Pranet1, Abhijit R. Asati1, Raju Kota Solomon2

1Department of Electrical and Electronics Engineering, BITS-Pilani, Pilani Campus, Vidya Vihar, Pilani - 333031,
Rajasthan, India.

2Reconfigurable Computing Systems & Wireless Sensor Network Systems Lab, Digital System Group, CSIR-CEERI,
Pilani - 333031, Rajasthan, India; ashishmishra@pilani.bits-pilani.ac.in, achhu.05@gmail.com

Keywords: Graph Generation, Hardware Software Codesign, Isomorphism, Task Graph

I.  Introduction
Research in embedded real-time systems, operating
systems and hardware software co-design, as well as in
more general allocation and scheduling fields, is ham-
pered by the lack of a common base of examples. In
general, an example used in allocation and scheduling
research consists of a task set and a database of processors
and communication resources. A task set is a collection
of task graphs, each of which is a directed acyclic graph
(DAG) of communicating tasks. Generation of sample
task sets is often a requirement when comparing alloca-
tion or scheduling methods with each other. The existing
solutions are of limited relevance in today’s schedul-
ing problems in parallel, distributed systems and fields
like hardware software co-design, which require a clear

definition of the size of the critical path and also need the
possibility of defining different types of task nodes with
independent parameters. Our work accomplishes these
and also gives researchers an opportunity to clearly define
the number of inputs to each type of task node, which is
necessary in today’s computer science scheduling prob-
lems which require that all inputs arrive for the task node
to give an output.

MRTG is highly valuable for scheduling simulation
in the problem of many core processors, to choose how
to distribute the work load done among such large num-
ber of processing cores. It is of particular importance of
researchers working in areas like reconfigurable comput-
ing and System on Chip, because of its layer-by-layer1
approach, as researchers can define reconfiguration in-
between different levels. As MRTG has been created with

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(8), DOI: 10.17485/ijst/2016/v9i8/61035, February 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Modular Approach to Random Task Graph Generation

Indian Journal of Science and Technology2 Vol 8 (8) | February 2016 | www.indjst.org

computer hardware scheduling problems in mind, the
constraints are defined in terms of the silicon area con-
sumed in executing each task and the delay across that
task node. But, these definitions are flexible and we can
interpret these constraints in the way that they are rel-
evant to your research. For easy analysis, MRTG currently
gives output graphs in two formats a text file with the list
of node placement, an array of ordered pairs describing
the connections and in GraphViz’s DOT format2.

In Section II, we present a thorough comparison of
MRTG with popular existing random task graph gen-
erators such as Task Graphs for Free (TGFF)3, Graph
Generation for Scheduling Simulations (GGEN)4 and
Random Task and Resource Graphs (RTRG)5. In Section
III, we describe the working of MRTG, which is currently
divided into four modules assignLevels, connectNodes,
isomorphize and plotGraph. We elaborate on the future
possibilities with MRTG in Section IV, while Section V
presents the conclusion.

II. � Comparison with Existing
Solutions

MRTG differs from all existing solutions in the respect
that it is divided into self-contained modules and changes
made in one module don’t affect the functioning of
another. This modular nature makes the code far more
reusable than a conventional monolithic design. Future
improvements are easier to make, as additional modules
can be added without disturbing the functionality of the
original stable software. It also makes the program very
flexible to use, as now researchers can choose to run only
those modules which they require and also change the
order of execution of modules to suit their needs.

Given below are a few comparisons of MRTG with
existing popular algorithms for random task graph
generation.

A.  TGFF: Task Graphs for Free
TGFF2 is one of the oldest and most popular algorithms
for generating user-controllable, general-purpose, pseu-
dorandom task graphs. The original TGFF algorithm
iteratively adds nodes to construct a graph using limits on
the maximum in and out degrees of each node, this reduces
the randomness of the task graph generated making it a
pseudo-random task graph generator3. A more recent ver-
sion provides an option to generate series-parallel DAGs

also. MRTG on the other hand, keeps the node placement,
connection steps separate and adds randomness at every
level making it a truly random task graph generator. This
method of iteratively adding nodes, leads to generation of
only rooted task graphs by TGFF, while MRTG can gen-
erate graphs with any number of input nodes, including
rooted trees if the number of input nodes specified by the
user is one. MRTG creates a graph with the exact number
of nodes as specified by the user, while TGFF takes the
average and multiplier from the user, for the lower bound
on the number of nodes in a graph and creates a graph
with number of nodes that are randomly greater than this
lower bound3.

