
Abstract
Background/Objectives: The objective of this paper is to develop a novel estimation algorithm based target tracking 
simulator for underwater target tracking applications. Methods/Statistical Analysis: An own ship observes corrupted 
sonar bearings from a radiating target and finds out Target Motion Parameters (TMP) - viz., range, course, bearing and 
speed of the target. The  issue  is inherently nonlinear as the bearing measurement is non-linearly related to the target 
state. CKF is a new nonlinear filter for state estimation. The modeling of target state and measurement vectors is carried 
out. CKF is integrated into the model to result in evolution of simulator.   Extensive performance evaluation of CKF with 
respect to bearings-only target tracking problem in Monte-Carlo simulation is carried out and the results are presented. 
Findings: CKF depends on spherical-radial cubature rule that makes it potential to numerically figure variable moment 
integrals encountered within the  nonlinear  filter.   The underwater passive target  tracking following  Cubature Kalman 
filter is explored in this paper. Application/Improvements: The results obtained are satisfactory and UKF can be used in 
futuristic submarines in Indian Navy owing to its advantages as envisaged in this paper.
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1.  Introduction
In ocean  atmosphere, 2-dimensional bearings-only 
target motion analysis  is mostly  used.  An  observer 
monitors corrupted sonar  bearings from a  radiating tar-
get in passive listening mode.  It’s  assumed that the hull 
mounted  sonar  within the  observer platform picks up 
the signal and generates bearing measurements of the 
target. For  range observability, the observer  usually  per-
forms S maneuver on line of sight as shown in Figure 1, 
as bearing measurements  are only available to discover 
out the target motion parameters viz, range, course, bear-
ing and speed of the target. In Bearings-  Only Target 
(BOT),  range  measurements  are inaccessible, the bear-
ing measurements are non-linearly associated with  target 
states, creating the total method inherently non-linear. For 
presenting the ideas in clarity, it’s assumed that the target is 
moving at constant speed1-4.

Figure 1.  Observer in S-maneuver.

The authors are motivated by the paper written by 
Pie. H. Leong et.al1. Extensive mathematical modeling 
is carried out for Cubature Kalman Filter (CKF), Range- 
Parameterized CKF and Gaussian-Sum CKF for 
bearings-only target tracking1. Their effort is highly appre-
ciated. However, the algorithms are evaluated using target 
position errors only. Target course error and target speed 
error are also required for passive target tracking applica-
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tions. As this research work is useful for surveillance in sea 
waters, some more information like errors in target course 
and speed are also required.

In intercept guidance algorithm and various other 
weapon guidance algorithms, the future position of tar-
get location is determined by present position as well as 
course and speed of the target. Target position error does 
not provide any information regarding the course and 
speed errors. Various tactical scenarios also need to be 
considered for performance evaluation of the bearings- 
only target tracking algorithms.

The observer carried out one maneuver and the 
length of each leg is 15 minutes approximately. In gen-
eral, one observer maneuver is not sufficient. The first 
observer maneuver makes the process observable and the 
second maneuver is required to get better solution and 
third maneuver is required to obtain the required solu-
tion. Additionally, fourth observer maneuver may be 
required in case of highly noisy bearing measurements 
or if the range increases with time (range is opening). 
In1, sampling interval chosen is 1 minute which leads to 
availability of fewer bearing measurements. In real time 
environment, integration time at the sonar is 1 second 
approximately for bearing measurement. In this paper, it 
is chosen as 1 second.

The scenarios chosen in1 are far away from practical 
view point. In highly nonlinear scenario, the turning rate 
of observer is infinite which is practically not feasible. In 
real time environment, the maximum possible observer 
turning rate is 0.5o/s and 1o/s in case of submarine and 
ship respectively. Another important issue is initializing 
the state vector of the target2–7.  Here, the observer course 
is assumed to be target course with 180 degree addition. 
In BOT, target course and target speed cannot be found 
out initially.

Non-linear filters estimate the state of a non-linear 
stochastic process from Gaussian corrupted bearing 
measurements. The standard technique usually applied 
for non-linear applications is the Extended Kalman 
Filter (EKF). But, in case of severe non-linearity’s such 
as BOT, the EKF is unstable and it diverges. Improved 
non-linear filtering algorithms such as UKF, CKF, 
Particle Filter (PF) etc. are discussed in literature8–12. 
Various scenarios considering different observer and 
target geometries, speeds and different ATBs are sim-
ulated in Mat lab/PC environment for performance 
evaluation of UKF and CKF.

