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Abstract
Background/Objectives: This paper aims to evaluate performance characteristics of standalone Self-Excited Induction 
Generator (SEIG) under varying load condition. Methods/Statistical Analysis: Prime mover speed, excitation capacitance 
and load significantly influence the performance of SEIG. Due to nonlinear magnetization, estimation of nonlinear magnetic 
characteristics involves clumsy mathematical computation. It gives an opportunity to model nonlinear magnetization 
characteristics suitable to obtain minimum impedance and optimal capacitance for improved performance. Findings: The 
effect of regression on nonlinear magnetization curve has been discussed while estimation of magnetization reactance by 
employing regression functions. It provides optimal value of magnetization reactance to compute performance variables 
of SEIG. Solution techniques are applied to calculate frequency and excitation capacitance and compared their results. 
Regression functions with solution techniques have been applied on comprehensive data of induction machines to 
exhibit validity and accuracy of proposed scheme. Applications/Improvements: The proposed techniques reveal lower 
capacitance requirement as compared to existing piece- wise linearization model. 

1. Introduction
With advancement in new edge machine technology, 
SEIG has gained attention of researchers in the field of 
renewable energy exploration and exploitation. SEIG 
has increasingly been used in generating electrical 
energy from conventional and non-conventional energy 
sources1,2. It has relative advantages over conventional 
synchronous generators like low cost, brushless and 
rugged construction, reduced size, better transient per-
formance, lower maintenance and inherent protection 
against short-circuit3-7. Performance analysis of SEIG 
includes study of variation in performance variables viz. 
estimation of required excitation capacitance, speed vari-
ation, voltage regulation and frequency regulation under 
different operating constraints8,9.

An induction machine operates as SEIG, if rotor is 
driven by an external prime mover and an appropriate 

capacitor bank is connected across its stator terminals 
to meet the excitation requirement10. Excitation capaci-
tor affects air gap voltage, frequency, amount of current 
flowing through stator winding and efficiency of SEIG. 
Therefore optimal calculation of excitation capacitance is 
required for optimal steady state performance analysis of 
SEIG. Literature includes symmetrical components based 
on equivalent circuit model11, eigen values and eigen sen-
sitivity based iterative method12,13, per-phase equivalent 
circuit approach14 and generalized machine theory based 
d-q axis model15,16 for determination of excitation capaci-
tance. Among these methods, symmetrical component 
model fails to analyze dynamic/transient performance 
directly11. It doesn’t provide minimum and maximum 
values of excitation capacitance of SEIG. Eigen value and 
eigen sensitivity based iterative method determines mini-
mum and maximum value of excitation capacitance12,13. A 
direct approach has been proposed to determine the value 
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of excitation capacitance by solving two non-linear equa-
tions using Newton-Raphson method with resistive and 
reactive load17,18. Per-phase equivalent circuit approach 
includes load impedance and neglects core losses. It can 
be analyzed either by loop-impedance method4,14 or nodal 
admittance method19 to compute the minimum capaci-
tance required for self-excitation under loaded condition 
using trial-and-error technique20. Loop impedance and 
nodal admittance methods are lengthy, prone to errors 
and time consuming. It requires initial guess, selection of 
search space and needs to segregate admittance/imped-
ance to real and imaginary parts17. 

Required excitation capacitance for SEIG can be 
estimated by determining magnetizing reactance from 
magnetization curve. Nonlinear nature of magnetiza-
tion curve has been analyzed by piecewise linearized 
model18-22 and polynomial approximation23-25 for the ease 
of computation. These models provide approximate value 
of magnetizing reactance due to poor fitness of magne-
tization curve. This approximate value of magnetizing 
reactance gives fairly accurate values of performance vari-
ables including excitation capacitance. Optimum value of 
performance variables can be determined using precise 
value of magnetization reactance by proper fitness of 
magnetization curve. It can be accomplished by employ-
ing different regression functions in place of piecewise 
linearized approximation.

This paper proposes simplified method to calculate 
performance variables of SEIG. It reduces effort required 
to solve nonlinear equations involved in nodal admittance 
method of per-phase equivalent circuit for calculation of 
optimal excitation capacitance. Levenberg-Marquardt 
algorithm has been employed to observe the goodness 
of fit of magnetization curve for eight regression func-
tions including exponential, higher degree polynomial, 
Gaussian, power and sinusoidal functions. It determines 
optimum value of magnetizing reactance. Performance 
variables of SEIG have been calculated by ‘eigen value 

computation’ solution technique. Further, these results 
are compared with trust-region dogleg, trust-region 
reflective, Levenberg-Marquardt and MATLAB ‘fzero’ 
solution techniques. All the regression methods and solu-
tion techniques have been employed on ten induction 
machines of different ratings to prove effectiveness of 
proposed technique. 

