
Abstract
Developing multithreaded programs has been difficult, especially when dealing with non-deterministic programs. It
is nearly impossible to achieve completeness and soundness for multithreaded programs. In recent years, a number
of verification tools have been developed in order to support multithreaded programs to achieve completeness and
soundness. Verification tools developed through analyzing correctness properties. However, existing tools are still unable
to discover all possible correctness properties for multithreaded programs and most of the tools only verifies deterministic
multithreaded programs. In this paper, we have given an empirical study on the correctness of multithreaded programs and
analyzed all possible correctness properties in existing verification tools. We have compared existing tools with a number
of possible properties and evaluated possible improvements for developing a correct multithreaded program. With the
findings of these properties, we also analyzed the high-priority and low-priority correctness properties for multithreaded
programs.

An Empirical Study over Correctness Properties for
Multithreaded Programs

 Abdul Rahim Mohamed Ariffin, Isma Farah Siddiqui and Scott Uk-Jin Lee*

Department of Computer Science and Engineering, Hanyang University, ERICA, South Korea;
rahim750413@hanyang.ac.kr, isma2012@hanyang.ac.kr, scottlee@hanyang.ac.kr

Keywords: Correctness, Multithread, Non-deterministic, Properties, Verification Tools

1.  Introduction
Designing and implementing multithreaded programs is a
difficult task especially when they are capable of producing
unpredictable outputs. These outputs are due to developer’s
lack of understanding of the problem and their inability
to explore the mandatory properties in developing a cor-
rect multithreaded program. A multithreaded program is
a program consisting of multiple threads that run simul-
taneously in program executions. A single thread may
take several tasks in one operation and executes through
that single thread. The difficulty of multithreading is to
maintain consistency and control of thread activities in
a program execution caused by unpredictable and unex-
pected outcome often occur. There have been a number
of studies which proposes algorithms or introduces new
correctness properties for multithreaded programs in the
past few years1,2. However, the evitable outputs still occur
while executing multithreaded programs. There exist a
number of properties that are commonly considered to

test and execute a multithreaded program. The properties
are atomicity violation detection, linearizability checking
and serializability checking.

Achieving correctness and completeness are essen-
tial to correctly develop multithreaded programs. There
exist a number of model checkers and verification tools,
which support and detect correctness properties in mul-
tithreaded programs. However, existing tools focuses
on one of the common correctness properties and only
a few tools provide detection and counterexamples for
more than one common correctness properties3–8,12. This
is due to different approaches and goals by developers of
each tool. Furthermore, the difficulties and constraints
to develop multithreaded applications are also among
the major concerns in analyzing correctness properties.
Therefore, in this paper, we analyze the common correct-
ness properties used and evaluate which property can be
referred to as mandatory or non-mandatory property.
We also discuss a number of specific tools for specific
properties and compare between existing methodologies

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(17), DOI: 10.17485/ijst/2016/v9i17/92730, May 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

An Empirical Study over Correctness Properties for Multithreaded Programs

Indian Journal of Science and Technology2 Vol 9 (17) | May 2016 | www.indjst.org

and techniques in developing multithreaded programs.
We will, then, suggest which among the methodologies
and techniques, is the best in the aspect of verifying the
completeness and soundness of a multithreaded pro-
gram while detecting false positive and false negative
inputs. In order for these criteria to be met, the tool
should be able to perform verification of multithreaded
applications correctly. Therefore, we discuss the proper-
ties in existing tools and analyze which properties have
a high or low priority to correctly verify multithreaded
programs.

2.  Mandatory Properties
These are most common correctness properties to have in
multithreaded programs. We labeled these as mandatory
properties because these properties are always mentioned
and discussed to specially tackle the common problems
found in multithreaded programs7–11. There has been a
number of model checkers and verifiers following these
properties to develop their verification tools. Common
correctness properties that are often being mentioned
when developing multithreaded programs are atomic-
ity, linearizability and serializability. These properties
are important factors and often set as benchmarks for
verification tools to perform checking and provide coun-
terexamples for multithreaded programs successfully.

