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Abstract
Background/Objectives: To develop a universal method for wind force and moment coefficient prediction on marine 
vessels independent of ship types. The marine vessels’ equation of motion includes hydrodynamics forces, moments and 
environmental disturbances. One of the environmental forces and moment acting on the ship originate from wind and play 
a vital role in offshore operations. Till date, wind loads are determined by statistical and regression analysis. In this paper, 
an extreme learning machine is used as a technique to predict the wind force and moment coefficients. Findings: This 
approach is novel and is common for any ship shapes. The performance of the proposed method is much more accurate 
and simplified compared with the existing tools. The result matches precisely with the experimental data. Applications/
Improvement: This method shall be an effective tool in calculation of wind loads on marine structures which is extremely 
critical in marine operations and ship maneuvering and positioning.

1. Introduction
There has been a considerable increase in the offshore 
activities in the recent times. This needs an efficient 
dynamic positioning system for safe operation of the ships. 
The ship is considered as a rigid-body and its equation 
of motion consist of hydrodynamic forces, moments and 
environmental disturbances. The hydrodynamic forces 
is composed of radiation-induced forces and damping 
forces1. The environmental forces and moments are due to 
wind, wave and currents. Wind exerts a significant force 
on marine vessels and the true distribution and magni-
tude of wind forces on the marine vessels is time-varying 
and unpredictable. In addition to the static structure, 
resonances due to excitation close to the natural frequen-
cies of the structure significantly. An exhaustive analysis 
of wind forces and moments should be carried on a scaled 
model, to make the ship control system robust especially 
in harsh environmental situation. Data obtained from 

reliable and adequate scaled model tests are required to 
calculate the forces and moments acting on ships of com-
plex shape. These tests are to be carried out on a properly 
scaled model of the full scale shape of the ship. This pro-
cess is accurate but it’s expensive and tedious.

In addition there are different numerical methods to 
estimate the wind forces (surge and sway) and moment 
(yaw) acting on ships without direct scaled model test-
ing. However these methods involve numerical statistical 
study with the data, to determine expression for esti-
mation of wind forces and moments. Beside there is no 
common feature among these methods and its heavily 
depended upon the shapes and structure of the ships. In 
order to overcome these difficulties and to identify a uni-
versal method, we propose an extreme learning machine 
in this paper.

The extreme learning machine for Single hidden Layer 
Feed forward neural Network (SLFN)    tends to provide 
better generalization performance at a faster learning 
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rate. The performance      of the network is verified by 
comparing the predicted coefficients with measured coef-
ficient from experimental tests of Blendermann2.

2. Background
In this section, brief comparisons over the different 
numerical and statistical methods used for wind force 
and moment coefficient calculation are reviewed. Wind 
forces and moments action on marine vessel shown in 
Figure 1 is determined by, 
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where windX , windY and windN are the wind forces in 
surge and sway direction and the moment in yaw direc-
tion, XC and YC  are the empirical force coefficients, 
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projected area, and ( )L m is the overall length of the ship.

Figure 1. Co-ordinates, wind Forces and moments.

Isherwood3 pioneered development of numerical 
methods by performing a multiple regression analysis 
based on earlier experimental results. For more infor-
mation, one may refer to9. Later, Gould4 devised a 

mathematical procedure to calculate the ahead force, side 
force and yawing moment on ships due to wind. These 
methods are non-parametric, require a wind tunnel test 
on a scale model, or estimate the wind loads by a refer-
ence to known values of a similar vessel.

Thirdly, Blendermann2 formulated a statistical analysis 
of the wind load exerted on marine vessels and developed 
a semi-empirical loading function to relate the character-
istics of the wind to the marine vessels. There are5,6 force 
and moment coefficients for various wind direction is 
expressed in terms of fore and side projected areas of ship 
as below:

( ) ( ) ( )
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wind wind wind
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Where 
2
a

T

pq
V

=  represents the dynamic pressure of the 
true wind.

