
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(21), DOI: 10.17485/ijst/2016/v9i21/89198, June 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

An Empirical Analysis on Reducing Open Source
Software Development Tasks using Stack Overflow

Tirath Prasad Sahu1*, Naresh Kumar Nagwani2 and Shrish Verma3

1Department of Information Technology, National Institute of Technology Raipur, Raipur - 492010, Chhattisgarh,
India; tirsahu.it@nitrr.ac.in

2Department of Computer Science and Engineering, National Institute of Technology Raipur, Raipur - 492010,
Chhattisgarh, India; nknagwani.cs@nitrr.ac.in

3Department of Electronics and Telecommunication, National Institute of Technology Raipur, Raipur - 492010,
Chhattisgarh, India; shrishverma@nitrr.ac.in

Keywords: Open Source Software, Community Question Answering, Stack Overflow, Cross Repository Analysis, Bug
Tracking System, Bug Fixing

Abstract
Objectives: The cross repository analysis between Open Source Software (OSS) and Community Question Answering (CQA)
site is presented in order to speed the development process of OSS. Methods/Analysis: The OSS development is becoming
popular nowadays due to fact that the source codes, the developer specifications and bug lists are made available online
to the public. Anyone can contribute to the development of software by referring these files. Similarly, Stack Overflow is
an interactive CQA site that caters programming related questions with their answers online and turned into repositories
of software engineering knowledge. In order to track the correlation of such sites with software development tasks, we
employ the two repositories to find the semantic similarity between bugs and Question and Answer (Q&A) posts posted
on OSS projects and Stack Overflow respectively. The semantic similarity is analyzed by integrating the contents of the
repositories based on text mining approach. The relationship between a bug and Q&A post is established through the
semantic similarity and metadata features. Findings: The statistics of our analysis is presented for five OSS projects in
terms of number of bugs and average bug fix time. The statistical result shows that the bug fix time can be reduced by
posting the bugs into Stack Overflow. Application/Improvement: The presented approach can be utilized to find the
similar Q&A posts for reported OSS bug and helps developers of OSS projects to resolve the bugs quickly by leveraging
programming skills of users’ in the form of Q&A posts.

1. Introduction
OSS is gaining popularity by keeping their development
files online so that anyone can contribute in the devel-
opment tasks. Bug fixing is an important task so as to
improve the quality for competitive software products,
to maintain higher customer satisfaction, to keep effort,
schedule and cost of development on track1. Therefore,
the development teams are always desired to fix the bugs
reported by the users’ quickly. The online contribution by
other users’ or community can be one solution to improve
the bug fixing time2-5.

The online community such as CQA sites have become
an important source of knowledge over the years in the
form of Q&A6. The CQA sites can be classified in two
classes: 1. General Q&A sites such as Quora and Yahoo!
Answers, 2. Domain specific Q&A sites such as Stack
Overflow and Ask Ubuntu, which have catered to pro-
gramming related questions and their answers and turned
into repositories of software engineering knowledge.
Stack Overflow is an interactive CQA site for software
development knowledge by hosting communities of mil-
lions of users (developers)7,8. The voting and gamification
ensures the quality of the contents in Stack Overflow9.

An Empirical Analysis on Reducing Open Source Software Development Tasks using Stack Overflow

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 2

Stack Overflow is consisting of more than 29 million
posts by more than 4 million professional developers
since its inception in 2008 until February 2016. The large
proportion of the posts is related to software bugs of the
projects. Therefore, it can be seen as the important source
of software knowledge that can help to fix the reported
bugs in bug tracking system. The developer can post
query to Stack Overflow related to the bug in the form
of question and will get the solution to resolve that bug
in the form of answer. The huge and unstructured con-
tents of the repositories are posing several challenges for
researchers to establish the relationship between them for
analysis2-5,7,8.