2.1  Atomicity
Atomicity is as a method that for a specific set of code
sequence it is atomic if for every arbitrarily interleaved
program execution, there is an equivalent execution with
the same overall behavior where the atomic method is
executed serially3. However, when atomicity violation
occurs, it is difficult to detect where the error has occurred
after each interleaving of program execution. In another
research5, authors proposed strong atomicity, which
allows the atom blocks to be overlapped. This enables the
atom blocks to be executed one by one leaving the com-
piler to analyze which atom blocks will be executed first.
However, this proposed method can be exhaustive when
dealing with a larger data set in multithreaded applica-
tions. There exists a number of developed tools with
various techniques to detect atomicity violation such as
ASR6, an atomicity violation checker which uses subspace
reduction method to expose atomicity violation bugs
found in multithreaded programs. Semantic Atomicity7

which was developed to act on programmer-defined
notion of equivalent behavior to specify and check
atomicity for multithreaded programs. There is also an
approach8, which synthesizes tests for detecting atomicity
violations. This approach analyzes the sequential execu-
tions in multithreaded programs to perform detection on
atomicity violation.

These existing tools and techniques proposed in
detecting atomicity violation are a valid candidate frame-
work to achieve correctness of multithreaded programs.
Figure 1 shows the atomicity violation checking in Spin24
using Promela language. This code executes the threads
that are called atomically by the verifier and helps prevent
other threads to interfere in the program execution. Thus,
atomicity violation does not occur.

2.2  Linearizability
Linearizability is a correctness conditions for concurrent
objects that exploits the semantics of abstract data types
in concurrent systems9.Linearizability is achieved when
there exist serial executions, which holds for both final
program states with atomic blocks in the same execution
and there is no overlapping for the atomic block execu-
tions. Linearizability is possible when all concurrent
executions in multithreaded programs happen almost
instantaneously at a given point. A number of research has
been done in linearizability checking for multithreaded
programs. This is because when developing multithreaded
programs, linearizability is important for allowing mul-
tiple threads to be executed simultaneously at a time and
this is an important proof that multithreaded programs
run synchronously. Line-Up10, was introduced as a tool to
automatically check linearizability in multithreaded pro-
grams that execute deterministically. Another correctness
property for multithreaded programs is serializability

Figure 1.  Spin Promela code to perform checking on
atomicity.

Abdul Rahim Mohamed Ariffin, Isma Farah Siddiqui and Scott Uk-Jin Lee

Indian Journal of Science and Technology 3Vol 9 (17) | May 2016 | www.indjst.org

which is similar to linearizability, will be explained in
more detail in Section 3.

Figure 2 shows the execution of multiple threads are
linear at a certain time. This phenomenon illustrates that
linearizability is achieved. It is essential to indicate that
the execution of a thread’s invocation and its response
happens almost instantaneously.

2.3  Serializability
Serializability is achieved when there exist serial executions,
which holds for a sequence of thread’s final program state
with atomic blocks in the same execution. A transaction
schedule is serializable if its outcome is equal to the out-
come all of its transactions which were executed serially13.

Serializability also an important factor when dealing
with multiples threads, since the thread’s executions are
dependent on the execution of its previous threads. The
sending and receiving of data in threads happens quickly
and simultaneously. Therefore, the impact of serializ-
ing the operation to send and also retrieve data in one
operation may often reduce execution time and memory
thresholds. There are a number of serializability checker
which automatically detects the serialize threads execu-
tions. Figure 3 shows the serial execution of two programs.
The threads execution that is serialized are more efficient
and confirms atomicity for the thread’s program execu-
tion, while the other program depends on the completion
of other threads to continue its execution.

3.  Non-Mandatory Properties
There are a number of uncommon correctness properties
mentioned in various research. These properties
often have already been handled or it occurs rarely in

Figure 2.  Linear execution of threads in a period of time.

Figure 3.  Serial execution of threads that sequentially sends
and retrieves data with a serialize execution of threads.

multithreaded programs. These uncommon correct-
ness properties often consisting of deadlock avoidance,
determinism checking, and race condition detection.
These are non-mandatory properties because when
developing verification tools, these properties are often
either assumed to not occur or the occurrence level in
multithreaded programs are low.

3.1  Deadlock Avoidance
Deadlock occurrence is commonly known to happen
while executing multiple operations simultaneously,
and this common problem also is an important issue
to be taken care of in development of multithreaded
programs. Therefore, there has been a number of veri-
fication tools developed for dealing with deadlock
occurrences. In definition, deadlock occurs when there
exist threads that are waiting for the other threads to
complete its execution. The threads in waiting state will
have to be in idle state until the other threads executions
has completed28.

