
Abstract 
Objectives: In this paper, the effect of surface tension gradient on the transport phenomenon and temperature differences 
within a power-law liquid film on an unsteady horizontal stretching sheet with heat source is been investigated. Method: 
The flow of a fluid film and the heat transfer from the subsequent stretching surface is been found by applying similarity 
transformation. The numerical computation of the problem is done with aid of Maple. The system of governing non-linear 
partial differential equation is converted to a set of nonlinear ordinary differential equation using local similarity 
transformations, then solved numerically applying the Runge Kutta Felhberg-45 method. The effect of power law index n, 
Prandtl number Pr, the unsteadiness parameter S, Space dependent heat source parameter a1, temperature dependent heat 
source parameter b1, and film thickness parameter b(= h) on heat transfer and flow are studied and graphically presented. 
And it was found that the surface tension gradient and nonuniform heating source have tremendous impact on controlling 
the rate of convective heat transfer near the boundary layer region. 
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1.  Introduction 
The study of heat transfers and flow structure due to a 
stretching boundary is gaining importance due to its many 
engineering and industrial applications, such as extrusion 
of plastic sheets, drawing of thin sheets, production of 
papers, glass blowing, metal spinning, etc. In this process, 
the final product with desired characteristics are obtained 
by pulling the sheet through viscous liquid with controlled 
cooling the pioneering works in this field are due to 
Sakiadis1 and Crane2, Crane studied a stretching flow 
past a then presented a closed form of solution to it. Since 
from then many investigators have formulated various 
aspects of this stretching sheet problem in Newtonian/ 
non-Newtonian boundary layer flow and good amount 

of references can be found in the paper by Gupta and 
Gupta3,for a non-Newtonian fluid by Rajagopal and 
Gupta4, for a viscoelastic fluid by Dandapatand Gupta5, 
Chen and Char6, Andersson et al.6,7, Siddheshwar and 
Mahabaleshwar8, Abel et al.9–11 and Liao12. The effects of 
heat transfer are very important in view of several physical 
and engineering applications. Vajravelu and Rollins13, 
Zheng and Lin14 investigated the marangoni convection 
of power-law fluids driven by power-law temperature 
gradient, Vajravelu and Nayfen15 studied the influence 
of uniform heat source/sink (temperature dependent) 
on the stretching surface and heat transfer. Abo-Eldahad 
and El-Aziz16 considered the effect of non-uniform heat 
source/sink with suction/injection. Abel et al.9–11further 
continued the work of Abo-Eldahad and El-Aziz16to 
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fluids which are viscoelastic and for a power law fluid.
Motion induced within the fluid due to variation of 
surface tension resulting from a non-uniform temperature 
distribution is an interesting fluid mechanical problem. 
Such a flow arising from the variation of surface tension 
is called Marangoni convection or thermocapillarily flow. 
Dandapatet al.17 studied the effect of thermocapillarily 
in a fluid film on the unsteady stretching sheet. This 
problem is further extended by Dandapat et al.18 to study 
the effect of different fluid properties. Arash Karimipour19 
investigated the effect of indentations on the parameters 
of heat transfer and fluid flow of an a no fluid in a 2D 
micro channel and proposed that solid volume fraction 
and Reynolds number significantly affected the heat 
transfer rate. Chen and Char20 proposed the influence of 
Marangoni convection on the heat transfer and flow pat-
tern within the power-law fluid on an unsteady stretching 
sheet. No or and Hashim21studied the effect of magnetic 
field and thermocapillarily on a thin film in an unsteady 
stretching surface.

The aim of the present paper is to investigate the 
Marangoni effect on forced convection of power-law fluid 
in a thin film on an unsteady horizontal stretching surface 
with a heat source.