CQA sites can be utilized effectively for making the
software development tasks efficient. The most closely
related work is CrossLink: a linkage of Stack Overflow to
issue tracker2, which explores the semantic similarity and
temporal association between them. They have concen-
trated to improve the linking accuracy using text mining
approach for issue resolution. Similarly3, also links the
issue tracking systems of android and Chromium by
looking the links to Stack Overflow, Wikipedia and other
external websites in the bug description. They use the met-
ric “mean time to repair” (which we refer as the average
fixing time in this study) to judge whether the presence
of these links in the bug description leads to faster repair-
ing. The linking of Stack Overflow to GitHub (the largest
coding repository) is presented by the authors10 to match
questions in Stack Overflow with codes which are forked
in GitHub. The aim is to find the contribution of Stack
Overflow into the development of GitHub projects by
classifying whether the Q&A posts are related to com-
mit event of a project or not11, presents a study of Stack
Overflow, the reasons of its success and dynamics, which
gives a proper description of working of Stack Overflow12.
The literature gives us the basic knowledge of how Stack
Overflow and bug tracking systems can be linked accu-
rately based on the contents. In addition to linking, we
present the impact of Stack Overflow into the develop-
ment of OSS projects irrespective of presence of links in
bug description using average fix time of posted and non-
posted bugs into Stack Overflow.

In this paper, we present cross repository analysis by
integrating the contents based on text mining approach in
order to fix the bugs as early as possible. First, the dataset
is extracted from repositories by matching projects name
with tags of the posts and temporal features. Then, text
mining approach is applied to find the semantic similar-

ity13 between bugs and posts. The high similarity signifies
the posts related to the bugs. The empirical analysis has
been carried out by comparing the average bug fix time of
posted and non-posted bugs in Stack Overflow.

The rest of the paper is organized as follows. Section 2
describes the proposed framework with dataset descrip-
tion. The empirical analysis is presented with statistics
of results in Section 3. We conclude our work with their
future scope in Section 4. Section 5 consist acknowledge-
ment. Finally, the references to the presented study are
listed in Section 6.

2. Proposed Framework
In this section, a framework is proposed to analyze the
contribution of Stack Overflow into the development of
OSS projects based on bug fix time. For this, text mining
approach is applied on real data extracted from bug track-
ing system of OSS projects and CQA site Stack Overflow.

2.1 Dataset Description
The empirical analysis is based on two datasets extracted
from two online repositories i.e. Bug Tracking System of
OSS projects and Stack Overflow CQA site.

2.1.1 Bug Tracking System
A bug tracking system is a software application to make
bug repository that keeps track of reported software bugs
found in the development of software projects. We collect
the fixed bugs of five OSS projects namely Open Office,
Mozilla, Apache, Ruby and Python, reported in the year
2014 for our experimental analysis. The dataset extracted
from the bug tracking system of the OSS projects con-

Figure 1. Bugs from OSS projects.

Tirath Prasad Sahu, Naresh Kumar Nagwani and Shrish Verma

Indian Journal of Science and Technology 3Vol 9 (21) | June 2016 | www.indjst.org

tains data consisting of the bug id, summary, description,
status, opening and closing date etc.14 Figure 1 shows the
statistics of extracted bugs from OSS projects.

2.1.2 Stack Exchange Data Explorer
The Stack Overflow dataset is publicly available through
data dump and stack exchange data explorer. Stack
exchange data explorer provides the way to extract the
data by firing query online. We use data explorer to
extract accepted Q&A posts of year 2014 based on post
tags related to OSS project name of bug repository. The
attributes of Stack Overflow posts are: postid, userid,
title, body, tags, accepted answerid and creation date etc.
Figure 2 shows the statistics of extracted Q&A posts from
Stack Overflow.

2.2 Text Mining Approach
Text mining approach is used to uncover the potential
information and association in text corpus. Textual fea-
tures are identified that represents the intrinsic quality
metrics related to tangible features of the text documents.
Textual features can be automatically generated using a
sequence of procedures and are usually done using com-
puter programs that includes text pre-processing, textual
similarity, clustering etc.

2.2.1 Text Pre-Processing
Pre-processing of the document is the preparation of the
dataset before applying any operation on it. Text pre-
processing is the process of identifying and extracting
interesting and non-trivial information from unstruc-
tured text documents such as CQA posts. Our approach of
pre-processing of the Q&A posts includes Tokenization,
Stopping, Stemming and code snippet filtering.

