
Abstract
Background/Objectives: Service oriented Architecture (SOA) infrastructures using web services are deployed by many
firms worldwide. Web Services provide a standard means of inter-operation between heterogeneous software applications
that run on a variety of platforms. Most of the web services are offered with HTTP over Simple Object Access Protocol
(SOAP) as the underlying infrastructure. The greatest web security threat is accepting the request from the client without
proper validation. The objective is to separate the application logic and the security or validation procedures which offers
more advantage for software reuse since it is not necessary to recompile, when the validation or security requirements
change. Methods: An Interceptor is created for validation which has the token based authentication procedures along with
the steps for validating the data. The system is devised in such a way that the business logic will be triggered if and only if
the data is validated and passed by the interceptor procedures. Findings: The proposed system provides a way to keep the
validation and security mechanism out of application logic and hence this does not modify the existing functionality. Thus,
combining all custom security as one unit of validation before hitting the business logic is the basic idea of the proposed
system.

Custom Security in Web Services
Balika J. Chelliah1*, K. Vivekanandan2 and P. Jeni3

1Department of Computer Science and Engineering, SRM University, Chennai - 603203, Tamil Nadu, India;
balika888@gmail.com

2Department of Computer Science and Engineering, Pondicherry Engineering College, Pondicherry - 605014,
Tamil Nadu, India; k.vivekanandan@pec.edu

3Department of Computer Science, and Engineering, SRM University, Chennai - 603203, Tamil Nadu, India; jeni-
padhu@gmail.com

Keywords: Custom Security, SOA, Validation Model, Web Service

1. Introduction
Web services may expose business critical systems and
information and hence a proper security should be applied
to it. Though security is implemented through many stan-
dards, policies, firewalls, XML security standards, XML
encryption, XML signatures, it depends on the developer
who utilizes the security concepts along with the busi-
ness logic. Hence, the procedure that secure web services
against unwanted input are therefore given high impor-
tance. Mostly, developers who work on business logic
tend to neglect validation. Since, they are keen in imple-
mentation of the logic and sometimes given least priority
to security considerations which shows the security issues
are not under centralised control.

A tool has been created for verifying generated schemas
and an self-adaptive schema hardening mechanism which

makes the restriction in schema level so that the attacks
on webservices such as XML injection, XSS injection
and HTTP header manipulation, timestamp1. Security
is insisted by applying XML encryption and signature
for data in transaction and in storage form2. To prevent
the Distributed Denial of Service attack (DDoS), a XSD
DDoS trace handler and a totient encryption algorithm is
used3. A validation tool is created for the configuration file
definition4. An input validation model is created which
compares the schema with a predefined standards and has
the concept of building it against the request. This does
not carry any authentication information or a signature
to verify the client authenticity5.

Using local copies of schema to validate the xml6.
Generic flooding attack is solved based on client puz-
zles7. Certificate generation, attestation key, private key
usage is determined on authentication for web based ser-

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(29), DOI: 10.17485/ijst/2016/v9i29/91685, August 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Custom Security in Web Services

Indian Journal of Science and Technology2 Vol 9 (29) | August 2016 | www.indjst.org

vices8. Federated identity and three step process for WS
 authentication and authorization in a maritime environ-
ment9. A metering system is created for WS security based
implementation10. A reusable approach by the use of
XML files and an XML schema for the security parameter
specification is created for validation11. An input valida-
tion framework for validating the schema in web service
is implemented12. A capture, comparison, and decision
making module are defined for preventing Denial of ser-
vice attack in web service. A token system was created to
prevent DDoS attack in REST web services13.

Threshold value, selection, payload and authenticated
connection to counter DDoS attacks14. A rule based WS
input validation is created for schema15. A constraint level
validation manager is defined for a run time monitoring
and validation framework for WS interaction16. A secu-
rity API is defined for a security solution in a dynamic
composition scenario17. A load balancing and a protect-
ing environment for a Linux based OS to prevent DDoS
Attacks18. A strong authentication for web services using
a smart card system19. A public WS security framework
is defined through product generation20. Message replay
attack, over sized payload, coercive parsing and XML
based injection attacks are experimentally tested with
separate algorithms21. Parses that function based on gram-
mars and permuttions22. Without modifying the complete
system, service oriented architectures with webservices
are used for easy integration of services23.