Blendermann also provided a method for the pre-
diction of wind force on ships where the air flow is 
non-uniform with experimental data. The non-uniform 
of air flow is considered for an effective dynamic pressure.

Wind loads for Very Large Crude Carriers (VLCCs) 
can be computed by applying the OCIMF 1977 formu-
las7. This method is valid for class of vessels in the 150,000 
to 500,000 dwt. The non-dimensional force and moment 
coefficients CX, CY and CN are given as a function of rg . 
For ships that are symmetrical with respect to the xz and 
yz planes,

( ) ( ) ( ) ( )cos , sin , sin 2X r x r Y r y r N r n rC c C c C cg g g g g g= = =          (2.8)

Where 
{ } { } { }1.0, 0.8 , 1.0, 0.7 , 1.0, 0.05x y nc c c∈ − − ∈ − − ∈ − −

Indicated that the magnitude of wind forces on the 

various components of marine vessels; depend greatly on 
the character of the wind at sea8. A preliminary attempt at 
defining the wind field at sea is also represented mainly 
for offshore structures. Experimental results of different 
offshore structures are carried out in wind tunnel and 
analysis of the drag coefficients based on the structures 
has been detailed.

Details of different methods for estimating wind 
forces and moment coefficients on ships are explained. 
Two methods, Blendermann and Isherwood are used to 
estimate the drag coefficients of a container ship in loaded 
and in ballast condition. Table 1 shows the dimension and 
particulars of the container ship. The results are shown in 
Figures 2-4 for loaded container ship and Figures 5-7 for 
empty container ship. 
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Table 1. Dimension and Particulars of the container 
ship

Loaded In Ballast

Total Length (m) 210.75 210.75
Beam (m) 30.5 30.5
Lateral projected area (m2) 375L 11 2947.30
Draft (m) 11.6 9.6
Height of ship centre in 
lateral side (m)

10.08 8.67

Distance of lateral centre 
from midship (m)

3.87
(forward)

2.14
(forward)

Transverse area (m2) 801.97 857.06

Figure 2 and Figure 5 represents longitudinal force 
coefficients. For wind angles above 150 and below 
60, Isherwood method tends to overestimate the 
Blendermann experimental results.

Figure 3 and Figure 6 represents side force coeffi-
cients. For wind angles between 30 and 150, Isherwood 
method deviates more from the Blendermann results. We 
can also observe that there is some difference between 
loaded container and the container in the ballast condi-
tion. Figure 4 and Figure 7 is the yaw moment coefficient. 
In both loaded and ballast condition, the Isherwood 
method differs from the Blendermann method drasti-
cally. The coefficient calculated by Isherwood method is 
no were close to that of Blendermann. The conclusion is 
that there is no uniformity in any of the above described 
methods. The differences between the estimates obtained 
from Isherwood and Blendermann methods shall be due 
the limitations in the range of experiments. For different 
conditions, different methods perform better and so there 
is no unique method to determine the wind force and 
moment coefficient irrespective for the type of marine 
vessel. 

Figure 2. Longitudinal force coefficient, loaded container.

Figure 3.  Slide force coefficient, loaded container

Figure 4. Yaw moment coefficient, loaded container

Figure 5. Longitudinal force coefficient for container in 
ballast

A neural network technique that can estimate wind 
force and moment coefficients on ships9. Experimental 
results of 19 ships from Blendermann2 are used to train 
the network. A universal expression that is independent 
of ship types is proposed and results obtained show that 
the prediction by the network agrees very closely to the 
Blendermann experimental result. There are no details 
on the learning time of the network, training and testing 
errors.