As mentioned in a number of studies16–19, deadlock
is always handled in the early phase of multithreaded
programs development. In addition, existing tools for
atomicity violation such in3, also perform detection
on deadlock avoidance in multithreaded programs.
Therefore, deadlock avoidance property often being
ignored and assumed to not occur when other property
such atomicity is not violated. Figure 4 shows the dead-
lock occurrence in a simple multiple threads executions
environment. However, in Section 4 the importance
of deadlock detection in multithreaded programs is
discussed.

An Empirical Study over Correctness Properties for Multithreaded Programs

Indian Journal of Science and Technology4 Vol 9 (17) | May 2016 | www.indjst.org

Figure 4.  An example of deadlock occurrence.

3.2  Deterministic Behavior
Enforcing determinism in multithreaded programs is
one common method when dealing with problems such
as unpredictable or unexpected outcomes. To address
this problem, there has been a number of tools that were
developed to check for determinism in multithreaded
programs. However, enforcing deterministic behavior in
the programs or by modifications, a number of problems
may occur for example, synchronicity. The presence of
data races, unexpected results or unnecessary memory
consumption in multithreaded programs may occur.

Furthermore, modification on the inputs would
result in threads with unexpected outcomes, especially
when enforcing threads deterministically executed.
Figure 5 displays the threads activities with deterministic
attributes and conventional threads execution in multi-
threaded programs. However, in most verification tools
determinism checking is not a high-level criterion in veri-
fying multithreaded programs. This is because the tools
efficiently detect both non-deterministic and determinis-
tic multithreaded programs.

3.4  Data Race Detection
Data race occurs when multiple threads accesses memory
at a same time in the same program execution. For
example, when two threads are targeting to access the
same memory, and are executing with the same data.
Hence, unpredictable or wrong outputs are produced in
the multithreaded programs. To address this problem, a
number of tools were developed to detect the occurrences

Figure 5.  Thread activitie of deterministic and conventional
multithreaded program.

of data race20–21. There are also techniques proposed for
preventing data race to occur, and most of the proposed
techniques are operated during runtime20. However,
specific tools developed for data race detection cannot
provide determinism checking or other common correct-
ness properties. In definition, a race hazard is the behavior
of a system when the output is dependent on the sequence
of other events. It is a bug when events do not happen in
the order intended. The term originates with the idea of
two signals racing with each other to influence the output
first29. Therefore, data race is a common problem which
occurs in multithreaded programs.

Figure 6 displays a situation where two threads are
accessing the same data at the same time. Most of the
verification tools consider data race detection as one of
the uncommon correctness properties in developing mul-
tithreaded programs22,23. However, data race detection is
also not a high-level criterion in checking multithreaded
programs. This is due to the assumption that data race is
expected to not occur because if the tools checks for ato-
micity in multithreaded programs, it is already considered
as data race free1,2.

4. � Anaysis of the Common
Property in Existing
Verification Tools

In this chapter, we analyze the existing specific tool with
the target properties. We also analyze existing verification
tools which can cover most of the properties. Then we
evaluate the impact and priority level of each property to
guarantee correct development multithreaded programs.

Abdul Rahim Mohamed Ariffin, Isma Farah Siddiqui and Scott Uk-Jin Lee

Indian Journal of Science and Technology 5Vol 9 (17) | May 2016 | www.indjst.org

Table 1.  Correctness Properties with existing tools

Tools (Verifiers and
Model Checkers

Common Correctness Property for Multithreaded Programs
Atomicity
violation

Linearizability Serializability Deadlock Determinism Data race

Atomizer ✓ – – ✓ – –
Strong Atomicity ✓ – – – ✓ –

ASR ✓ – – – – –
Line-Up – ✓ – – – –

Round-Up – ✓ – – – –
CAVE – ✓ – – – –

ASSETFUZZER – – ✓ – – –
SBRS – – ✓ – – –
SPIN ✓ ✓ ✓ ✓ – ✓

Verifast – ✓ ✓ – – ✓
Threader ✓ ✓ ✓ ✓ – –

Figure 6.  A scenario of data race problem. Two threads
accessing the same source data at the same time.

We used the properties discussed in previous section as
benchmark to do this analysis.