2. Steady State Analysis of SEIG
Air gap voltage (Vg) and per unit frequency (a) of SEIG 

varies with per unit rotor speed (b), excitation capacitance 
(C) and load impedance (ZL). Magnetizing reactance (Xm) 
is considered as a variable quantity which depends on 
saturation level of magnetic circuit. Nonlinear magneti-
zation curve is the process of voltage buildup with respect 
to magnetizing reactance (Xm) at a particular value of 
capacitance as shown in Figure 120. For ease of calcula-
tion, core losses and mechanical losses can be neglected 
due to magnetic saturation without affecting accuracy of 
performance analysis substantially. An appropriate cir-
cuit representation and exact mathematical modelling 
is required to evaluate steady state performance analy-
sis of SEIG for different operating conditions. Per-phase 
equivalent circuit of a three-phase SEIG with excita-
tion capacitance and resistive-inductive load for steady 
state analysis has been shown in Figure 1. The six vari-
able parameters viz. air gap voltage, excitation capacitor 
reactance, per unit frequency, per unit rotor speed, load 
impedance and magnetizing reactance should be known 
for performance analysis of SEIG.

Loop impedance and nodal admittance methods have 
been used to evaluate variable parameters for steady state 
analysis of SEIG27. The values of variable parameters has 
been evaluated by equations (iii-vi) for loop impedance 
method and equation (xiii-xiv) for nodal admittance 
method as given in Appendix – I.

3. Performance Analysis of SEIG
System stability, dynamic behavior and machine design 
analysis involves simulation of nonlinear magnetiza-
tion curve. It is defined by piecewise linearized model, 
in which a nonlinear curve is sub-divided into parts and 
each part is defined by separate straight line equation. A 
single function with minimum error over whole range 
needs to be evaluated in order to obtain proper curve fit-
ting. The function is supposed to be easy in application 
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Figure 1. Per-phase equivalent circuit of SEIG.
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and mathematically simple. Approximation of magneti-
zation curve by Fourier series, power series, hyperbola 
and transcendental function has been found valid only 
over specific ranges of curve28. Determination of such 
approximate expressions for non-saturated ranges is eas-
ier as compared to knee range of magnetization curve.

Regression technique is used to obtain best fit mathe-
matical function for given set of data. Linear least squares 
fitting is applied iteratively to a linearized form of function 
until convergence is achieved for nonlinear least squares 
fitting. Least square comprises of minimizing the sum of 
squares of errors between a set of measured data points 
and a parameterized function. For non-linear curve fit-
ting, Levenberg-Marquardt algorithm29 has been used to 
optimize the parameters of the function (X , )if α  so that 
sum of squares of deviations S(α) becomes minimum.

	
    					          (1)

Where Xi is row vector for ith observation, α is 
parameter to be computed, wi is weight of ith observation 
and N is the number of observations. The iteration process 
is initialized by providing initial guess to parameter α. 
In case of multiple minima, the algorithm converges to 
global minimum only if the initial guess is close to final 
solution. Levenberg-Marquardt algorithm is used to solve 
nonlinear least squares problems. It is a combination of 
two minimization methods: gradient descent algorithm 
when the parameters are far from their optimal value and 
Gauss-Newton algorithm when the parameters are close 
to their optimal value. In gradient descent method, sum 
of squared errors is reduced by updating the parameters 
in the direction of greatest reduction of least squares 
objective. In Gauss-Newton method, sum of squared 
errors is reduced by assuming least squares function as 
locally quadratic, and finding the minimum of quadratic.

Non-negative damping factor is adjusted at each 
iteration. If reduction of S(α) is rapid, a smaller value 
is used to bring the algorithm closer to Gauss–Newton 
algorithm; whereas if an iteration gives insufficient 
reduction in the residual, damping factor can be increased 
to bring algorithm closer to gradient descent algorithm. 

3.1 Regression Functions
A function has to be determined to fit the nonlinear 
magnetization curve over the entire useful range. Some 
representations of functions used in this paper are given 
in Table 1.

3.2 Solution Techniques
Variable parameters of SEIG can be determined by solv-
ing regression function using proper solution technique. 
Trust-region dogleg, trust-region reflective, Levenberg-
Marquardt approach and optimization tool ‘fzero’ of 
MATLAB has been employed.

