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Abstract  
Objectives: Considering the rapidly increasing scales of on-chip integration, the objective of this research is to propose 
an improved and efficient genetic algorithm for area optimisation in limited computational time. Methods/Statistical 
Analysis: A novel and efficient Evolutionary Algorithm, with three crossover operators – order, cycle and partially mapped, 
has been employed to obtain an efficient variable ordering of Binary Decision Diagram (BDD) as it plays crucial role in 
total node count and hence, the total used area, average computation time and storage requirement. The efficiency of 
proposed algorithm has been tested on International Workshop on Logic Synthesis (IWLS), IWLS’93 combinational 
benchmark circuits. Findings: It has been found, for node count reduction, that the proposed Genetic approach using 
Order Crossover, gives an average reduction of 25.92% with a maximum value of 56.19%; using Cycle crossover, achieves 
an average reduction of 26.43% with a maximum value of 59.79%; whereas, using PMX crossover, leads to the best possible 
reduction with an average value of 35.26% with a maximum value of 84.54% as compared to average value of24.81%, 
24.19% and 13.77%in case of already existing Window, Sifting and Random algorithms respectively. In terms of CPU time, 
the best computation time of an average value of 0.15s, has been observed in case of Order Crossover though the Cycle 
crossover also gives average value of about 0.17s as compared to PMX, which takes a little longer, about 1.18s, on an 
average. The proposed algorithm is able to yield higher area optimisation in a limited CPU time. Depending on the priority 
of the application based on area reduction and time dissipation, either of the algorithms and either of the crossovers can 
be employed. Application/Improvements: The algorithm is able to give efficiently optimised results for about 90% of the 
benchmark circuits; hence, these can be employed for Multi-Input- Multi-Output Systems (MIMO systems) in VLSI.

1.  Introduction

Nowadays, as the chip dimensions are reducing, there is 
a significant need to be able to integrate more and more 
components and functionality onto a single chip. This 
requires more efficient usage of available chip area. In this 
paper, an evolutionary algorithm, i.e., Genetic Algorithm 

has been presented with three different crossover opera-
tors – order, cycle and partially mapped (PMX) for the 
minimization of BDDs and its effectiveness as compared 
to the existing Sifting Window and Random algorithms.

BDDs have been broadly used in Computer Aided 
Design for the optimum logic synthesis and also in 
formal verification and testing of Digital Circuits. A 
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Binary Decision Diagram (BDD) is a data structure 
widely used for the compact representation of Boolean 
functions1. For representation of Boolean functions, 
the use of BDDs was first proposed in2 and developed 
to the form of the Reduced Ordered BDDs (ROBDDs)3. 
The variable ordering employed for a BDD has a sig-
nificant effect on the total node count3 and hence, the 
overall area. The technique of BDD has come out to 
be one of the most effective styles of Boolean func-
tion representation and implementation4. BDDs have 
been extensively used in logic synthesis, logic verifi-
cation, optimisation, fault simulation and test-pattern 
generation for Digital systems5,6. The theory behind 
this concept is that synthesis tools make use of BDDs 
to solve many of the problems occurring in VLSI 
Computer-Aided Design because of the fact that the 
BDDs can be directly transformed into circuits by sub-
stituting every node of the underlying graph with a 
multiplexer7. The reason for this transformation lies in 
the Shannon decomposition8.

Many heuristics9–12 and algorithms13–23 have been 
worked upon to determine the close-to-optimal solu-
tion for the optimisation of BDDs by improving the 
variable ordering of the input variables- be it by using 
static variable ordering10,11 which is dependent upon 
circuit topology, to the dynamic variable ordering 
using optimisation or evolutionary techniques13–23. 
Traversing BDDs via algorithms through all the nodes 
and edges of the ordered directed graph takes polyno-
mial time in the current size of the graph. However, 
creation of new BDDs might lead to a major increase 
in the number of nodes in the BDD depending on the 
position of nodes in the graph, thereby, leading to expo-
nential memory and run time necessity. The choice of 
BDD variable order is very crucial24, and to determine 
an optimal variable ordering is an NP-hard problem25. 
There are a large number of algorithms being used for 
variable ordering in BDDs. Basically, there are three 
broad categories for these algorithms- static variable 
ordering16, dynamic variable ordering16and evolution-
ary algorithms18,26. In the last years, several methods 
have been proposed with good quality outcomes, such 
as, genetic algorithms or evolutionary algorithms, 
simulated annealing etc. But they were applicable 
only to small functions and had bad runtime behav-
iour8. To overcome the drawbacks, several approaches 
have been suggested. In this paper, the effectiveness of 
Evolutionary Approach has been presented using the 

three crossover operators – order, cycle and PMX in 
comparison with the Sifting, Window and Random 
algorithms.