Section 2 describes mathematical modeling of the 
bearing measurements, target state equation, measure-
ment equations. In section 3, initialization of target state 
vector and its covariance matrix of CKF algorithm is 
elaborated. Performance evaluation of these algorithms is 
discussed in section 4. Summary and conclusion are pre-
sented in section 5. 

2.  Mathematical Modeling
Let the target state vector be Xs (k) where 
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mathematical complexity and for easy implementation. 
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Here ξ (k) is error in the measurement and this error is 
assumed to be zero mean Gaussian with variance σb

2. The 
measurement and plant noise are assumed to be uncor-
related to each other. Equation (2) is a nonlinear equation 
and is lineralized by using Taylor series expansion for Rx 

and Ry. The measurement matrix is given by
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where R̂X and R̂Y  are estimated values of range compo-
nents. Since the true values of range components are not 
known, the estimated values are used in eqn.(3). The tar-
get state dynamic equation is given by
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where φ  and bare transition matrix and deterministic vec-
tor  respectively. The transition matrix is given by
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where, t is sample time
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xo and yo are observer position components.
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w(k), the plant noise, is assumed to be zero mean white 
Gaussian with
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The measurement and plant noises are assumed to be 
uncorrelated to each other.

3.  Cubature Kalman Filter 
Algorithm

1.	 The unit sigma points are calculated as
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where ei denotes a unit vector in the direction of the coor-
dinate axis i.

2.	 Approximating the integral as
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where P  is a matrix square root defined by =P P P T  

It is easy to see that the approximation above is a 
special case of the unscented transform with parameters 
α β= =1, 0 and =k 0

With this parameter selection the mean weight 
is zero and the unscented transform is effectively a 
2n-point approximation as well. Using third order 
spherical cubature integration rule, the CKF algorithm 
is as follows.

•	 Prediction: 

1.	 The sigma points are calculated as
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	 ξ =
=

− = +





 −

ne , i 1,....,2n

ne ,i n 1,....,2n.
(i) i

i n
	 (14)

2.	 The sigma points are propagated through the dynamic 
model
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•	 Updation

1.	 The sigma points are formed as

	 ξ= + =− −X m P , i 1,.....,2n,k
(i)

k
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k
(i) 	 (17)

where, the unit sigma points are defined as in Equation
2. Sigma points are propagated through the measure-

ments model as
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3.	 The predicted mean µk, the predicted covariance of 
the measurement Ck, and the cross-covariance of the 
state and the measurement Sk are calculated as
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4.	 The filter gain and Kk the filtered state mean mk and 
covariance Pk are calculated as
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4.  Performance Evaluation of the 
Algorithm
As the aim of this paper is to analyse the performance of 
CKF, the situation in underwater, at the time of testing it 
is assumed to be with favorable conditions and hence the 
measurements are obtained for every second8–14. 

The algorithm is implemented using MATLAB in a 
PC environment. The noise in the bearing measurement 
is assumed to be following white Gaussian with Standard 
Deviation (SD) of 0.5o. So, each bearing measurement 
available at every 1 sec is added with white Gaussian of SD, 
0.5o.

It is assumed that the observer makes S-maneuver at a 
turning rate of 0.5o/s on the line of sight as shown in Figure1. 
The observer travels for 2 minutes in the first leg at 90o course 
and then turns towards 2700 course. In the second leg, it trav-
els for 4 minutes and then turns towards 90o course.

The third and fourth legs are just like second leg 
except in the third leg, observer course is 2700 and in 
fourth leg it is 90o. The length of each run is 42 minutes 
(2520 samples) covering 5 legs with 4 maneuvers. 
The algorithms are evaluated using scenarios given in 
Table 1 Table 2 and Table 3. The targets are assumed to be  
submarine, ship and torpedo in Table 1, Table 2 and 
Table 3 scenarios respectively. The target range and speeds 
are chosen which are close to realistic values.