•	 Tokenization: It is a process of breaking a stream
of text into words, phrases, symbols, or other
meaningful elements called tokens. The aim of
the tokenization is the exploration of the words
in a sentence.

•	 Stopping: It is a process of filtering out most
common words called stop words from text
documents. The removal of stop words is done
through the list of stop words. The example of
stop words are the prepositions (e.g. above,
across, before), determiners (e.g. a, an, the) etc.

•	 Stemming: It is a process of removing the com-
moner morphological and inflexional endings
from the words in English. Its main use is as a
part of term normalization process that is usually
done in information retrieval systems. It stems
the words to their root words. For Example,
abate, abates, abated, abatement, abatements are
all stemmed to the root word ‘abate’.

•	 Code Snippet Filtering: It is a process of filter-
ing the source code present in the Q&A posts.
The example is represented in Table 1.

2.2.2 Term-Document Matrix Generation
A collection of text documents is represented by a Term-
by-Document Matrix (TDM) consisting of m rows and n
columns, where m is the number of terms used to index
the n documents. Each element aij of the matrix describes
the frequency of term i that occurs in jth document and
is suitable measures to identify the importance of term
i with respect to the jth document and the entire docu-
ment collection. There are different weighting scheme
to find the importance of terms with respect to docu-
ments such as term frequency, Term Frequency-Inverse
Document Frequency (TF-IDF), Log-IDF etc. We use
TF-IDF weighting scheme to represent the pre-processed
text documents15.

2.2.3 Term Frequency-Inverse Document
Frequency (TF-IDF)
The importance of terms in collection of text documents
can be identified by referring Term-by-Document Matrix
(TDM). There are various weighting scheme to identify
the importance of terms in connection with documents.
TF-IDF is one such weighting scheme that employs two
types of weight: local and global. Local weight of term i Figure 2. Q&A posts from Stack Overflow.

An Empirical Analysis on Reducing Open Source Software Development Tasks using Stack Overflow

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 4

w.r.t. document j is the frequency of that term i in docu-
ment j.

 (1)

The global weight of term i is defined as follows:

 (2)

Now, the weight of term i w.r.t. to document j in TDM
is calculated as:

 (3)

 (4)

where is the number of documents in TDM
and is the number of documents containing the term i.

2.2.4 Cosine Similarity
We use the cosine similarity between bug as query (B)
and each individual Q&A post (Q) as document. Both
query and documents are first converted into TDM with
TF-IDF weighting scheme. The first column of TDM
represents bug as query vector and remaining columns
represents related Q&A posts as document vectors.

 (5)

where n is the number of terms in TDM.

2.3 Methodology
Once the data is imported into the local database after
applying the matching criteria based on temporal fea-
tures, the text pre-processing is applied to remove
non-useful information contained on them. Thereafter
TDM is generated for each matched bug consisting Q&A
posts as documents to decide further whether the bug is
posted or not based on cosine similarity. After all bugs
of an OSS project are classified into two class i.e. posted
and non-posted bugs w.r.t. Q&A posts, the average bug fix
time is calculated for analysing the contribution of Stack
Overflow. The detailed steps are described in Table 2 and
Figure 3.

3. Empirical Analysis and Results
The empirical analysis is done by integrating bug track-
ing system and Stack Overflow, linking bugs to related
Q&A posts (if possible) based on text mining approach
and comparing the average bug fix time of posted and
non-posted bugs. The temporal features and cosine simi-
larity is used to decide whether a bug is posted into Stack
Overflow or not. The illustrative example is shown in the
Table 3.

The above example shows that the bug (bugid = 9776)
of “Ruby” OSS projects is posted into Stack Overflow as
question (postid = 23282342). The temporal features of
bug-Q&A post are compatible as creation date and time
of question (25-04-2014) is greater than the creation date
and time of bug (25-04-2014) and the closing time (26-04-