Indian Journal of Science and TechnologyVol 9 (29) |August 2016 | www.indjst.org 4

Extreme Learning Machine for Prediction of Wind Force and Moment Coefficients on Marine Vessels

Figure 6. Slide force coefficient, container in ballast

Figure 7. Yaw moment coefficient, container in ballast

3. Methodology and Problem 
Formulation
The neural network used in9, is a feed forward neural 
network, using the back-propagation method. From liter-
atures, we know that feed forward neural network has the 
ability to approximate any complex nonlinear structures 
and provide models for a very large scale system which are 
difficult to handle in conventional parametric methods. 
However, the learning speed of feed forward neural net-
works10 is in general far slower than often required by the 
applications. The important factors for this is, 1. The slow 
gradient descent based learning algorithm which may 
easily converge to local minimum and 2. All the network 
parameters are to be tuned iteratively introducing depen-
dency between different layers of parameters. This clearly 
identifies that the feed forward neural network used in9, 

has greater chances of converging to a local minimum 
and also require numerous iterative learning in order to 
obtain better performance. So if the training sample is too 
large, the network might take several hours to converge. 
To overcome this, Extreme Learning Machine (ELM) is 
proposed for prediction of wind forces and moment coef-
ficients. The ELM randomly selects hidden nodes and 
determines the output weights analytically. The learning 
speed of ELM is thousand times10 faster than he tradi-
tional feed forward network and is able to obtain better 
generalization. It also provides smaller training error and 
smaller norm of weights. As the expression of wind force 
and moment coefficients Isherwood3, is a linear fit as seen 
in (2.4), (2.5) and (2.6). This linear relation between the 
output and the vessels parameters makes it much more 
realizable in ELM. 

Figure 8. ELM neural network with linear nodes

The architecture of the proposed SLFN ELM is shown 
in Figure 8. Where the output layer has one linear node, 
hidden layer has K nodes and the input layer has five 
nodes.

From the Figure 8, the input data vector Xn and output 
data Cm can be expressed as below:

( )1 2 3 4 5 6, , , , , T
nX X X X X X X=                         (3.1)
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5 rX g= and m=1,2,3 refer to longitudinal force coeffi-
cient, side force coefficient and yaw moment coefficients 
and K is the number of hidden neurons.
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The activation function g(y) is chosen to be Gaussian 
function as follows,

2

2( ) exp
2

yg y
s

 −
=  

 

     (3.3)

Where the Gaussian width is chosen randomly based 
on the number inputs.

The input to each hidden layer neuron is as follows,

1

n

i tf
j

y W
=

= Σ          (3.4)

Where ( )     if j iW X m= −  is the radial distance 
between the input and centre of hidden neurons   im . The 
hidden layer output at kth neuron as follows,
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and the Hidden layer Output matrix H is as follows,
H = [h1, h2…. hk ]

T                                 (3.6)
It is seen from10,11 that ELM is treated as a linear net-

work and the output weight matrix is computed using the 

generalized Moore-Penrose inverse of the hidden layer 
output matrix as follows,

H Cb +

=      (3.7)
Where H+ is the generalized Moore-Penrose inverse 

of the matrix H, b  is the output weight matrix and C is 
the desired output data.

4. Design of ELM SLFN
We have implemented three number of networks as shown 
in Figure 8, where network one predicts Longitudinal 
force coefficient, network two predicts side force coeffi-
cient and network three predicts yaw moment coefficient 
respectively. The training data used in this network is 
normalized between [-1, 1]. The centre of hidden neu-
rons is selected randomly from the normalized input of 
the training data. Upon selection of   im  there is in fact 
no necessity to tune it further and the Hidden Layer out-
put H actually remains the same once random values are 
assigned for   im  in the beginning of learning10. The upper 
bound on the number of hidden neurons is the number of 

Table 2. Ship particulars used for validating ELM

LOA B(m) D(m) AL(m2) AT(m2) C(m)
Gas 
Tanker 
(loaded)

274 47.2 10.95 7537.41 801.97 -3.87

Gas 
tanker 
(ballest)

274 47.2 8.04 8313.74 1827.12 -2.53

Tanker 
(loaded)

351.4 55.4 23.5 3401.47 1131.79 -24.45

Tanker 
(ballast)

