
Abstract
In this article, we prepare a new numerical method based on triangular functions for solving n-dimensional stochastic 
­differential equations. At first stochastic operational matrices of triangular functions are derived then n-­dimensional 
­stochastic differential equations are solved recently. Convergence analysis and numerical examples are prepared to 
­illustrate accuracy and efficiency of this approach.
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1.  Introduction
Mathematical modeling of real world problems causes 
differential equations involving stochastic Gaussian white 
noise excitations. Such problems are modeled by stochastic 
differential equations(SDE). Some authors have presented 
numerical approachs to solve stochastic differential/integral 
equations1–11. We consider integral form of n-dimensional 
stochastic differential equation(N-SDE) as follows: 

	y x y f x s y s ds g x s y s dB s x
x

j

n x

j j( ) = ( , ) ( ) ( , ) ( ) ( ),   [0,0 0
=1

0
+ + ∈∫ ∑∫ 11), � (1)

where, 0y  is an initial value, ))(),...,((= 1 xBxBB n  is 
a n-dimensional Brownian process. ),(),( sxfxy  and 

njsxg j 1,2,...,=),,( ; )[0,, Txs ∈  are defined on 
),,( PΩ , probability space, and )(xy  is unknown 

function. Also 
0

( , ) ( ) ( ), = 1, 2,..., ,
x

j jg x s y s dB s j n∫  are 
Itô integrals.

Orthogonal triangular functions (TFs) are derived 
from the Block Pulse Function (BPF) set by Deb et 
al.12. TFs approximation has been applied for the analy-
sis of dynamical systems13, integral equations14,15 and 
integro-differential equations16

In Section 2, we review some properties of TFs. In 
Section 3, stochastic operational matrices of TFs are pre-
sented. Section 4 is devoted for solving N-SDE. In Section 
5 is prepared convergence analysis of the approach. In 
Section 6 some numerical examples are provided. Finally, 
Section 7 gives a brief conclusion. 

2.  Brief Review of TFs 
Deb12 defined two m-set TFs over the interval [0,T) as 
follows 

T x h
x ih ih x i h
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i2 ( ) =

1 < ( 1) ,
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where, 10,...,= −mi , and 
m
Th = . 

TFs, are orthogonal,disjoint and complete16. 
M-set TF vectors can be considered as 
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T x T x T x T x T x T xm
T

m1( ) = [ 1 ( ),..., 1 ( )] ,   2( ) = [ 2 ( ),..., 2 ( )0 1 0 1− − ]] ,T

and 

T x T x T x T( ) = [ 1( ), 2( )] .

)(xj , a square integrable function,may be 
approximated into TF series as: 

	 ϕ(x)  ϕ^(x) = Φ Φ Φ1 1( ) 2 2( ) = ( ),  [0, ),T T TT x T x T x x T+ ∈ � (2)

where, Φ1i = ϕ(ih) and Φ2i = ϕ(i + 1)h for 10,...,= −mi
. The vectors Φ1 and Φ2 are called the 1D-TF coefficient 
vectors and 2m-vector Φ is defined as: 

Φ = [Φ1, Φ2]T.

The operational matrix for integration can be obtained 
as 12
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Let X  be a −m2 vector and B  be a m2m2 ×  
matrix; then, it can be concluded that 

	 ),(~=)()( xTYYxTxT T � (3)

and 

	 T x BT x BT xT ( ) ( ) = ( ),Æ ),(ˆ=)()( xTBxBTxT T � (4)

in which )(=~ YdiagY . Elements of B̂ ,a m2  
vector,are equal to the diagonal elements of .B Finally, 
integration of )(xj  can be approximated as follows:

0 0
( ) ( ) ( ).

x x T Ts ds T s ds PT x∫ ∫f  Φ Φ

Any two variable function, ),( sxf , can be 
approximated by TFs as follows :

),()(=),(ˆ),( sFTxTsxFsxf T


(x) FT(s)

where,F is a 21 m2m2 ×  coefficient matrix of TFs. We 
put .== 21 mmm  So, F can be expanded as: 
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where, 1F , 2,F 3,F  and 4F are approximated 
by sampling ),( sxF  at points is  and ix  such that 