One major difference between TGFF and MRTG is
that, TGFF uses a concept of depth to decide the commu-
nication delay of the graph generated. In MRTG we have
a concept of levels, where it assumed that any task in the
next level does not start unless all the tasks in the previ-
ous level are completed. This is of particular importance
to researchers in fields like reconfigurable computing, as
now they can define different levels in random task sched-
uling to take into account reconfiguration of the hardware
between levels.

TGFF is flexible with the number of inputs of each
node and the user specifies the degree of inputs. The
TGFF algorithm results in a graph that has nodes in
which the number of inputs connected is any number less
the degree specified, while MRTG takes the exact number
of inputs required by each task from the user and ensures
that they are connected. A sample generated using TGFF
is shown in Figure 1.

Even so, MRTG and TGFF are similar with respect to
the flexibility of the outputs of a node as both take the

Figure 1.  A graph generated using TGFF.

Mishra Ashish, Sharma Aditya, Verma Pranet, Abhijit R. Asati, Raju Kota Solomon

Indian Journal of Science and Technology 3Vol 8 (8) | February 2016 | www.indjst.org

maximum number of outputs and connect any number
below this. Also, in TGFF only one type of node is speci-
fied, while in MRTG, multiple types of nodes can be
specified with their own individual constraints.

B. � GGEN: Graph Generation for Scheduling
Simulations

GGEN4 provides a very thorough coverage of the
different task scheduling algorithms developed over the
years. It uses the libraries of the existing solutions and
provides the developer with a single tool to exploit them.
But, in doing so it gets limited by the shortcomings of
those algorithms. It becomes a one stop tool for develop-
ers, but has limited additions of its own. Different types
of nodes with their own individual parameters and con-
straints can be specified in MRTG, while this is not an
option in GGEN.

One aspect where GGEN and MRTG are similar
is that both generate an output in Graphviz’s DOT
language2.

C. � RTRG: Random Task and Resource
Graphs

RTRG5 is a simple and effective tool, but provides very
limited flexibility to the developer. It defines resources
used by a task node, which is similar to the concept of
area used in MRTG. It offers different types of nodes but
the constraints of each node have to be defined individu-
ally, which presents a problem when the number of nodes
increases, while the node type definitions in MRTG are
grouped making it easier for the user. The output file
generated by RTRG is in .rtg format, which is difficult
to analyze, while MRTG generates a DOT file2 as output
along with a text file showing the connections and node
placement in matrix form. The work in6 shows the verifi-
cation of point for such generated graphs. Further analysis
has been shown in7.

III.  Algorithmic Design of MRTG
MRTG primarily generates a specified number of random
isometric task graphs, where the graph nodes are tasks
and the graph edges depict the communication between
tasks. In the algorithm, we first decide the total number
of task nodes needed, the number of levels in which to
place them, number of input nodes, the maximum area

that each level can accommodate and the total delay
constraint. Along with this, we can specify different types
of task nodes here, by giving the number of inputs, the
fan-out, i.e. degree of the output, area consumed, delay
and the total number of nodes of that type. Here, we can
also give the number of isomorphic graphs8 required.
Rooted graphs can also be generated by specifying the
number of input nodes as one. The seed for randomness
in MRTG, which decides the structure and other aspects
of the generated task graphs, is the current system time
making it highly unlikely for any two graphs generated
at different times to be similar. But if similar task graphs
are required, we can specify a user-defined seed and share
it with another researcher. We have defined four rules in
this algorithm:

Every type of node has only specified number of •	
inputs, but the output can go to any number of nodes
less than the fan-out as input.
The output of every node, except the ones the bottom •	
level, is connected to at least one input.
All connections are downward directional, so the •	
output of a lower node cannot connect to an input of
an upper node and any node’s output can go into the
input of a node from any level below its own.
Tasks in a level start only after all the tasks in the •	
previous level are completed.

A.  Module 1 - assignLevels
This module develops on the layer by layer method
proposed by Tobita and Kasahara1. Here, we randomly
place node in different levels, without violating the
maximum area that each level can accommodate and
the total delay constraint. This module only decides the
node placement and makes no connections between
the nodes. We first create a list, which stores the node
placement information. Then, we repeatedly select a
random level and put a randomly selected node in it,
while ensuring the maximum area in that level is not
exceeded. This process continues till all nodes are
placed. Lastly, we calculate the total delay of this partic-
ular node placement by adding the maximum delay at
each level and check against the delay constraint. If vio-
lated, the process repeats from the start. Although very
simple, this method is very useful in practice because
by limiting the number of levels we can limit the size of
the critical path.