In this paper, the proposed algorithm has been found 
out to be having better ability to give optimisation in 
terms of node counts and hence, area in comparatively 
improved CPU time.

The paper is organized as follows: Section 2 reviews 
the BDD representation for the VLSI digital circuits. 
Section 3 describes the Genetic Algorithm for achiev-
ing variable ordering for BDDs. Section 4 presents the 
description of Crossover operators employed in the 
research work. Problem Statement and the formulation 
of the issues encountered when dealing with optimising 
BDDs along with the proposed algorithmic approach 
have been discussed in Section 5. Section 6 presents the 
Experimental Results and discussion. Finally, Section 6 
presents some concluding remarks and directions of the 
future work.

2.  Binary Decision Diagram (BDD) 
Representation for Digital 
Circuits

The concept of Boolean function that defines a digital 
circuit can be represented as a Binary Decision Diagram 
(BDD) which is a directed acyclic graph27 with a compact 
data structure28 as per a particular order and satisfying a 
defined set of properties. It is usually based on the recur-
sive Shannon Expansion28 for the switching function f, 
on which the graph based representation of BDD relies, 
based on the decomposition of f28 around each variable yi 
as is described by:

f = yi’.f│(x=0) + yi.f’│(x=1)				         (1)

Where x is a finite set of Boolean variables, x = {x1, 
x2… xn} and yi’, f ’ denote the complements of yi, f respec-
tively.

A BDD can be implemented either in canoni-
cal form, ‘ordered in any order’ form (OBDD) or in 
reduced ordered form (ROBDD). An OBDD gets con-
verted into an ROBDD when all duplicate terminals 
and redundant nodes are eliminated, identical nodes 
are shared and all duplicate nodes, if any, are merged 
together3. A BDD is shown for a function f = ac + bc 
in Figure 1.
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Figure 1.  BDD for the function f = ac + bc.

Figure 2.  Reduced BDD for the function f = ac + bc.

Figure 2 shows its equivalent Reduced BDD (RBDD). 
The reduction in the overall size can be easily seen from 
here. The total node count has been reduced from 15 to 5.

The size of a BDD strongly depends on the order of input 
variables. Moreover, a function can have multiple ROBDDs16 
depending on the ordering of variables. It may happen that 
the size of a BDD is getting increased exponentially with 
the circuit size using one variable ordering, and in a linear 
fashion using another variable ordering. Since the memory 
requirement, area and evaluation time increase with the 
increasing size of BDD, it is desirable to keep the size of 
the BDD as small as possible. Hence a number of heuristic 
methods and algorithms have been developed till now, to 
determine the optimal ordering for input variables.

3.  Genetic Algorithm for 
Optimisation of BDDs

Four well-known paradigms for evolutionary algo-
rithms are Genetic Algorithms (GAs)29, Evolutionary 

Programming (EP), Evolution Strategies (ES), and 
Genetic Programming (GP)30. Natural evolution is the 
motivation behind the basis of such algorithms.

Based on the initial population size31,32, the two par-
ents are selected from the population and are subjected 
to produce offspring. The objective of these algorithms is 
to find the optimal solution to the given problem. Since, 
these are heuristic techniques, so the result obtained with 
these algorithms may not be the best one. But they are 
found to give very good near-optimum solutions. The 
worst solutions are eliminated and good solutions are 
accepted at every level of the iteration. The number of 
iterations is kept large enough to get a best-fit solution for 
the problem. 

So, it is possible that the new individuals completely 
replace the old ones or the old ones reproduce with the 
new ones to produce optimal results as the population 
size is kept constant throughout. The number of itera-
tions is decided either based on some kind of stopping 
criteria or till the time when no further improvements in 
the fitness values are achieved. The two basic processes24 
employed by any genetic algorithm33,34 are: 

•	 Inheritance (passing of features from one generation 
to the next). 

•	 Competition (Survival of the Fittest as per Darwin’s 
principle).