3.2.1 Eigen Value Computation Approach30

Eigen value problem is of substantial theoretical impor-
tance and wide-ranging application viz. solving systems 
of differential equations, analyzing population growth 
models, and calculating powers of matrices. The char-
acteristic polynomial of degree n is represented by a n 
x n matrix A, has exactly n complex roots (with zero or 
nonzero imaginary part). The polynomial can be factored 
into the product of n linear terms;

( ) ( )( )( ) ( )1 2 3det ... nI Aλ λ λ λ λ λ λ λ λ− = − − − − 	       (2)
	 1

1 2 1...n n
n nc c c cλ λ λ−

+= + + + + 		        (3)

Where each λi is a complex number. The numbers λ1, 
λ2, λ3, …. λn (which may not be all distinct) are roots of the 
polynomial, and are represented as eigen values of A. 

1 2 1, , , , +… n nc c c c  are the coefficients of polynomial A.
The eigen values may have non-zero imaginary parts 

even for all real values of A. Also eigen values may be irra-
tional numbers for all rational or integer values of A. The 
non-real roots of a real polynomial with real coefficients 
can be grouped into pairs of complex conjugate values, 
namely with the two members of each pair having same 
real part and imaginary parts that differ only in sign. If 
the degree is odd, then by the intermediate value theorem 
at least one of the roots is real. Therefore, any real matrix 
with odd order has at least one real eigen value - whereas 
a real matrix with even order may have no real eigen val-
ues.

In this paper eigen value computation approach 
is used by ‘poly’ and ‘roots’ commands of MATLAB. 
poly(A) generates the characteristic polynomial of A, and 
roots (poly(A)) finds the roots of that polynomial, which 
are the eigen values of A. ‘poly (A) returns the coefficients 
of polynomial ordered in descending powers in a row 
vector whereas ‘roots’ returns the roots of polynomial 
A in a column vector. For vectors, ‘roots’ and ‘poly’ are 
inverse functions of each other up to ordering, scaling, 
and round-off error.
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3.2.2 Trust-Region Dogleg Approach31

Solution of a system of n nonlinear equations F(x) with 
n unknowns is obtaining each equation of the system 
equal to zero for any value of x. Trust-region algorithm 
is based on region search rather than classical methods 
of optimization, line search. In this algorithm, start with 
a guess value for solution of optimization problem and a 
neighborhood region has been constructed near the guess 
point. The neighborhood region is known as trust-region 
if the current point provides minimum function value. 
This algorithm obtains a search direction di in each itera-
tion such that

	 ( ) ( )i i iJ x d F x= − 		                       (4)

	 1 'i i ix x d+ = + 			                        (5)

Where J(xi)  is n by n Jacobian matrix
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		                      (6)

Trust-region dogleg algorithm is more robust and effec-
tive than Gauss-Newton method as it requires only one 
linear solves per iteration. The dogleg algorithm attempts 
to follow a similar path by first finding the minimum 
along the gradient and then finding the minimum along 
a trajectory from the current point to the bottom of the 
quadratic model. The minimum along the second path is 
either the trust region boundary or the quadratic solution. 
In this paper, this approach is applied through MATLAB 
‘fsolve’ command.

3.2.3 Trust-Region Reflective Approach29

The trust-region reflective approach is used for optimi-
zation of any function. The function f(x) initialized at a 
and move to get lower value function g(x) by estimating 
f(x) at a new position for a step s, which fairly exhibits 
the behavior of function in a neighborhood trust-region 
N around the initial value a. The current point is updated 
to be (a+s) if f(a+s) < f(x); otherwise, the current point 
remains unchanged and trust-region N is shrunk and the 
trial step computation is repeated.

Trust-region reflective is a large-scale algorithm 
as it uses linear algebra and not operate on full matri-
ces. This algorithm can be used on small problem as 
internal algorithms either preserve sparsity or do not gen-

Table 1. Regression Functions

Fitting 
Type

Regression Function Equation Description

I One-Term Exponential Function mqX
gV pe= Rate of change of a quantity is proportional 

to initial amount of quantity. Sign 
of coefficient q and/or s represents 
exponential decay or growth of function.II Two-Term Exponential Function m mqX sX

gV pe re= +

III Gaussian Function 2
mX q
r

gV pe
 −  − 
   =

p , q and r represents amplitude, centroid 
(location) and peak width respectively.

IV Polynomial First Order Function
g mV pX q= + Taylor series expansion of the unknown 

nonlinear function using least squares 
method.V Polynomial Second Order 

Function
2

g m mV pX qX r= + +

VI Polynomial Third Order Function 3 2
g m m mV pX qX rX s= + + +

VII Power Function q
g mV pX r= + Parameter p, q and r are the intercept on 

y-axis, scaling factor and exponent/power.
VIII Sinusoidal Function ( )sing mV p qX r= + p , q and r represents amplitude, frequency 

and phase constant.
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erate matrices. Small-scale algorithm requires significant 
amount of memory and long time to execute due to use of 
full matrices and dense linear algebra. 