4.1  Mandatory Properties
As mentioned previously in Section 2, there has been a
number of verification tools that were developed to spe-
cifically handle certain correctness properties in verifying
multithreaded programs. This is because while developing
multithreaded programs, it is very difficult to guarantee
completeness and soundness of the program. Accordingly,
existing verification tools that were developed to find
violations in multithreaded environment were not able to

provide evidence that the multithreaded programs under
study were correct. In this analysis phase, we gather exist-
ing tools and model checkers along with the previous
techniques known to handle these common correctness
properties.

Based on Table 1, Atomizeris a dynamic atomicity
checker for Java multithreaded environment 3. This tool
specifies in detecting atomicity violation and at the same
time, avoids occurrence of race conditions. However, this
tool provides no detection for determinism as it assumes
the program in Java multithreaded environment would
run deterministically. A recent proposed technique,
Abstraction Subspace Reduction (ASR), systematically
reduce the ratios of atomicity violation in abstraction
level of concurrent programs and it has been proven to
efficiently improve the success rate to perform detection
on atomicity violation.

Other mandatory properties such linearizability and
serializability are also common properties in multithread-
ing environment. There have not been many researches
in detecting linearizability successfully for multithreaded
programs, due to linearizability as a mandatory attribute
when developing multithreaded programs. However, there
exist problems with the absence oflinearizability check-
ing. Existing tools like Line-Up, Round-Up10–11, which
automatically detects linearizability, efficient to support
the verification of multithreaded programs. Threads that
shares data are inter-correlated with other threads when
running the same data in program executions, for some

An Empirical Study over Correctness Properties for Multithreaded Programs

Indian Journal of Science and Technology6 Vol 9 (17) | May 2016 | www.indjst.org

synchronicity problem occurred, forcing unexpected
result to occur. SPIN is among the verification tools that
provide linearizability checking for multithreaded pro-
grams24. In addition, linearizability also require atomicity
in the program. This is because when multiple threads call
a linearizable object concurrently, the object behaves as if
the methods are called in some linear sequence, hence two
overlapping calls could be made linear in some arbitrary
order.

Serializability are mainly involved in serializing data-
bases because of inter-relations of the data tables and
how the data is being accessed in the database14. In addi-
tion, if there exist a set of operations that result from the
sequence of instruction on a single-threaded program,
we can say that we have achieved serializability because
all of the operations are executed one after another.
However, this is not achievable by default through
multithreaded programming. It is crucial to ensure seri-
alizability in order to guarantee that the program works
correctly in multithreaded environments. Nonetheless,
serializability also plays an important role in correctly
develop multithreaded programs as the threads in the
programs captures similar characteristics when access-
ing and updating data in multithreaded environment. In
this case, threads executions may require to act serially
to produce correct outputs. Therefore, a number of stud-
ies has been done to support serializability checking. A
tool called ASSETFUZZER12 is proposed, using a method
of detecting atomic set of serializability violation for a
series of executions in concurrent systems. The tool pro-
duces false positives in detecting the violations when the
threads scheduler is being monitored. This proves that
the proposed tool is effective and efficient in performing
verification on a serial executions of threads in multi-
threaded programs.

4.2  Non-Mandatory Properties
Although non-mandatory properties are less prioritized
compared to mandatory properties, these properties
also play an important role in the development of mul-
tithreaded programs. Such properties like deadlock
avoidance, data race detection and deterministic behavior
are required in determining correct multithreaded pro-
grams. Furthermore, there are also a number of tools that
were developed to specifically perform detection on these
properties. Very practical and decent techniques24,26,28 for
verifying and checking non-mandatory property are avail-
able. Most of the tools presented in Table 1 have considers

non-mandatory properties through the use of mandatory
properties in the development of the tools. As such, tools
to detect atomicity like Strong Atomicity5 which can per-
form deadlock avoidance detection in the tools. On the
other hand, there is also a tool such as SingleTrack15,
which able to perform deadlock detection, even though
the tool specifically developed to perform determinism
checking.

There exist a number of verification tools which are
developed for verifying multithreaded programs. Such
tools are SPIN, Verifast and Threader23–25. In addition,
these tools mostly perform verification on a C-based mul-
tithreaded programs. Due to this fact, most multithreaded
programs developed are using C. There are also Java multi-
threaded programs, however there are only a few verifiers
like Verifast which able to perform verification for these
programs as well as single-threaded programs.