Among the related works, there is a lack of studies
specially addressing both authentication and validation
together distinguishing from the business logic. Thus, in
the proposed system, we try to cover all the security and
validation issues in the separate model before hitting the
business logic. This system will have a token based system
for authentication along with traditional username/pwd,
and further checks the client IP, no of attempts and an
Interceptor for validation.

2. Proposed System
In the proposed system, the interceptor (INT) which has
a token based authentication along with the traditional
username/password system is being used to confirm the
client authenticity. Once the authentication scheme is
passed, the request is passed to the sanitizer module. If all
the validation is passed in the sanitizer module, then the
business logic is invoked. Imagine, the service requester

finds the intended service using the registry and hence it
binds with the provider.

Figure (1) shows the interceptor will authenticate and
validate the input requests and hits the service only when
the request is valid. The process involved in Interceptor
are Registration, Signature Verification, IP Verification,
Attempts Check , Sanitizer.

Registration:

The new tags which is added for this process are
 requestTime (login time of the req), containsToken (valid
values 0,1), SignatureToken STclient.

If(containsToken == 0)
 Perform Registration(username,pwd);
Else if(containsToken == 1)
 Perform SignatureValidation(username,
pwd,STclient);

Registration(username,pwd)
[Whitelist:LoginTime:LT,Token/seed,LoginIP:LIP]{
INT sends Token ;
Records LT, Token / seed, LIP in whitelist;
}

Figure 1. Operations.

Balika J. Chelliah, K. Vivekanandan and P. Jeni

Indian Journal of Science and Technology 3Vol 9 (29) | August 2016 | www.indjst.org

The token will be generated based on the concept of cryp-
tographically secure pseudo random number generator.
Either token or seed used to generate the token is saved in
the whitelist. The client receives the token and computes
the SignatureToken.

SignatureToken = MD5(Token+pwd)

Whitelist will also contains other attributes such as
username,pwd,Threshold limit –TL, Last Request Time
– LRT, Timestamp skew – TSS, No of Attempts – NoA,
Interval – IT.
Default validity of the token / seed is 12 hours & if NoA
reaches threshold, it will expire.

Rather than using traditional authentication schemes,
using a signatureToken helps in addressing Denial of
Service attack. Even if the frequency of the request is
increased by the attacker, the token/seed will be valid only
for the certain time period or till it is active.

Signature Verification
It verifies the client authenticity by checking the value in
the SignatureToken tag received from the request.
SignatureValidation(username,pwd, STclient)
{
 1. Consider Token / seed from Whitelist
 2. If (seed)
 Generate Token;
 Else if (Token)
 Perform step 3.
 3. STINT = MD5 (Token + pwd);
 4. If (STclient = STINT)
 {
 Success;
 Perform IPverfication(IPclient);
 }
 Else
 {
 Invalid Requests;
 Error message to client;
 }

}

The option of selecting a hash algorithm such as MD5 is
making the computation easier rather than sending or
maintaining a public / private key pair and again have to
apply another cryptographic algorithm to secure it.

IP Verification

It verifies whether the client login IP is valid from both
whitelist and blacklist. Blacklist contains the set of IP
address which caused threat to the system.
IPVerfication(IPclient)
{
 1. Consider IPwhitelist,IPblacklist.
 2. If[(IPclient = IPwhitelist) || (IPclient !=
 IPblacklist)]
 {
 Success;
 AttemptsCheck();
 }
 Else
 {
 Invalid Requests;
 Error message to client;
 }
}
The above processes rejects the unauthorized entry.