Hessian matrix H is symmetric and positive definite 
only in the neighborhood trust region. Preconditioned 
Conjugate Gradients (PCG) method is employed to 
solve large symmetric positive definite systems of linear 
Equations Hp = -g, where p is PCG output direction and 
g is gradient. Symmetric positive definite metrics M(=C2) 
is a pre-conditioner of H, where C-1HC-1 is a matrix with 
clustered eigen values. MATLAB ‘fsolve’ is used to employ 
this approach.

3.2.4 Levenberg-Merquardt Approach31

The Levenberg-Marquardt (LM) algorithm is an iterative 
technique used to solve nonlinear least square problems. 
It is employed to find the minimum of function F(x);

	
( ) ( )( )2

1

1
2

n

i
i

F x f x
=

= ∑ 			         (7)

The Levenberg-Marquardt algorithm examines in the 
direction of solution p to the equation;

	 ( )T T
k k k k k kJ J I p J f+ λ = − 		       (8)

It outperforms simple gradient descent and other con-
jugate gradient methods in a wide variety of problems. 
It is a pseudo-second order method which means that it 
works with only function evaluations and gradient infor-
mation but it estimates the Hessian matrix using the sum 
of outer products of the gradients. Least squares prob-
lems arise when fitting a parameterized function to a set 
of measured data points by minimizing the sum of the 
squares of the errors between data points and function. In 
this paper MATLAB ‘fsolve’ command has been used for 
this approach.

A comprehensive comparative analysis of ten induc-
tion machines is presented in this paper. Ratings and 
parameters of all the machines17,23,25,32-38 are required to 
plot magnetization curve and for estimation of excita-
tion capacitance. Table 2 shows the machine ratings and 
parameters like rated voltage, current, type of connection, 
frequency, rated speed and per phase equivalent circuit 
parameters (Rs, Rr, Xls and Xlr) of all the machines.

Nonlinear nature of magnetization curve of induc-
tion machines has been analyzed by proposed regression 
functions. A single function provides magnetizing reac-

tance over whole range according to its fitness. Solution 
techniques are applied to calculate performance param-
eters of SEIG using magnetizing reactance having best 
goodness of fit. 

4. Results and Discussions
Piecewise linearized model has been adopted to analyze 
nonlinear behavior of magnetization curve, which pro-
vides approximate value of excitation capacitance. In this 
paper, an effort has been made to solve the nonlinearity of 
magnetization curve by using different regression func-
tions for the whole range. Eight regression functions have 
been employed for ten machines and compared their fit-
ness to reflect the effect of fitness on performance of SEIG.

The details of each fitting expression like values of coef-
ficients, Sum of Square Error (SSE), Degree of Freedom 
(DFE) in error, Root Mean Square Error (RMSE) and 
R-square for all machines has been shown in Table 3. 
Goodness of fit can be determined by SSE, R-square, DFE 
and RMSE (Appendix – II).

The comparison of different regression functions 
using graphical methods to evaluate the goodness of fit 
has been depicted in Table 3. The value of SSE and RMSE 
closer to zero indicates a fit that is more appropriate for 
prediction. The value of R-square closer to 1 (one) indi-
cates greater proportion of variance is accounted for the 
model and fit is more appropriate for prediction. It has 
been observed from Table 3 that goodness of fit for all the 
machines is different with all the regression functions to 
give different values of Xm for specific value of Vg. Most 
appropriate fitting of magnetization curve is polynomial 
of third order (fitting – VI) for five machine (out of ten) 
and two-term exponential (fitting – II) for remaining five 
machines. These fitting – II and VI has the maximum 
value of R-square, minimum SSE and RMSE among the 
eight given expression under consideration, which clearly 
indicates the goodness of fit. Due to better fitting, polyno-
mial fitting gives optimal value of Xm for fixed value of Vg, 
in comparison to piecewise linearized model.

Air gap voltage, magnetization reactance, excitation 
capacitance, per unit frequency, per unit speed and load 
impedance is six variables required to study the perfor-
mance analysis of SEIG. Variation of two variables with 
reference to other two variables can be analyzed by keep-
ing remaining two variable as constant. Table 4 shows the 
values of Xm, a and c for a particular value of Vg  (=1.0 
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p.u.) at unity p.u. speed and purely resistive unity load (RL 
= 1.0 p.u., XL = 0.0 p.u.) for all machines with proposed 
eight regression expressions using eigen value computa-
tion approach.