2.  Mathematical Formulation
The fluid flow modelled as two dimensional, unsteady, 
incompressible viscous laminar flow on a thin horizontal 
elastic stretching sheet, emerging at the origin of a mutu-
ally perpendicular Cartesian coordinate system as shown 
in the Figure 1. The set of governing equations of conser-
vation of mass, momentum and energy are given by

	 � (1)

	 � (2) 

	

� (3)

subjected to the boundary conditions 

	  at y=l� (4a)

	  at y=l� (4b)

	  at y=l� (4c)

	 , v=0,  at y=0 � (4d)

 u and v represents velocity components in x and y 
directions respectively,  and t are temperature and den-
sity of the fluid, consistency coefficient is given by 
,where n is the power law index with  being the specific 
heat at constant pressure.  represents the non-uniform 
heat source given as

	 � (5)

With  and  are coefficient of space and temperature 
dependent heat source respectively. The fluid is termed as 
shear thinning or pseudo plastic for 0<n<1, Newtonian 
fluid for n equal one with K= μ (absolute viscosity) and 
dilatants or shear thickening for n>1.

In equation (4a), the surface tension which is usually 
considered to vary linearly with temperature,

	 � (6)

and  is the temperature coefficient of surface 

tension,  is a non-negative fluid property. Assuming the 
effect of interfacial shear by the surrounding air is consid-
ered to be negligible. However, surface-tension gradient 

 induced thermally along the interface is, 

	 � (7)

The stretching sheet velocity and temperature are 
given by

	 � (8)

	 and � (9)

respectively. In the equations (8) and (9) a and b are 
non- negative constants,  is the temperature at the slit 

and  a constant reference temperature for all  

Using the standard definition of the stream function such 

Figure 1.  Representation of the physical configuration.
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as and  , we define below the following 
similarity variables:

	 ,�(10)

	 ,� (11)

	

�(12)

	  ,�(13)

Using equations (10) – (13), the equations (2), (3) and 
boundary conditions (4) can be rewritten as 

	 � (14)

	 = �(15) 

	  ,� (16a) 

	 � (16b) 

	 � (16c) 
	 + .� (16d)

where,  the unsteadiness parameter, 
is the Prandtl number (modified), 

 is the space-dependent heat source param-

eter and  is the temperature dependent heat 

source parameter,  the value of  in free surface, 

is the Marangoni number and prime 
indicates the partial derivatives with respect to .Note the 
dimensionless quantity  the film thick nessis unknown 
and must be determined to be a part of the boundary 
value. The actual thickness of the film can be found 
from eqn.11 noting that  as ,to be

It should be noted that for Newtonian fluid the actual 
film thickness depends on time only. The above system of 
non-linear partial differential equations (14) and (15) and 
subjected to the BC’s (16a) to (16d), are converted to non-
linear ODE’s by local non-similarity methodPostelnicu25 
are then solved numerically by Range Kutta Felhberg-45 
method.

3.  Results and Discussion
We present in this paper, that the Marangoni effects on the 
heat transfer and flow within a power-law fluid over an 
unsteady stretching sheet by the influence of heat source 
is numerically investigated. The computation is done 
with aid of maple, asy mbolic computation software. The 
effect of unsteadiness parameter S, thepower-law index 
n, Prandtl number Pr,  and space dependent and 
temperature dependent heat source parameter and film 
thickness parameter  on flow and heat transfer 
are shown graphically in Figures 2–11.

Figure 2, is the plot of horizontal velocity profile  
versus  for varying values of power law index n. From 

Figure 2.  Plot of horizontal velocity f ’(η) versus film 
thickness η for different values of Marangoni number M for 
power law index a) n=0.8, b) n=1, c) n=1.2.
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Figure 2. Plot of horizontal velocity f’(η) versus film thickness η for different values of Marangoni number M 

for power law index a) n=0.8, b) n=1, c) n=1.2. 
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the Figure 2 shows that the increase in n decreases the 
horizontal velocity. The in crease in the value of n implies 
the increase in the drag which decreases the velocity. 
From the Figure 2 we observe that when the Marangoni 
effects are not taken into account (M=0) the horizontal 
velocity decreases but in the presence of Marangoni effect 
(M ) the horizontal velocity decreases initially up to 
the value of  around 2.5 and then increases to its free 
surface velocity. It is also observed that surface velocity 
of shear thickening fluid < surface velocity of Newtonian 
fluid < surface velocity of shear thinning i.e., shear thin-
ning fluids are more amenable to flow than that of shear 
thickening. Also observed that when space dependent 
heat source , and space dependent temperature source 