A Modular Approach to Random Task Graph Generation

Indian Journal of Science and Technology4 Vol 8 (8) | February 2016 | www.indjst.org

Figure 1 : Module 1 - assignLevels

1.  Name: assignLevels
2.  Function: �Randomly place node in different levels,

without violating constraints
3.  Input:	� numberOfLevels = The total number of

levels in the graph
4. 		� areaPerLevel = The maximum area that

each level can accommodate
5. 		 delayLimit = The delay constraint
6. 		� inputNodes = Array containing all the

input nodes
7. 		� taskNodes = Array containing all the

task nodes
8. 		� nodeList = List defining node place-

ment, with the first index holding the
level number

9.  Output:	 Passed by reference
10. 		 Boolean value returned
11.  Algorithm:
12. 	 /∗ assume nodes sorted already by type ∗/
13. 	� Define an array freeArea[] and put the value of

areaPerLevel for each level.
14. 	� Insert all input nodes at level 0 of nodeList and

subtract area of each from freeArea[0].
15. 	 iffreeArea[0] is less than 0
16. 		� then say “Input nodes occupy too much

area” and assert false
17. 	 endif
18.19. 	 /∗ fulfill area constraints ∗/
20. 	 for i=0 to taskNodes.size()
21. 		 Initialize chosenLevel to -1
22. 		 Initialize numIterations to 0
23. 		 do
24. 			� set chosenLevel as 1 + modulus

of random number with num-
berOfLevels

25. 			 ifnumIterations is 1e6
26. 				� then say “Unable to

find suitable level in
time” and return false

27. 			 endif
28. 		� whilefreeArea[chosenLevel] is less than

area at taskNodes[i]
29. 		 enddowhile
30. 		 assert false if chosenLevel is equal to -1
31. 		� Push back the node at taskNodes[i] into

nodeList[chosenLevel].

32. 		� Subtract the area of taskNodes[i] from
freeArea[chosenLevel].

33. 	 endfor
34.35. 	 /∗ fulfill delay constraints ∗/
36. 	 Initialize totalDelay to 0
37. 	 for i=0 to numberOfLevels
38. 		 Initialize maxDelay to 0
39. 		� for j=0 to size of

nodeList[numberOfLevels]
40. 			� setmaxDelay to maximum

of maxDelay and delay at
nodeList[numberOfLevels][j]

41. 		 endfor
42. 		 Add maxDelay to totalDelay
43. 	 endfor
44. 	 iftotalDelay is greater than delayLimit
45. 		 then return false
46. 	 else
47. 		 return true
48. 	 endif

B.  MODULE 2 - connectNodes
Here, we take the node placement information from the
previous level and randomly make downward directional
connections and store them in an array of ordered pairs,
while satisfying the rules of the algorithm.

Figure 2.  A rooted graph generated using MRTG.

Mishra Ashish, Sharma Aditya, Verma Pranet, Abhijit R. Asati, Raju Kota Solomon

Indian Journal of Science and Technology 5Vol 8 (8) | February 2016 | www.indjst.org

We start moving up from the second level from the
bottom and randomly connect each output only once to
an input below. After all the outputs have been connected
once, we start moving down from the level below the
input level and randomly connect all unconnected inputs
to an output above, while ensuring that the fan-out is not
violated.

A totally random task graph, subject to input
constraints, is generated at the end of this module.

As a fail-safe, if the algorithm gets stuck at any point
and is not able to place the nodes or make connections, it
will automatically show an error after trying for a hundred
thousand times. A sample with rooted graph is shown in
Figure 2.

Figure 2: Module 2 - connectNodes

1.  Name: connectNodes
2.  Function: �Make random downward directed con-

nections subject to number of inputs and
fanOut of outputs of each node

3.  Input:	� nodeList = List defining node place-
ment, with the first index holding the
level number

4. 		� connections = Array of ordered pairs
defining connections between nodes

5.  Output:	 Passed by reference
6. 		 Boolean value returned
7.  Algorithm:
8.  Clear any previous connections.
9. � /∗ ensure every input node is utilized atleast once::

bottom to top ∗/
10.  Initialize array of ordered pairsfreeInput
11.  for i=0 to size of nodeList[numberOfLevels]
12. 	� for j=0 to number of inputPins of

nodeList[numberOfLevels][i]
13. 		� Push back (numberOfLevels,i) into free-

Input
14. 	 endfor
15.  endfor
16.  for level=numberOfLevels-1 to 0
17. 	 Randomly shuffle the array freeInput
18. 	 for i=0 to size of nodeList[level]
19. 		 Initialize a node id to nodeList[level][i]
20. 		 if size of freeInput is 0
21. 			 then return false
22. 		 endif
23. 		 Initialize choice to freeInput.size()-1.