It is observed from Table 4 that values of magnetiz-
ing reactance, p.u. frequency and excitation capacitance 
are varying with regression function for all machines. It 
gives different values then piecewise linear model and 
polynomial model. Estimation of excitation capacitance 
is prime important for performance analysis of SEIG as 
voltage build up is depending on the value of excitation 
capacitance. Precise value of  for a particular value of 

 provides exact values of p.u. frequency and excitation 
capacitance. Table 4 also shows that the impact of regres-
sion function is significant on the values of p.u. frequency 
and excitation capacitance. Optimum value of variables 
has been determined using the function having best fit 
among all the eight regression functions under study. 
The deviation in the values of ,  and  with fitting 
expression validates the proposed methodology. The 
most precise value can be considered by taking best fit 
expression from Table 3 for optimum calculation of exci-
tation capacitance and performance analysis of SEIG for 
all machines.

Literature reveals that nonlinearity of magnetiza-
tion curve has been solved using piecewise linearized 
model for seven machines (out of ten) and polynomial 
model for remaining three machines. Table 4 shows 
that polynomial of third order and two-term exponen-
tial functions are the best fitting expression. Eigen value 
approach has been applied to determine the values of all 
variables by employing best fitting expression on magne-
tization curve. Existing performance analysis results of all 
machines under consideration has been compared with 
the results obtained by best fit expression. Table 5 shows 
the comparison of existing and proposed methodologies 
of computing performance parameters i.e. magnetizing 
reactance, excitation capacitance and per unit frequency 
at unity power factor (purely resistive) load and rated 
speed (1.0 p.u.) for all machines. It has been observed 
from Table 5, that the magnitude of required excitation 
capacitance is decreased by using proposed technique.

Per unit speed and load impedance at output terminals 
are constant for calculating the performance parameters 
of Table 5 and 6. Load impedance significantly influences 
the performance parameters of SEIG of all machines. 
Excitation capacitance will decreases as load impedance 
increases. The decrease is gradual at higher values (above Ta
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Table 3. Comparison of Regression Functions
Function Parameter Machine

1
Machine
2

Machine
3

Machine
4

Machine
5

Machine
6

Machine
7

Machine
8

Machine
9

Machine
10

(F
itt

in
g-

I)
 

O
ne

-T
er

m
 

Ex
po

ne
nt

ia
l

Coefficient a= 7.351 1.348 3.226 2.517 3.247 1.705 2.958 2.886 1.531 1.759
b= -1.654 -0.3475 -0.7279 -0.4139 -0.6981 -0.2898  -0.6616 -0.4592 -0.1704  -0.3639

SSE 1.026 3.381 0.469 3.861 1.749 0.6687 0.6294 1.5 1.857 0.5854
R-Square 0.9423 0.8019 0.9425 0.7527 0.8007 0.9157 0.9111  0.9084 0.9423  0.8631
DFE 533 234 379 279 245 685 711  349 634  349
RMSE 0.04386 0.1202 0.03518 0.1176 0.0845 0.03124 0.02975  0.06555 0.05412  0.04096

 (F
itt

in
g-

II
)

Tw
o-

Te
rm

 
Ex

po
ne

nt
ia

l

Coefficient a= -2.6x10-7 -0.00069 -99.89 -2.12x10-7 -9x10-16 -9x10-12  -5.8x10-9 3.992 1.797 -0.00045
b= 8.72 2.622 0.561 4.653 13.67 8.004  8.356 0.2241 -0.2185  2.88
c= 3.315 1.207 100.9 1.619 2.202 1.478  1.707 -2.868 0.001381  1.096
d= -0.9978 -0.1406 0.5574 -0.1841 -0.4755 -0.2171  -0.328 0.2986 0.4913  -0.0316

SSE 0.02562 0.02419 0.00532 0.04934 0.2534 0.00454 0.01283 0.0063 0.6563  0.00107
R-Square 0.9986 0.9986 0.9993 0.9968 0.9711 0.9994 0.9982  0.9996 0.9796  0.9998
DFE 531 232 377 277 243 683 709  347 632  347
RMSE 0.006945 0.01021 0.00376 0.01335 0.03229 0.00258 0.00425  0.00426 0.03223  0.00175
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b= 1.086 0.4826 1.474 1.85 1.601 1.488  1.558 2.135 -1.47  1.452
c= 0.558 2.106 1.067 1.483 0.9986 2.297  0.8539 1.83 7.398  1.382

SSE 0.2148 1.02 0.0088 0.1.456 0.9031 0.2926 0.1011  0.7951 0.2548  0.06025
R-Square 0.9979 0.9402 0.9989 0.9068 0.8971 0.9631 0.9857  0.9951 0.9765  0.9859
DFE 532 233 378 278 244 684 710  348 632  348
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Coefficient a= -1.346 -0.3276 -0.6077 -0.431 -0.6096 -0.262  -0.6084 -0.3629 -0.0892  -0.3434
b= 2.624 1.332 1.976 1.984 2.037 1.484  1.999 1.842 1.131  1.538

SSE 0.4094 2.086 0.2193 2.86 1.327 0.5074 0.4646 0.5607 4.702 0.4516
R-Square 0.977 0.8778 0.9731 0.8169 0.8488 0.936 0.9344  0.9658 0.854  0.8944
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R-Square 0.9957  0.9874 0.9993 0.9795 0.9298 0.975 0.9952 0.9998 0.9557 0.9993
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Figure 2. Variation of excitation capacitance with load impedance for machine – 5.