= = ,i is x ih  for .0,1,...,= mi  So, the following 
approximations can be obtained 

(F1)ij ,10,1,...,=,  ),,(=1)( −mjixsfF jiij

(F2)ij ,1,...,=1,0,1,...,=  ),,(=2)( mjmixsfF jiij −

(F3)ij 1,0,1,...,=,1,...,=  ),,(=3)( −mjmixsfF jiij

(F4)ij .1,...,=,  ),,(=4)( mjixsfF jiij

3. � Stochastic Operational Matrix 
of TFs

Stochastic operational matrix of TFs to the Itô integral is 
derived in this section. We compute )()(1

0
sdBsT i

x

∫ dB(s) and 
)()(2

0
sdBsT i

x

∫ dB(s) as follows: 
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where, )(xu  is the unit step function. These integrations 
can be divided into tree cases. At first consider x∈[0, ih):
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and 
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The result of these tree cases can be expanded in to 
TF series: 

	 1 0 10
( 1 ( )) = 1 ( ) ( ) ,..., 1( ) ,..., 2( ),

x
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where, s1P  and s2P  are mm×  stochastic operational 
matrices of TFs. These matrices can be obtained as 
follow:
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In a similar manner, the Itô integration of T2(t) is 
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where, sP , stochastic operational matrix of T(x), is 
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The Itô integration of )(xj  can be approximated as 
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4. � Solving N-dimensional 
Stochastic Integral Equation

Approximations of 
,1,...,= ),,( ),,(,),( 0 njsxgsxfyxy j  in TFs domain 

can be written as:
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such that 2m-vectors 0Y , ,Y  are stochastic TF coefficient, 
and m2m2 ×  matrices F  and n1,...,=j,G j  are TFs 
coefficients matrices. By substituting Eqs.(16-19) in (1) 
we get 
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where, Â  and n1,...,=j,Â j  are m2  vectors with 
elements equal to the diagonal entries of PYA ~

 and 
,1,...,=,~ njPYG sj  respectively. 

	 .ˆˆ
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0 j
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The linear system of equations in (20) can be solved 
easily.

5.  Convergence Analysis
This section prepares convergence analysis of presented 
approach in ).[0,1],C(  , continous functions in Banach 
space, with norm .|)(|=)( 10 xmaxx x jj ≤≤ The fol-

lowing error holds for all ([0,1])2L∈j  that is expanded 
in TFs series12:

	 ˆ|| ( ) ( ) || ,x x chf f− ≤ � (21)
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From (22), (23) and (24) we conclude 
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6.  Numerical Examples
This section is devoted for solving some exampeles to 
show efficacy of presented approach. 

Example 1. A linear stochastic integral equation is 
consideredas follows10

	 0 0 0
=1

( ) = ( ) ( ) ( ),   [0,1),
nx x

j j
j

y x y r y s ds y s dB s xa+ + ∈∑∫ ∫ � (26)

with the exact solution 
1 2( ) ( )=1 =12

0( ) = ,
n nr x B xj j j jy x y e

a a− Σ +Σ

The numerical results for 

0 1 2 3 4
1 1 1 2 4 9= , = , = , = , = , =

200 20 50 50 50 50
y r a a a a  are shown in 

Table 1. Ex  is the errors mean and Es  is the standard 
deviation of errors in k  iteration. In addition, we consider 

0.25.= 1,= 0.5,=0 sly

Example 2.Consider following example10:

=1

( ) = ( ) ( ) ( ) ( ) ( ),   [0,1),
n

j
j

dy x r x y x dx x y x dB x xs+ ∈∑ � (27)

with the exact solution 
1 2( ( ) ( )) ( ) ( )
2 =1 =10 0
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x xn n
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The numerical results for 
2

0 1 2 3
1= , ( ) = , ( ) = ( ), ( ) = ( ), ( ) =

12
x r s s s sin s s cos s s ss s s

 
are shown in Table 2. 

7.  Conclusion
In presented approach we obtained operational matrices 
of TFs to solve N-SDE. The properties of the TFs are 
used to convert the N-SDE to a system of linear algebraic 
equations. This presented approach reduces cost of com-
putations due to properties of TFs. Also this approachis 
applied easily to solve N-SDE. Presented examples show 
good accuracy of this approach. 
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