Table 1. Code snippet filtering

Post with Code Snippet Post without Code Snippet

<p>I am trying to remove all mentions of anyone from a string,
I was wondering if there was a faster way to do this?</p>
<pre><code>text = “hey @foo say hi to @bar”
textsplit = text.split()
n = -1
ts2 = textsplit
for x in textsplit:
 n += 1
 if x[0]== “@”:
 del ts2[n]
text = ‘ ‘.join(ts2)
</code></pre>
<p>Thanks in advance. (This is sort of like <a href=”http://
stackoverflow.com/questions/3416401/removing-elements-
from-a-list-containing-specific-characters”>Removing
elements from a list containing specific characters but this
one is a little different.)</p>

<p>I am trying to remove all mentions of anyone from a
string, I was wondering if there was a faster way to do this?</
p>
<p>Thanks in advance. (This is sort of like <a href=”http://
stackoverflow.com/questions/3416401/removing-elements-
from-a-list-containing-specific-characters”>Removing
elements from a list containing specific characters but
this one is a little different.)</p>

Tirath Prasad Sahu, Naresh Kumar Nagwani and Shrish Verma

Indian Journal of Science and Technology 5Vol 9 (21) | June 2016 | www.indjst.org

2014) of that question with accepted answer (25-04-2014)
is less than the closing time of that bug with fixed status.
The bug summary and Q&A post title also reveals that
they are similar. The cosine similarity is used to find the
similarity with some threshold value. The bug which sat-
isfies the matching criteria and cross the threshold value

Table 2. Algorithm: Average fix time of posted and non-posted bugs

Input: Bugs and Q&A posts of a project
Output: Average Fix Time of Posted and Non-Posted Bugs

Procedure: for each bug of a project do:
 for each Q&A post related to project do:
 if (Metadata features matched for Bug-Q&A pair) then
 Apply pre-processing on bug once and create TDM & treat it as query;
 Apply pre-processing on every Q&A and insert them into TDM for all matched
 Q&A posts related to the bug;
 Calculate Simcos between query and individual Q&A posts of TDM;
 if (threshold ≤ any Simcos) then
 Record bug as posted bug with Fix Time;
 else
 Record bug as Non-posted bug with Fix Time;
 end if-else
 else
 Record bug as Non-posted bug with Fix Time;
 end if-else
 end for loop
 end for loop
Return: Average Fix Time of Posted and Non-Posted Bugs

Table 3. Illustrative example

Project Name = Ruby Tag Names = “Ruby”,
“Ruby Trunk”

Bugid = 9776 Postid = 23282342
Creation Date = 25-04-2014 Creation Date = 25-04-

2014
Closing Date = 26-04-2014 Accepted Answer Date =

25-04-2014
Bug Summary = “Ruby
double-splat operator
unexpectedly modifies hash”

Q&A Title = “Double-
splat operator
destructively modifies
hash - is this a Ruby bug?”

Figure 3. Research methodology.

in similarity measure is classified as posted bugs. The
number of posted and non-posted found is represented
in Figure 4. For the selected data, next, we find the aver-
age fix time i.e. the average time required for the bugs to
be resolved since the time of its creation for both posted
and non-posted bugs.

The data obtained from the results of the operation
on the five chosen OSS projects is presented in the Table
4. Clearly, it is observed that the average fix time of non-
posted bugs is greater than the average fix time of posted
bugs. The statistical analysis of the results applied to Open
Office, Mozilla, Apache, Ruby and Python is presented in
the Figure 5.

An Empirical Analysis on Reducing Open Source Software Development Tasks using Stack Overflow

Indian Journal of Science and TechnologyVol 9 (21) | June 2016 | www.indjst.org 6

4. Conclusion and Future Scope
The OSS project development is becoming popular
because anyone can make online contribution. There are
two fundamental questions: First, how to contribute?
Second, what is the impact of contribution? In this paper,
the empirical analysis is presented to give the answer
of these two questions using cross repository analysis
between Bug Tracking System (OSS Projects) and Stack
Overflow (Programming related CQA site). We have
shown that the users’ of Stack Overflow are contribut-

ing well by giving the solution (answer) of query (bugs
in the form of question) posted by users’ of OSS projects.
The impact is analysed by comparing average fix time of
posted and non-posted bugs into Stack Overflow. The
average bug fix time of five OSS projects for the year 2014
are analysed and found that it will take less time to fix
the bugs if it is posted in Stack Overflow. This leads us to
believe that there is positive influence of Stack Overflow
into the development of OSS projects. This means that
there is a trend, where the developers seem to be look-
ing into CQA sites like Stack Overflow to solve difficult
issues by the experts in these communities who are ready
to answer these queries.