Figure 3. Simplified per-phase equivalent circuit of SEIG.
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1.0 p.u.) of load impedance, while rapid at lower values 
(below 1.0 p.u.) of load impedance. Figure 2 shows the 
variation of excitation capacitance with load impedance 
for machine – 5 using all the eight regression expression. 
This figure has been plotted for under-loaded and over-
loaded values of load impedance (0.8 p. u.- 1.2 p. u.) at 
constant speed (=1.0 p. u.), magnetizing reactance and 
corresponding air gap voltage. The excitation capacitance 
decreases more rapidly for underload to unity load condi-
tions as compared to unity load to overload conditions of 
load impedance.

Performance variables Vg, Xm, C, a , b and ZL are 
required to study the performance analysis of SEIG that 
can be determined by using mesh impedance method 
or node admittance method (appendix I). Eigen value 
approach has already been discussed and applied to cal-
culate different variables in Table 4 and 5. Trust-region 
dogleg, Levenberg-Marquardt, trust-region reflective 
and MATLAB ‘fzero’ are four other approaches, has 
been applied to calculate performance variable. A com-
parison between all the four approaches for all machines 
with their best fittings among eight expressions has been 
shown in Table 6. The values of all the four approaches are 
then compared with the results of eigen value approach.

Table 6 shows that the values of p.u. frequency and 
excitation capacitance, calculated by trust-region dog-
leg, Levenberg-Marquardt, trust-region reflective and 
MATLAB ‘fzero’ are almost equal to the values by eigen 
value approach at higher function tolerance of more than 
10-15. The results deviate significantly for trust-region 
dogleg and trust-region reflective approaches at lower 
function tolerance of less than 10-08. The results of Table 6 
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show that performance variables can be computed accu-
rately by different approaches with negligible deviation in 
values. 

5. Conclusion
Performance analysis of SEIG includes estimation of 
per-phase equivalent circuit parameters and operat-
ing parameters. Magnetizing characteristics has been 
determined using regression functions for nonlinear 
magnetization curve. Third order polynomial function 
shows best goodness of fit among regression functions. 
Magnetizing reactance, per unit frequency and excita-
tion capacitance, at constant air gap voltage, varies with 

adopted regression functions. Similarly, air gap volt-
age varies at constant excitation capacitance. Excitation 
capacitance decreases with increase in load impedance. 
Selection of regression function significantly affects 
performance analysis of SEIG. Different regression func-
tions are applied on ten induction machines to obtain 
best fitting. Thus optimum magnetizing reactance has 
been obtained. Optimal value of magnetizing reactance 
provides optimal excitation capacitance and steady state 
performance of SEIG. Solution technique is required to 
calculate variable performance parameters. Different 
solution techniques have been applied on all machines at 
optimal magnetizing characteristics to compute the per-
formance parameters of SEIG. Significant improvement 

Table 5. Comparison of Proposed and Existing Methodology

Machine Fitting 
Type

Vg

(p.u.)
Proposed Methodology Existing Methodology % Error
Xm (p.u.) a (p.u.) C (µF) Xm (p.u.) a (p.u.) C (µF) a C

1 VI 1.05674 1.148279 0.923096 37.15574 1.142981 0.922994 37.31346 -0.011 0.4227
2 II 1.04 0.9953751 0.918252 132.51495 0.99368 0.918181 132.73694 -0.0077 0.1672
3 VI 0.961939 1.65555 0.957404 67.75510 1.651554 0.957383 67.88178 -0.0022 0.1866
4 II 0.902283 2.7445739 0.953125 121.45913 2.705667 0.953067 122.71292 -0.0061 1.0217
5 II 1.034004 1.5897475 0.931142 85.15044 1.532 0.930510 87.76567 -0.0679 2.9798
6 II 1.032495 1.652264 0.952016 31.67033 1.65 0.952004 31.70424 -0.0013 0.1070
7 II 1.015734 1.573789 0.943867 286.93675 1.57 0.943818 287.50410 -0.0052 0.1973
8 VI 1.012894 2.08525 0.956224 134.65914 2.084299 0.956222 134.70454 -0.0002 0.0337
9 VI 1.0201 2.58178 0.906244 193.44829 2.3749 0.904664 204.11328 -0.1747 5.2250
10 VI 0.99693 1.581348 0.842374 43.81832 1.581 0.842329 43.83791 -0.0053 0.0447

Table 6. Comparison of Variable Performance Parameters using Different Solution Techniques

M/C
No.