 increases, the energy is realized into the system which 
increases the horizontal velocity. The similar result has 
been observed by Chen22in the absence of heat source. 
The plot of surface temperature θ versus η Figure 3 for 
different values of Marangoni number M. It is observed 
from the figure that increases in M decreases for all values 
of η. This is due to the increase in film thickness because 
of the rmo capillary effects. It is also observed that with 
the increase in the values of power-law index,  and  
increases, the temperature from  to the actual tempera-
ture T. It is clear from the plot that increases in η decreases 
the θ. The increase in the value of η increases the bound-
ary layer thickness and thus broadens the temperature 
distribution. Figures 4 and 5 are the plot of horizontal 
velocity and temperature respectively versus η for differ-
ent values of Prandtl number. It can be observed that the 
increase in the values of Pr reduces the horizontal veloc-
ity profile and temperature. This observation is true in all 
the three kinds of fluids. It is evident from Figure 5 that 
the large values of Pr, results in decreasing the thickness 
of boundary layer. Figures 6andFigures 7shows the effect 
of unsteadiness parameters S with η for all three types 
of fluids. It is observed that increase in the value of S, 
horizontal velocity decreases initially and then increases 
with η after reaching the minimum value, where as in 
the case temperature decreases monotonically decreases 
for all values of η. Figure 8 is the plot of θ versus η for 
different values of space dependent heat source  and 
temperature dependent heat source  only positive val-
ues of  and  are considered in plotting the graph 
which corresponds to internal heat generation. From the 
plots it is clear that increase in the values of  and 
increases the temperature θ. The increase in the value 
of  and  increases the energy released and leads to 

Figure 3.  Plot of temperature θ versus η for different values 
of M for a) n=0.8, b) n=1, c) n=1.2
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Figure 2. Plot of horizontal velocity f’(η) versus film thickness η for different values of Marangoni number M 

for power law index a) n=0.8, b) n=1, c) n=1.2. 
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Figure 3. Plot of temperature θ versus η for different 
values of M for a) n=0.8, b) n=1, c) n=1.2 
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Figure 3. Plot of temperature θ versus η for different 
values of M for a) n=0.8, b) n=1, c) n=1.2 
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Figure 3. Plot of temperature θ versus η for different 
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4(b)
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Figure 4.  Plot of horizontal velocity f ’(η) versus film 
thickness η for different values of Pr for a) n=0.8, b) n=1, 
c) n=1.2.
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Figure 5. Plot of temperature θ versus η for different 
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Figure 5.  Plot of temperature θ versus η for different values 
of Pr for a) n=0.8, b) n=1, c) n=1.2.
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Figure 5. Plot of temperature θ versus η for different 
values of Pr for a) n=0.8, b) n=1, c) n=1.2. 
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Figure 5. Plot of temperature θ versus η for different 
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8(a)
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Figure 8.  Plot of temperature θ versus η for different values 
of n and different values of and for Pr=0.5 1) 3), 4) 5) 
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Figure 7.  Plot of temperature θ versus η for different values 
of S for a) n=0.8, b) n=1, c) n=1.2.
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a larger thermal diffusion layer that may increase ther-
mal boundary layer thickness which causes the increase 
in temperature. On comparing the Figures 8, 9 and 10 
we observe that on increasing the Prandtl number Pr 

Figure 9.  Plot of temperature θ versus η for different values 
of n and different values of and for Pr=1.0 1) 3), 4) 5) 
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decreases the temperature θ, hence temperature dis-
tribution is found to be in a narrow region within the 
liquid film. Figure 11 shows the effect of film thickness 
β with unsteadiness parameter S for n < 1 and n > 1. It is 
observed that increase in Marangoni number increases β 
for all n less than one and n greater than one.

4.  Conclusions
These are some of the few conclusions drawn from the 
present study:

The Marangoni number alters the horizontal velocity •	
and temperature. The in crease in the value of M the 
flow temperature consistently cools down.
The increase in the power law index n is to reduce •	
the horizontal velocity and there by decreases the 
boundary layer thickness.
(Boundary layer thick ness)•	 shear thinning < (Boundary 
layer thick ness) New ton ian  < (Boundary layer thick ness) 

shear thickening.

Increasing the value of Pr decreases the thermal •	
boundary layer thickness.
Increase in the space dependent and temperature •	
dependent heat source is to increase the horizontal 
velocity and temperature.
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