351.4 55.4 10.625 7839.63 1803.93 -8.32

Table 4. Training and Testing Error
Itr. No Network1

Train M.E
(Cx) Test
M.E

Network1
Train M.E

(Cy) Test
M.E

Network  1
Train M.E

(CN) Test
M.E

1 0.0686 0.0678 0.0445 0.0445 0.0396 0.0422
2 0.0662 0.0637 0.0479 0.0577 0.0371 0.0399
3 0.0616 0.0633 0.0451 0.059 0.0413 0.0405
4 0.0653 0.0602 0.0509 0.0469 0.0395 0.0362
5 0.0677 0.0719 0.0465 0.0545 0.0398 0.0472
6 0.0686 0.0797 0.0423 0.0621 0.0379 0.043
7 0.0681 0.0873 0.038 0.056 0.0383 0.0303
8 0.0655 0.0893 0.0476 0.0477 0.0392 0.0402
9 0.0714 0.0734 0.0419 0.0612 0.0388 0.0392
10 0.0614 0.0831 0.0482 0.0482 0.0382 0.0346
Mean 0.0664 0.0074 0.0453 0.0538 0.039 0.0393
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distinct training samples, that is N K≤ , where N is the 
total number of training samples (Xn, Cm). The experi-
mental data of 4 ships2 used to validate the performance 
of the network is listed in Table 2. The experimental data 
of 20 ships2 used to train the network is listed in Table 3.

5. Results and Discussion
A total of 1162 samples are used to train the network. The 
number of hidden neurons used on all three networks 
is K=150. To illustrate the performance of the ELM in 
prediction of wind force and moment coefficient, com-
parisons between the predicted output of the network and 
Blendermann4 experimental results are shown in Figures 
9-12. Figure 13 shows the training error for the three net-
works. Each of the three networks are trained repeatedly 
for 10 iteration and the mean square training error and 
testing error of each iteration for the three networks is 
shown in Table 4 is Training and Testing Error.

From Figures 9-12, we can see that the prediction of 
wind force and moment coefficient by the proposed ELM 
SLFN is far efficient that the feed forward neural network 
proposed in9. The network has obtained better general-
ization of training data. For the gas tanker and tanker in 
both loaded and in ballast condition as shown in Figures 
9-12, the longitudinal and side force coefficients and yaw 
moment coefficient follows the measured experimen-
tal results closely. From Figure 13 and Table 4, we can 
observe that the training error is on average for the three 
networks are bounded below 0.07.

The learning time of the network is 4.08 seconds.

      (a)

      (b)

     (c)
Figure 9. (a), (b) and (c) shows CX, CY and CN for the gas 
tanker in loaded condition.

    (a)

    (b)

    (c)
Figure 10. (a), (b) and (c) shows CX, CY and CN for the gas 
tanker in ballast condition.

    (a)
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   (b)

     (c)
Figure  11. (c)Figure 11. (a), (b) and (c) shows CX, side force 
CY and CN for the tanker in loaded condition.

6. Conclusion
In this paper, an Extreme Learning Machine for SLFN 
to predict the wind force and moment coefficients has 
been developed. We observed from the results that the 
prediction of the network is very much matching the 
experimental results from Blendermann4 with signifi-
cantly minimum mean square error. The network has 
shown faster learning rate and much more accurate 
generalization than the feed forward back propagation 
proposed in9. This technique provides a universal expres-
sion to determine the wind force and moment efficiently 
irrespective of the geometry and shape of the vessel. This 
avoids the tedious and expensive numerical, regression 
analysis of wind tunnel test data in calculation of drag 
coefficients as discussed in section 2. The paper has dem-
onstrated that ELM can be used an as effective alternative 

   (a)

   (b)

   (c)
Figure 12. (a), (b) and (c) shows CX, CY and CN for the 
Tanker in Ballast Condition.

    (a)

     (b)

    (c)
Figure 13. (a), (b) and (c) shows the training error of the 
network prediction CX, CY and CN.
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to wind tunnel test for calculation of wind force and 
moment coefficients.
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