5.  Related Work
There are a number of recently developed verification
tools covering the properties mentioned in previous sec-
tions. Single Track, a determinism checker which can
only perform detection on determinism and deadlock for
concurrent programs15. This tool does not include ato-
micity checking. The verification tools such as Verifast23
and Spin24 are among the tools known to specifically per-
form verifications for multithreaded programs. However,
these tools also did not specify the correctness properties
needed in developing multithreaded programs. Verifast is
a verification tool based on separation logic and require
the developer’s “proof ” to perform verification but it does
not support for deadlock detection. Verifast assumed
that, the deadlock is prevented due to the implementa-
tion of atomicity in the multithreaded programs. It also
assumed the program execution is considered as atomic
when performing verification. Spin, a model checker
designed for performing verification for multithreaded
programs through application of high level language sys-
tem description called Promela24. However, this tool does
not provide determinism checking. This is because Spin
performs verification on multithreaded programs non-
deterministically with the use of assertion constraints
provided by the tool. Therefore, Spin does not provide
determinism checking for multithreaded programs. In
recent years, a number of studies1-2 gives comparison on
existing model checkers and verifiers. However, these
studies are based on model checkers as a testing tools.

Abdul Rahim Mohamed Ariffin, Isma Farah Siddiqui and Scott Uk-Jin Lee

Indian Journal of Science and Technology 7Vol 9 (17) | May 2016 | www.indjst.org

Hence, there are very few of existing research available
on finding the correctness properties for multithreaded
programs. Petri-nets, a formal verification tool for com-
plex distributed systems also a powerful tool that can be
used in verifying concurrency properties in parallel sys-
tems. However, it uses mainly implemented on embedded
systems and managing multiple access of shared memory
such in databases30.

6.  Conclusion
Development of multithreaded program is difficult
especially when it results in unpredictable outputs.
Therefore, finding the properties to correctly develop mul-
tithreaded programs is essential. In addition, verification
tools and model checkers have also been developed based
on these properties. In this paper, we have analyzed a
number of common correctness properties in verification
tools for multithreaded programs. We have analyzed these
properties and addressed them as a mandatory (high-
priority) properties and non-mandatory (low-priority)
properties. We have also addressed the importance of each
property in verifying correct multithreaded programs.
With these known properties, the difficulty to correctly
develop multithreaded programs can be reduced.

7. Acknowledgement
This work was supported by the ICT R&D program of
MSIP/IITP. [12221-14-1005, Software Platform for ICT
Equipment].

8.  References
1.	 Kim M, Kim Y, Kim H. A comparative study of software

model checkers as unit testing tools: an industrial case
study. IEEE Transactions on Software Engineering. 2011
Apr; 37(2):146–60.

2.	 Frappier M, Fraikin B, Chossart R, Chane-Yack-Fa R,
Ouenzar M. Comparison of model checking tools for infor-
mation systems. Proceedings of 12th ICFEM, China; 2010.
p. 581–96.

3.	 Flanagan C, Freund SN. Atomizer: A dynamic atomicity
checker for multithreaded programs. Proceedings of 31st
ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, India; 2004. p. 256–67.

4.	 Flanagan C, Freund SN, Yi J. Velodrome: a sound and
complete dynamic atomicity checker for multithreaded

programs. Proceedings of 29th PLDI: USA; 2008.
p. 293–303.

  5.	 Lu K, Zhang W, Zhou X. Strong atomicity: an efficient and
easy-to-use mechanism to guarantee atomicity. Proceedings
of International Conference on Computer Science and
Service System; China; 2012. p.562–65.

  6.	 Wu S, Yang C, Chan WK. ASR: Abstraction subspace reduc-
tion for exposing atomicity violation bugs in multithreaded
programs. Proceedings of IEEE International Conference
on Software Quality, Reliability and Security; Canada; 2015.
p. 272–81.

  7.	 Burnim J, Necula G, Sen K. Specifying and checking seman-
tic atomicity for multithreaded programs. Proceedings of
16thASPLOS; USA; 2011. p. 79–90.

  8.	 Samak M, Ramanathan MK. Synthesizing tests for detect-
ing atomicity violations. Proceedings of 10th Joint Meeting
on Foundations of Software Engineering; USA; 2015.
p. 131–42.

  9.	 Herlihy MP, Wing JM. Linearizability: A correctness
condition for concurrent objects. ACM Transactions
on Programming Languages and Systems. 1990 Jul;
12(3):463–92.