24. 		� Initialize newLevel to the first value in
the pair freeInput[choice]

25. 		� Initialize indexInNewLevel to the second
value in the pair freeInput[cho.ice]26

26. 		� Initialize node newId to
nodeList[newLevel][indexInNewLevel]

27. 		 Push back (id,newId) into connections
28. 		� Increment the value of connectedOut-

puts of nodeList[level][i]
29. 		� Increment the value of usedInputPins of

nodeList[newlevel][indexInNewLevel]
30. 		 Pop back freeInput
31. 	 endfor
32. 	 for i=0 to size of nodeList[level]
33. 		� for j=0 to number of inputPins of

nodeList[level][i]
34. 			� Push back (level,i) into freeIn-

put
35. 		 endfor
36. 	 endfor
37.  endfor
38.  Initialize array of ordered pairsfreeOutput
39.  for i=0 to size of nodeList[0]
40. 	� for j = connectedOutputs of nodeList[0][i] to

fanOut of nodeList[0][i]
41. 		 Push back (0,i) into freeOutput
42. 	 endfor
43.  endfor
44.  Initialize highestLevelInFreeOutput to 0
45.  Sort the elements in freeInput
46. 
47.  /∗ now process all the free inputs top to bottom ∗/
48.  for i=0 to size of freeInput
49. 	� Initialize level to the first value of the pair

freeInput[i]
50. 	� Initialize indexInLevel to second value of the

pair freeInput[i]
51. 	� Initialize node id to nodeList[level][indexIn-

Level]
52. 	� while level - highestLevelInFreeOutput is greater

than 1
53. 		 Increment highestLevelInFreeOutput
54. 		� if level is equal to highestLevelInFree-

Output
55. 			 then return false
56. 		 endif
57. 		� for ii=0 to size of nodeList[highestLevel

InFreeOutput]

A Modular Approach to Random Task Graph Generation

Indian Journal of Science and Technology6 Vol 8 (8) | February 2016 | www.indjst.org

58. 			� for j= number of connected-
Outputs of nodeList[highestLe
velInFreeOutput][ii] to fanOut
of nodeList[highestLevelInFree
Output][ii]

59. 				� Push back (highest
Level In Free Output,
ii) into freeOutput

60. 			 endfor
61. 		 endfor
62. 		 Randomly shuffle the array freeOutput
63. 	 endwhile
64. 	 if size of freeOutput is 0
65. 		� then say “Insufficient outout pins” and

return false
66. 	 endif
67. 	 Initialize choice to size of freeOutput -1
68. 	� Initialize newlevel to the first value in the pair

freeOutput[choice]
69. 	� Initialize indexInNewLevel to the second value

in the pair freeOutput[choice]
70. 	 Pop back freeOutput
71. 	� Initialize node newId to nodeList[newlevel]

[indexInNewLevel]
72. 	 Push back (newId,id) into connections
73. 	� Increment the usedInputPins of nodeList[level]

[indexInLevel]
74. 	� Increment the connectedOutputs of

nodeList[newLevel][indexInNewLevel]
75.  endfor
76.  Return true

C.  Module 3 - Isomorphize
A graph G is isomorphic to a graph H if there exists a
one-to-one function, called an isomorphism, from V(G)
(the vertex set of G) onto V(H) such that (u1,v1) is an
element of E(G) (the edge set of G) if and only if (u2,v2)
is an element of H6. In simpler terms, two graphs are iso-
morphic when the vertices of one can be re labeled to
match the vertices of the other in a way that preserves
adjacency. This module is used to generate graphs that
are isomorphic to the one generated above. We ran-
domly select a type of node and swap the identification
numbers of any two nodes of that type. The number of
times this process is repeated for each isomorphic graph
is also random. A sample with two isomorphic is shown
in Figure 3.

Figure 3.  Two isomorphic graphs generated using MRTG.

Figure 3: Module 3 - Isomorphize
1.  Name: isomorphize
2.  Function: Generate isomorphic graphs
3. � Input:typeList = List defining the type of node, with

the first index holding type and the second one hold-
ing the node information.