Fitting 
Type

Xm

(p.u.)

Eigen value 
Approach

Trust-Region 
Dogleg Approach

Trust-Region 
Reflective 
Approach

Levenberg-
Marquardt 
Approach

Fzero
Approach

a
(p.u.)

C
(µF)

a
(p.u.)

C
(µF)

a
(p.u.)

C
(µF)

a
(p.u.)

C
(µF)

a
(p.u.)

C
(µF)

1 VI 1.192873 0.969663 39.18943 0.97 39.17294 0.97 39.17294 0.97 39.17294 0.97 39.17294
2 II 1.219429 0.834007 223.22391 0.834 223.23769 0.834 223.23769 0.834 223.23769 0.834 223.23769
3 VI 1.51315 0.869410 166.42621 0.869 167.29358 0.869 167.29358 0.869 167.29358 0.869 167.29358
4 II 2.49298 0.880159 294.53966 0.88 295.01038 0.88 295.01038 0.88 295.01038 0.88 295.01038
5 II 1.660062 0.931132 100.75940 0.931 100.79840 0.931 100.79840 0.931 100.79840 0.931 100.79840
6 II 1.799507 0.912563 45.03377 0.913 44.90917 0.913 44.90917 0.913 44.90917 0.913 44.90917
7 II 1.617248 0.863691 579.23654 0.864 577.08807 0.864 577.08807 0.864 577.08807 0.864 577.08807
8 VI 2.18356 0.971176 217.30935 0.971 217.17268 0.971 217.17268 0.971 217.17268 0.971 217.17268
9 VI 2.687304 0.856125 314.80150 0.856 315.11137 0.856 315.11137 0.856 315.11137 0.856 315.11137
10 VI 1.55975 0.802710 74.20801 0.803 74.08529 0.803 74.08529 0.803 74.08529 0.803 74.08529
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of up to 5% has been observed by proposed technique as 
compared to existing techniques. Optimal performance 
of SEIG can be computed by using combination of proper 
fitting of magnetization curve and appropriate solution 
technique all together.
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APPENDIX – I
Per-phase equivalent circuit for steady state analysis of 
SEIG in which all impedances and voltages referred to 
stator at base frequency is referred to Figure 1. The load 
and excitation capacitance branches are decoupled in 
the equivalent circuit of SEIG. Machine must operate at 
threshold of saturation to get self-excited for minimum 
value of excitation capacitance. Therefore, machine core 
losses can be ignored.

Loop impedance and nodal admittance methods has 
been used for steady state analysis of SEIG. 

(a) Loop Impedance Method
Load impedance, capacitive reactance, stator imped-

ance, magnetizing reactance and rotor impedance 
(referred to stator) of per phase equivalent circuit has 
been considered for loop impedance method.

Applying Kirchoff ’s law in Figure 1;
( )T s 13 12 24 sZ I = Z + Z + Z I = 0 			          (i)

c L r m
T s

c L r m

Z Z Z Z
Z = + Z +

Z + Z Z + Z
			        (ii)

Where
L

L L
RZ = + jX
a

;      c
c 2

jX
Z = -

a
;         s

s ls
R

Z = + jX
a

; 

( )
r

r lr
RZ = + jX

a - b
;	 m mZ = jX

ZT will be zero as stator current cannot be zero under 
steady state self-excitation. Two nonlinear equations by 
taking real and imaginary parts of ZT equal to zero sepa-
rately denoted as a function of Xc and a.

( ) ( )3 2
1 c 1 2 3 c 4 5 cF X ,a P a P a P X P a X 0P= + + + + = 	    (iii)

( ) ( ) ( )2
2 c 1 c 2 3 c 4 5 cF X ,a Q X Q a Q X Q a Q X 0= + + + + =

     (iv)
Where

( )11 12 m LP X X X R= − + ;	 2 1P Pb= − ;

( )( )3 1L s r mP R R R X X= + + + ;	 4 s L rP R R R= ;

( )( )5 1s L mP R R X X b= − + + ;	 ( )1 1 12 mQ X X X= + ;

( )( )2 1L s r mQ R R R X X= + + ;	 3 1Q Q b= − ;	

( )4 1s L mQ R R X X b= − +
( )5 r s LQ R R R= − +

Two nonlinear equations by taking real and imaginary 
parts of Zs equal to zero separately denoted as a function 
of Xm and a also.