Based on the intercept target weapon guidance algo-
rithm the acceptance of the solution of this algorithm is 
assumed to be as follows18–24.
Error in the range estimate<=8% of the actual range
Error in the course estimate<=3o.

Scenario Initial Range in 
meters

Initial bearing in 
degrees

Target Speed in 
meter per second

Observer Speed in 
meter per second

Target Course in 
degrees

1. Submarine to Submarine 4800 0 6 5 168
2. Submarine to ship 9000 0 9 5 165
3. Submarine to Torpedo 18000 0 12 5 162

Scenario Initial Range in 
meters

Initial bearing in 
degrees

Target Speed in 
meter per second

Observer Speed in 
meter per second

Target Course in 
degrees

1. Submarine to Submarine 5500 0 5 5 132
2. Submarine to ship 9300 0 8 5 137
3. Submarine to Torpedo 18500 0 10 5 130

Scenario Initial Range in 
meters

Initial bearing in 
degrees

Target Speed in 
meter per second

Observer Speed in 
meter per second

Target Course in 
degrees

1. Submarine to Submarine 5300 0 6 5 100
2. Submarine to ship 9600 0 8 5 120
3. Submarine to Torpedo 19000 0 10 5 110

Table 1.  Scenarios chosen for low ATB

Table 2.  Scenarios chosen for medium ATB

Table 3.  Scenarios chosen for high ATB
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For example, in Table 1, the scenario describes a low
ATB submarine target moving at 6 m/s at the course of
168o. Initial range between the target and submarine is
4800m and the target moves at an initial bearing of 0o.
The observer moves at a speed of 5 m/s in S-maneuver as
shown in Figure 1.

With CKF algorithm, the estimated range, course and
speed of the target are converged at 452,854,668 seconds
and hence the total solution is said to be converged at
854 seconds, which is tabulated in Table 4. The errors in
estimated target motion parameters with respect to time
obtained with CKF are shown in Figure 2. Similarly, for
all other scenarios, same procedure is followed.

       
        

       







        (a)

           (b)

         (c)

Figure 2. Errors in estimates for low ATB (single run). (a) 
Error in Range estimate. (b) Error in Course estimate. (c)
Error in Speed estimate.

Scenario                          CKF
R C S Total solution

1.  Submarine to
Submarine

NC 1008 NC NC

2.  Submarine to
ship

452 854 668 854

3.  Submarine to
Torpedo

453 512 872 872

Scenario                  CKF
R C S Total solution

1.  Submarine to
Submarine

563 872 628 628

2.  Submarine to
ship

317 508 234 508

3.  Submarine to
Torpedo

343 793 280 793

Scenario              CKF
R C S Total solution

1.  Submarine to
Submarine

362 640 214 640

2.  Submarine 
to ship

312 661 218 661

3.  Submarine 
to Torpedo

340 805 308 805

Table 4. Convergence time in seconds for Low ATB
Scenarios with single run

Table 5. Convergence time in seconds for Medium
ATB Scenarios with single run

Table 6. Convergence time in seconds for High ATB
Scenarios with single run
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                          (a)                                            (b)

                                            
(c)

Figure 4.  Errors in estimates for high ATB (single run). (a) Error in Range estimate. (b) Error in Course estimate. (c) Error 
in Speed estimate.

 
                    (a)                                          (b)

                                                  (c)
Figure 3.  Errors in estimates for Medium ATB (single run). (a) Error in Range estimate. (b) Error in Course estimate. (c) 
Error in Speed estimate.
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                        (a)                                             (b)

                                                    (c)

Figure 5.  RMS errors of estimates for low ATB (MonteCarlo runs).(a) Error in Range estimate. (b) Error in Course estimate. 
(c) Error in Speed estimate.

 
                            (a)                                        (b)

                                                (c)

Figure 6.  RMS errors in estimates for medium ATB scenario (Monte Carlo runs). (a) Error in Range estimate. (b) Error in 
Course estimate. (c) Error in Speed estimate.
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5.  Summary and Conclusion
In underwater, the observer can be submarine and the 
target will be submarine, ship or torpedo. Accordingly, 
scenario is considered covering low ATB. CKF algorithm 
is considered for the performance evaluation with respect 
to convergence of the solution. Simulation was carried 
out and the solution for CKF obtained. 
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