The online repositories are playing an important role
by hosting the data online resulting collaborative net-
work of worldwide users. In future, the multidimensional
cross repository analysis can be studied to improve the
linking accuracy that increases the authorization of the
online resources. But the main problem is integration of
the repositories because of heterogeneous structure. The
topic modelling in textual contents can also be applied
that can suggests us to identify the topical authority of
online users’.

5. Acknowledgment
We would like to thank KRK Mithra for gathering the
datasets and National Institute of Technology Raipur to
provide the necessary environment to carry out the pre-
sented work.

6. References
1. Akila V, Zayaraz G, Govindasamy V. Bug triage in

open source systems: A review. International Journal of
Collaborative Enterprise. 2014; 4(4):299-319.

2. Wang T, Yin G, Wang H, Yang C, Zou P. Linking Stack
Overflow to issue tracker for issue resolution. Proceedings
of the 6th Asia-Pacific Symposium on Internetware on
Internetware; 2014. p. 1-14.

3. Correa D, Sureka A. Integrating issue tracking systems
with community-based question and answering websites.
Australian Software Engineering Conference (ASWEC);
2013. p. 88-96.

4. Treude C, Barzilay O, Storey MA. How do programmers
ask and answer questions on the web? Nier track. 33rd
International Conference on Software Engineering (ICSE);
2011. p. 804-7.

5. Storey MA, Treude C, van Deursen A, Cheng LT. The
impact of social media on software engineering practices

Table 4. Average fix time (in days) of posted vs. non-
posted bugs

Open
Office

Mozilla Apache Ruby Python

Posted Bugs 60 71 239 25 183
Non-Posted
Bugs

114 87 268 35 207

Figure 4. Posted Vs. non-posted Bugs.

Figure 5. Average Bug Fix Time of Posted Vs Non-Posted
Bugs

Tirath Prasad Sahu, Naresh Kumar Nagwani and Shrish Verma

Indian Journal of Science and Technology 7Vol 9 (21) | June 2016 | www.indjst.org

and tools. Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research; 2010. p. 359-64.

6. Mamykina L, Manoim B, Mittal M, Hripcsak G, Hartmann
B. Design lessons from the fastest Q&A site in the west.
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems; 2011. p. 2857-66.

7. Barua A, Thomas SW, Hassan AE. What are develop-
ers talking about? An analysis of topics and trends in
Stack Overflow. Empirical Software Engineering. 2014;
19(3):619-54.

8. Wang S, Lo D, Jiang L. An empirical study on developer
interactions in Stack Overflow. Proceedings of the 28th
Annual ACM Symposium on Applied Computing; 2013. p.
1019-24.

9. Deterding S. Gamification, designing for motivation.
Interactions. 2012; 19(4):14-7.

10. Vasilescu B, Filkov V, Serebrenik A. Stack Overflow and
GitHub: Associations between software development and
crowd sourced knowledge. International Conference on
Social Computing (SocialCom); 2013. P. 188-95.

11. Anderson A, Huttenlocher D, Kleinberg J, Leskovec J.
Discovering value from community activity on focused
question answering sites: A case study of Stack Overflow.
Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining;
2012. P. 850-8.

12. Parnin C, Treude C, Grammel L, Storey MA. Crowd doc-
umentation: Exploring the coverage and the dynamics of
API discussions on Stack Overflow. Georgia Institute of
Technology, Technical Report. 2012.

13. Jayalakshmi S, Sheshasaayee A. Question classification:
A review of state-of-the-art algorithms and approaches.
Indian Journal of Science and Technology. 2015; 8(29):1-
40.

14. Nagwani NK, Verma S. On studying the effect of sam-
ple size in evaluation of bug classifiers. Indian Journal of
Science and Technology. 2013; 6(1):3849-55.

15. Salton G, Buckley C. Term-weighting approaches in
automatic text retrieval. Information Processing and
Management. 1988; 24(5):513-23.