Attempts Check

This process evaluates the request on the timestamp
related information based on the algorithm given below.
Constraints:

a. Time references should be in standard timeformat
(UTC).

b.Time references are recommended in xsd:dateTime
format. If any other format, it should be specified in
ValueType attribute

c.Threshold Limit:

n – No of requested URI during time period t1

Custom Security in Web Services

Indian Journal of Science and Technology4 Vol 9 (29) | August 2016 | www.indjst.org

k – particular k URI from same IP.
d. TSS - maximum tolerance limit for the clock skewed

between the sender and the receipient.
e. IT - allowed time gap between LRT and LT.

AttemptsCheck()
 {
 Current time of INT - CT

 If [CT < (LT – TSS * 1000)] //1000 – a constant
that can be changed.

 {
 Invalid Requests;
 Error message to client;
 }
 Else
 {
 If [(LT - LRT) > IT]
 {
 If(NoA < TL)
 Sanitizer();
 Else
 {
 Invalid Requests;
 Error message to client;
 }
 }
 }
 }

This will avoid the message replay attack.

Sanitizer

The sanitizer must maintain the schema caching process
which is defined as maintaining the local copies of the
schema. This copy needs to be refreshed whenever an
update is made to the schema. The local schema reposi-
tory can be created as simple as creating a folder by using
namespaces names to provide guidance on naming the
folders.

This process tries to harden the schema as possible
to prevent it from attacks. Hence, the sanitizer maintains
whitelist with a set of valid parameters that needs to vali-
date the client request against XML specification, which
limits XML injection and oversize payload attacks.

The whitelist should contain,
Element Names / Parameter Names - All the elements

used in the schema should be listed.
Data Type – The data type of each element name should

be defined.

Size – The size of each element along with its maximum
and minimum size restrictions should be listed.

Operation Names – The operation names present in the
schema should be listed.

ComplexTypes – The complex types should be
 mentioned with the number of occurrence of this block.

Unbounded Occurrence – On designing the schema,
the unbounded occurrence should be restricted as much
as possible, as this will be the root cause of coercive pars-
ing attack. Hence, we prefer to restrict this occurrence
depending on the type of application used. (Say, if a flight
reservation / bus booking, we may not require a parameter
with this unbound occurrence.)

Regular Expression – specified for validation.
An attack of namespace injection can occur and hence

the namespaces are monitored along with the tags that are
defined or valid for each namespace. These can also be
included in the whitelist for validation.

Policy Enforcement should not be made manual and
hence the system will enforce specified input policies for
a defined set of services and ports.

Verify the XSDPath from the XML request. If the
path is empty, the request can be rejected. Else, check for
the startElement and EndElement. If it is empty then the
request can be rejected and the error message can be sent
to the client. It avoids Parameter tampering attack.

If needed, the size of the request message is also
defined. Hence, if the size of the total request exceeds the
size defined, we can reject the client request, which will
handle coercive parsing attack.

Thus the sanitizer validates the data against the XML
specifications and maintain the data completeness, cor-
rectness and structure.

3. Experimental Results
The proposed work is implemented in Java and weblogic
server. The system results are obtained and compared in
the form of CPU usage.

A comparative study is done without the
 implementation of this approach and with this
 implementation of the proposed system.

Figure (2) shows the performance boost up with the
implementation of this proposed system compared to the
system which does not implement this module.

Balika J. Chelliah, K. Vivekanandan and P. Jeni

Indian Journal of Science and Technology 5Vol 9 (29) | August 2016 | www.indjst.org

Figure (3) shows the CPU usage of SOAP based web
services for 100,300,500 number of requests. It shows
CPU usage is reduced using the existing algorithm.

4. Figures

 2. Menaka R, Wahida Banu RSD, Ashadevi B. Survey on
Signatured Xml Encryption for Multi-Tier Web Services
Security. Indian Journal of Science and Technology. 2016

 3. Murugan A, Vivekanandan K. Xsd ddos trace handler
in web service environment. Journal of Software. 2015;
10:086–1095.

 4. Gupta AN, Thilagam DPS. Attack on web services need
to secure xml on web. Computer Science Engineering: An
International Journal. 2013; 03:1–11.

 5. Brinhosa RB, Westphall CM, Westphall CB. Proposal and
development of the web services input validation model.
IEEE Network Operations and Management Symposium
(NOMS). 2012; 03:262–6.