The basic flow of Genetic Algorithm is as shown in 
Table 1.

Table 1.  Basic genetic algorithm
Generate initial population 
Initialize population (Either randomly or as per some 
algorithm) 
Find fitness function 
Evaluate each individual 
Choose the best-fit ones (avoid repetition in crucial and high 
speed requiring cases) 
Apply genetic operators (crossover, mutation, inversion) 
Repeat 3 to 6 Until stopping criteria is met (or no more 
improvements are obtained) 

4.  Crossover Employed in 
Genetic Algorithm

Crossover is the processes of making the parents combine 
their genes to produce offspring. Various techniques for 
Crossovers have been proposed and accepted till now, out 
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of which, improved Order Crossover (using concept of 
selective positions or using cut points), Cycle Crossover, 
and Partially Matched Crossovers (PMX)28 have been 
employed in this research.

•	 In case of ‘Order Crossover’, a component of one par-
ent is mapped to a component of the other parent. 
From the replaced part on, the remaining is filled up 
by the left over genes, whereas the already present 
genes are excluded keeping the order intact.

•	 In case of ‘Cycle Crossover’, a cycle is found between 
the two parents. Genes from the first parent, which 
form the cycle, are copied as it as to the child. The 
remaining genes of the child are filled with the genes 
from second parent.

•	 In case of ‘Partially Mapped Crossover (PMX)’, a ran-
dom sub set of a parent is chosen, that part is swapped 
with the corresponding part from the second parent, 
the cycle between the genes is established, and the cor-
responding genes are swapped according to that.

5.  Issue Formulation and 
Proposed Improved Genetic 
Algorithm

Nowadays, as the chip dimensions are reducing, there 
is a significant need to be able to integrate more and 
more components and functionality onto a single chip. 
This requires more efficient usage of available chip area. 
When expressing the Boolean functionality in terms 
of BDDs, the main objective is the variable ordering of 
BDDs as it largely influences the overall node count3 and 
hence, the area. For a wide range of Boolean functions, 
there are polynomial-sized BDDs for “good” variable 
orderings, while the size of BDDs grows exponentially 
under “bad” variable ordering. Unfortunately, improv-
ing the variable ordering of BDDs is NP-Complete and 
finding the best order is NP-hard3,26. However, the most 
tedious job in case of Ordered BDDs16 is to find an opti-
mal variable order. 

Moreover, in today’s era of fast computing, there 
is an urgent need for those methodologies which are 
able to compute the optimised results in a limited CPU 
time. Optimisation of variable ordering of BDDs using 
algorithms has long been an important optimisation 
methodology in Computer Aided Design (CAD/CAM) 
applications35.

Many variable ordering methods have been pro-
posed in the last decades. These methods include 
static and dynamic techniques. Static techniques are 
applied before constructing the BDD to generate an 
order, dependent upon the implemented function as 
in11. The drawback of using Static techniques is that 
it requires a prior knowledge of the function’s behav-
iour, like effect of each input variable on the function, 
which may not be always known24. Whereas, the 
Dynamic techniques are focused on generating new 
variable orders to improve the size of the already con-
structed BDD. 

One out of such techniques is Rudell’s sifting algo-
rithm13. It is based on the ordering achieved by swapping 
the variables. It first selects one variable, moves it to every 
possible position and finds the number of nodes. Then 
the position, which gives the minimum number of nodes, 
is fixed for that variable. Now, the next variable is picked 
and moved to every possible position except the positions 
already been fixed. The position of the new variable is 
again fixed considering the minimum number of nodes. 
The process is repeated till all variables are sifted accord-
ing to new optimal solution. The final ordering by fixing 
all variables is the improved ordering achieved by the sift-
ing8,13,29 algorithm.

Although this algorithm decreases the number of 
ordering permutations from n1 to n2, in many cases the 
size of resulting BDD is far from optimal. Another tech-
nique is Window permutation, which has been found out 
to be fast, but rather a weak minimization heuristic29

Many other methods have been using genetic algo-
rithm8,18,28,29,32 and different heuristics10–12 to generate new 
orderings. The Genetic algorithm based approach used 
genetic operations like crossover and mutation18 in order 
to generate new variable ordering based on some fitness 
criteria. Genetic algorithm based approaches have been 
found to be yielding good run times but when compared 
to other techniques, node reduction result hasn’t found 
much improvement. Simulated annealing based approach 
has been found to give better area results but on the cost 
of long run times24.