( ) ( ) ( )2
3 m 1 m 2 3 m 4 5F X ,a = R X + R a + R X + R a+ R = 0 	     (v)
( ) ( ) ( ) ( ) ( )3 2

4 m 1 m 2 3 m 4 5 m 6 7 m 8F X ,a = S X + S a + S X + S a + S X + S a+ S X + S = 0 	    (vi)
Where

( )1 12L s r cR R R R X X= + + ;

( ) 2
2 1 1L s r cR R R R X X X= + + ;

3 12s L cR R R b X X b= − − ;
2

4 1 1s L cR R R bX X X b= − − ;

( )5 c r s LR X R R R= − + ;	 1 12 LS R X= − ;
2

2 1 LS X R= − ;		 3 1S S b= − ;	 4 2S S b= − ;

( )5 L s r cS R R R X= + + ;

( ) ( )6 1L s r c L r c sS R R R X X R R X R= + + + + ;

( )7 c s LS X R R= − + ;		  8 7 1S S X=

Values of excitation capacitance and frequency at fixed 
air gap voltage, has been evaluated from equation (iii) and 
(iv). The Load characteristics has been determined by 
solving equation (v) and (vi) at fixed capacitance. If mag-
netizing reactance and generated frequency are known, 
analysis of performance characteristics of SEIG can easily 
be evaluated at given terminal conditions.
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(b) Nodal admittance method
The calculation of per unit frequency ‘a’ is independent 
of Xc, as load and excitation capacitance branches can eas-
ily be decoupled. For this purpose, Figure 1 is redrawn as 
Figure I.1. 

Where

( )
( ) ( )

2
r m

24 2 22
r m r

a - b R X
R =

R + a - b X + X
;

( ) ( )
( ) ( )

22
r m m lr m lr

24 2 22
r m lr

R X + a - b X X X + X
X =

R + a - b X + X

The total impedance Z14 of branch ‘124’ is given by

14 14 14Z = R + jX 				      (vii)

Where

s
14 24

R
R = + R

a
 ;		  14 ls 24X = X + X 	

The relation for different admittances are;
2

L L
L 2 2 2 2 2 2

L L L L

aR a XY = - j
R + a X R + a X

			    (viii)

14 14
14 2 2 2 2

14 14 14 14

R X
Y = - j

R + X R + X
			       (ix)

c

2aY = j
Xc

					           (x)

Apply nodal admittance method in Figure I.1

( )1
s s L 14 c

VY V = Y +Y +Y = 0
a

	 		      (xi)

Since the stator voltage will not be zero for successful 

voltage build-up, V1 ≠ 0, hence Ys = 0.

( )L 14 cY +Y +Y = 0 				       (xii)

By separating real and imaginary terms of the above 
equation (xii) to zero respectively;

14L
2 2 2 2 2
L L 14 14

RaR + = 0
R + a X R + X

			    (xiii)

22
14L

2 2 2 2 2
c L L 14 14

Xa Xa - - = 0
X R + a X R + X

		   (xiv)

If the speed of machine is fixed and Xm is kept at min-
imum value, then per unit frequency ‘a’ and capacitive 

reactance ‘Xc’ are the only variables in Figure 1. The value 
of per unit frequency a will be determined from equation 
(xiii), as per unit frequency is the only variable in equa-
tion (xiii) and is independent of Xc. The value of Xc can be 
calculate from equation (xiv) by putting the value of ‘a’ 
from equation (xiii).

Equation (xiv) can be expressed as a 6th degree poly-
nomial as follows after a series of algebraic manipulations;

6 5 4 3 2
6 5 4 3 2 1 0h a + h a + h a + h a + h a + h a+ h = 0 	    (xv)

All the real and complex roots can be determined by 
solving equation (xv). Only real roots are to be considered 
for calculating the value of excitation capacitance C. At 
the time of solving equation (xiii) or (xv), the value of Xm 
is assumed to be known. The value of Xm can be deter-
mined by magnetization curve between Vg-Xm.

APPENDIX – II
The experimental value and computed value of dependent 
variable is x and y respectively. The sum of square error 
(SSE) for the measured and fitted magnetizing curves is 
calculated as

( )ˆ 2SSE = y - y∑ 				     (xvi)

( )2
xxS = x - x∑ 				    (xvii)

( )( )xyS = x - x y - y∑ 			                  (xviii)

( )2
yyS = y - y∑ 			                   (xix)

Regression equation: 	

ˆ 0 1y = b +b x 					        (xx)
Where	

xy
1

xx

S
b =

S
;		  ( )0 1 1

1b = y - b x = y - b x
n

∑ ∑

Linear Correlation Coefficient R-Square = 

xy

xx yy

S

S S

	

Root Mean Square Error = ( )2x - y
n

∑  