10.	 Burckhardt S, Dern C, Musuvathi M, Tan R. Line-up: a
complete and automatic linearizability checker. Proceedings
of31st PLDI; USA; 2010. p. 330–40.

11.	 Zhang L, Chattopadhyay A, Wang C. Round-up: runtime
verification of quasi linearizability for concurrent data
structures. IEEE Transactions On Software Engineering.
2015 Dec; 41(12):1202–16.

12.]Lai Z, Cheung SC, Chan WK. Detecting atomic-set seri-
alizability violations in multithreaded programs through
active randomized testing. Proceedings of 32nd ICSE; USA;
2010. p. 235–64.

13.	 Yi J, Flanagan C. Effects for cooperable and serializable
threads. Proceedings of 5th TLDI; USA;2010. p. 3–14.

14.	 Mhatre A, Shedge R. Comparative study of concurrency
control techniques in distributed database. Proceedings of
4th International Conference on Communication Systems
and Network Technologies; USA; 2014. p. 378–82.

15.	 Sadowski C, Freund SN, Flanagan C. Single Track: a
dynamic determinism checker for multithreaded pro-
grams. Proceedings of the 18th ESOP; UK; 2009.
p. 394–409.

16.	 Burnim J, Sen K. DETERMIN: Inferring likely determinis-
tic specifications of multithreaded programs. Proceedings
of 32nd ICSE; USA; 2010. p. 415–24.

17.	 Basile C, Kalbarczyk Z, Iyer R. A preemptive determin-
istic scheduling algorithm for multithreaded replicas.
Proceedings ofDSN; USA; 2003. p. 149–58.

18.	 Wang Y, Kelly T, Kudlur M, Lafortune S, Mahlke S. Gadara:
Dynamic deadlock avoidance for multithreaded program.
Proceedings 8th USENIX; USA; 2008. p. 281–94.

An Empirical Study over Correctness Properties for Multithreaded Programs

Indian Journal of Science and Technology8 Vol 9 (17) | May 2016 | www.indjst.org

19.	 Gerakios P, Papaspyrou N, Sagonas K. A type and effect
system for deadlock avoidance in low-level languages.
Proceedings of 7th TLDI; USA; 2011. p. 15–28.

20.	 Liao H, Stanley J, Wang Y, Lafortune S, Reveliotis S, Mahlke
S. Deadlock-avoidance control of multithreaded software:
an efficient siphon-based algorithm for gadara petri nets.
Proceedings of 50th IEEE CDE-ECC; USA; 2011. p. 1142–48.

21.	 Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson
T. Eraser: a dynamic data race detector for multithreaded
programs.ACM Transactions on Computer Systems. 1997;
15(4):391–411.

22.	 Ha O, Jun Y.An efficient algorithm for on-the-fly data
race detection using an epoch-based technique. Hindawi
Publishing Corporation, Scientific Programming; 2015(13).
p. 1–14.

23.	 Jacobs B, Smans J, Philippaerts P, Vogels F, Penninckx W,
Piessens F. VeriFast: a powerful, sound, predictable, fast
verifier for C and Java. Proceedings of 3rdNFM; USA; 2011.
p. 41–55.

24.	 Zaks A, Joshi R. Verifying multi-threaded c programs with
SPIN. Proceedings of 15th SPIN; USA; 2008. p. 325–42.

25.	 Gupta A, Poppeea C, Rybalchenko A. Threader: a constraint-
based verifier for multithreaded programs. Proceedings of
23rd CAV; USA; 2011. p. 412–17.

26.	 Verifying multi-threaded software with Spin [Internet].
[Cited 2016 Mar 14]. Available from:http://spinroot.com/
spin/whatispin.html.

27.	 Serializability [Internet].[Cited 2016 Mar 13]. Available
from: https://en.wikipedia.org/wiki/Serializability.

28.	 Deadlock [Internet]. [Cited 2016 Mar 3]. Available from:
https://en.wikipedia.org/wiki/Deadlock.

29.	 Race condtion [Internet]. [Cited 2016 Mar 14]. Available
from:https://en.wikipedia.org/wiki/Race_condition.

30.	 Shamim Yousefi, Samad Najjar Ghabel, Leyli Mohammad
Khanli. Modeling Causal Consistency in a Distributed
Shared Memory using Hierarchical Colored Petri Net.
Indian Journal of Science and Technology. 2015 Dec; 8(33).
Doi no:10.17485/ijst/2015/v8i33/75502