4.  Output: Passed by reference.
5.  Algorithm:
6.  for i=0 to size of typeList
7. 	 while generated random number %10 is not 0
8. 		� int u = modulus of randomly generated

number with size of typeList[i];
9. 		� int v = modulus of another ran-

domly generated number with size of
typeList[i];

10. 		� define Node n1 as typeList[i][u] and
Node n2 as typeList[i][v];

11. 		 swap the ID of n1 and n2 by reference;
12. 	 endwhile
13.  endfor

D.  Module 4 - plotGraph
The DOT language2 provides syntax for describing
graphs, edges, nodes and the properties associated with
the graph components in simple text format. We have
chosen Graphviz’s DOT language as the default format
for graph representation for MRTG, to make it compat-
ible with most of the available tools for graph analysis. In
this module, we create graphs in DOT file format2 from
the list of nodes and array of connections created above.
MRTG being modular gives a lot of flexibility and control
to the researcher. You can run assignLevels module once

Mishra Ashish, Sharma Aditya, Verma Pranet, Abhijit R. Asati, Raju Kota Solomon

Indian Journal of Science and Technology 7Vol 8 (8) | February 2016 | www.indjst.org

Figure 4.  Nodes with operators generated using MRTG.

and connectNodes module multiple times to generate
similar graphs that have the same node place but differ-
ent connections between the nodes. Rooted trees can be
generated by specifying only one input node. Any kind of
simple modification in the generated graph can be done
as shown in Figure 4 where nodes have a operators within
them.

IV.  Future Work
Being modular, MRTG can have future additions in the
form of modules, which can be added without disturb-
ing the original stable software. We plan to make it open
source so that researchers who really need it, can develop
modules they need and add them to the project so the
whole community can use them. We plan to develop a
module to add weights to the connections too. This will
be very useful for researchers who need to do schedul-
ing while taking into account the communication delay
and resource expenditure. After that we also plan to add a
concept of depth, as proposed in TGFF3.

V.  Conclusion
MRTG provides a modular approach for generating
user-controlled, truly random task graphsthat find rel-
evance in simulating today’s scheduling problems in
parallel, distributed systems and fields like hardware soft-
ware co-design. This modular nature makes the program
code far more reusable than a conventional monolithic
design. Future improvements are easier to make, as

additional modules can be added without disturbing the
functionality of the original stable software. It also makes
the program very flexible to use, as now researchers can
choose to run only those modules that they require and
also change the order of execution of modules to suit
their needs.

The layer-by-layer approach followed in MRTG, with
the ability to define different types of nodes with their
individual parameters separates it from existing avail-
able solutions and makes it highly valuable forresearchers
working in areas like reconfigurable computing, System
on Chip and for scheduling simulation in the problem of
many core processors, to choose how to spread the work
among such large number of processing cores.

VI.  References
1.	 Tobita T, Kasahara H. A standard task graph set for fair eval-

uation of multiprocessor scheduling algorithms. Journal of
Scheduling, Wiley. 2002; 5(5):379-394.

2.	 Gansner ER, North SC. An open graph visualization sys-
tem and its applications to software engineering. Software:
Practice and Experience. 2000; 30(11):1203-1233.

3.	 Robert PD, David LR, Wolf W. TGFF: Task Graphs for
Free. Proceedings of the 6th International Workshop on
Hardware/Software Co-design, 1998; 97-101.

4.	 Cordeiro D, Mounie G, Perarnau S, Trystram D, Vincent
JM, Wagner F. Random graph generation for scheduling
simulations. Proceedings of the 3rd International ICST
Conference on Simulation Tools and Techniques. 2010; 60.

5.	 Shafik RA, Al-Hashimi BM, Chakrabarty K. Soft
Error-Aware Design Optimization of Low Power and
Time-Constrained Embedded Systems. Proceedings of the
Design, Automation and Test in Europe, 2010; 1462-1467.

6.	 Geetha NK. Verification on a Given Point Set for a Cubic
Plane Graph, Indian Journal of Science and Technology.
2015 July; 8(13):55032.

7.	 Ramachandran M, Parvathi N. The Medium Domination
Number of a Jahangir Graph Jm,n. Indian Journal of Science
and Technology. 2015 March; 8(5):400-406.

8.	 Gross Jonathan L, and Yellen Jay, eds. Handbook of graph
theory. CRC press; 2003.