 6. CDISC, XML Schema Validation for Define.xml, CDISC
INC.

 7. Suriadi S, Stebila D, Clark A, Liu H. Defending web services
against denial of service attacks using client puzzles. 2011
IEEE International Conference on Web Services (ICWS).
2011; 01. p. 25–32.

 8. Sheng Y, Lu Z. A online user authentication scheme for web-
based services. Business and Information Management,
2008. ISBIM ’08. International Seminar. 2008; 02:173–6.

 9. Kim A, Khashnobish A, Kang M. An architecture for web
services authentication and authorization in a maritime
environment. International Conference on Information
Technology, IEEE. 2007; 14. p. 560–6.

10. Auletta V, Blundo C, Cimato S. Authenticated web services:
A wssecurity based implementation. European Commission
through the IST program under Contract IST-2002-507932.
2002; 01:1596–608.

11. Brinhosa RB, Westphall CB, Westphall CM. A security
framework for input validation. The Second International
Conference on Emerging Security Information, Systems
and Technologies. 2008; 01. p. 88–92.

12. Jensen H. Input Validation Framework for Web Services.
NTNU Innovation and creativity.

13. Lad N, Baria J. Ddos prevention on rest based web services.
International Journal of Computer Science and Information
Technologies. 2014; 05:7314–7.

14. Prabu SS, Kumar DVS. Countering the ddos attacks for a
secured web service. Indian Journal of Computer Science
and Engineering. 2013; 04:149–54.

15. Kalman M. Rule-based web service validation. 2014 IEEE
International Conference on Web Services (ICWS). 2014;
01. p. 542–9.

16. Li Z, Jin Y, Han J. A runtime monitoring and validation
framework for web service interactions. Proceedings of the
2006 Australian Software Engineering Conference. 2006;
01. p. 79–89.

17. Sindhu S, Kanchana R. Security solutions for web ser-
vice attacks in a dynamic composition scenario. IEEE

Figure 2. Performance – SOAP.

Figure 3. CPU usage – SOAP.

5. Conclusion and Future Works
Results from the proposed system shows that there is a
steady performance and reduction in CPU usage when
compared to the services which did not use the same.

The future work includes making the system func-
tion for REST web services with few modifications and
can try making the references with DB index instead of
maintaining a whitelist or a blacklist. Since, the REST
web service does not have a predefined schema, we need
to generate the schemas based on the input and try vali-
dating it via the DB index within the specified process of
interceptor.

6. References
1. Patel V, Mohandas R, Pais AR. Attacks on web services and

mitigation schemes. Proceedings of the 2010 International
Conference on Security and Cryptography (SECRYPT).
2010 Jul 1–6.

Custom Security in Web Services

Indian Journal of Science and Technology6 Vol 9 (29) | August 2016 | www.indjst.org

International Conference on Advanced Communication
Control and Computing Teclmologies. 2014; 01. p. 624–8.

18. Kargl F, Maier J, Weber M. Protecting web servers from dis-
tributed denial of service attacks. Proceedings of the 10th
International Conference on World Wide Web. 2001; 10. p.
514–24.

19. Stienne DS, Clarke N, Reynolds P. Strong authentication
for web services using smartcards. Proceedings of the 7th
Australian Information Security Management Conference.
2013; 03. p. 55–62.

20. Thelin J, Murray PJ. A Public Web Services Security
Framework based on Current and Future usage Scenarios.

Proceedings of the International Conference on Internet
Computing.

21. Uma E, Kannan A. Self-aware message validating algorithm
for preventing XML-based injection attacks. International
Journal of Technology and Engineering Studies. 2016;
2(3):60–9.

22. Zhang W, van Engelen RA. High-Performance XML Parsing
and Validation with Permutation Phrase Grammar Parsers.
IEEE International Conference on Web Services. 2008.

23. RajKumar N, Vinod V. Integrated Educational Information
Systems for Disabled Schools via a Service Bus using SOA.
Indian Journal of Science and Technology. 2015.