Considering the drawbacks, in this paper, an improved 
Genetic Algorithm approach for optimising the node 
count and hence, area has been presented and the simula-
tion results have shown significant minimization in the 
node count, in a limited CPU time.

The proposed algorithm for the Genetic approach is as 
shown in Figure 3.
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Figure 3.  Flowchart for the proposed genetic approach.

 A new random population of BDDs for every bench-
mark circuit was initialized. After that, individual fitness 
i.e. node count for each BDD was calculated. And then the 

application of Crossover Operators (Order/PMX/Cycle) i.e., 
combining features from two different parent individuals to 
generate a new placement was carried out. Then Mutation 
i.e., modifying characteristics of existing solution to generate 
a new one with number of mutations not more than [(num-
ber of elements)/2 + 1], was applied. Then, the obtained 
solution, if found to be consistent, was led to the calculation 
of computation time. In case of inconsistent solution, the 
iteration was repeated till consistent solution was obtained.

6.  Experimental Results and 
Discussion

The genetic algorithm using three types of crossover 
operators has been implemented with C++ codes and sim-
ulated using BDD package Buddy 2.436 on Ubuntu 14.04. 
Simulation Results i.e., node count and corresponding 
computation times for IWLS’93 combinational benchmark 
circuits have been presented in the tables. The compari-
son has been made with the existing Window (WIN2, 
WIN2ITE, WIN3), Sifting (SIFT, SIFTITE) and Random 
algorithms that have been included in the Buddy 2.4. The 

Table 2.  Node count comparison against initial values for window algorithms for IWLS’93 benchmarks
Ben Ckt #i - #o Initial NC WIN2 WIN2ITE WIN3

NC %age reduction 
in NC by 

WIN2

NC %age reduction 
in NC by 

WIN2ITE

NC %age reduction 
in NC by WIN3

5xp1 7 - 10 95 83 12.6316 81 14.7368 75 21.0526
alu4 14 - 8 990 746 24.6465 752 24.0404 743 24.9495
b12 15 - 9 76 87 -14.4740 80 -5.2632 72 5.2632
Bw 5 - 28 115 115 0.0000 110 4.3478 106 7.8261
clip 9 - 5 215 158 26.5116 108 49.7674 105 51.1628
con1 8 - 2 20 17 15.0000 15 25.0000 15 25.0000
duke2 22 - 29 736 543 26.2228 500 32.0652 588 20.1087
Inc 7 - 9 83 74 10.8434 72 13.2530 74 10.8434
misex1 8 - 7 45 41 8.8889 40 11.1111 39 13.3333
misex2 25 - 18 138 141 -2.1739 125 9.4203 95 31.1594
sao2 10 - 4 123 122 0.8130 100 18.6992 105 14.6341
sqrt8 8 - 4 48 43 10.4167 43 10.4167 42 12.5000
squar5 5 - 8 41 37 9.7561 42 -2.4390 39 4.8780
t481 16 - 1 194 32 83.5052 32 83.5052 32 83.5052

vg2 25 - 8 647 521 19.4745 410 36.6306 350 45.9042
Average Reduction %age:   15.4708   21.6861   24.8080
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Table 3.  Node count comparison against initial values for sifting, random algorithms for IWLS’93 benchmarks
Ben Ckt #i - #o Initial 

NC
SIFT SIFTITE RANDOM

NC %age  reduction 
in NC by SIFT

NC %age  reduction 
in NC by SIFTITE

NC %age  reduction in 
NC by RANDOM

5xp1 7 - 10 95 76 20.0000 76 20.0000 86 9.4737
alu4 14 - 8 990 758 23.4343 742 25.0505 737 25.5556
b12 15 - 9 76 72 5.2632 72 5.2632 63 17.1053
bw 5 - 28 115 108 6.0870 108 6.0870 116 -0.8696
clip 9 - 5 215 106 50.6977 106 50.6977 112 47.9070
con1 8 - 2 20 16 20.0000 16 20.0000 18 10.0000
duke2 22 - 29 736 609 17.2554 589 19.9728 725 1.4946
inc 7 - 9 83 70 15.6627 70 15.6627 86 -3.6145
misex1 8 - 7 45 39 13.3333 39 13.3333 45 0.0000
misex2 25 - 18 138 110 20.2899 98 28.9855 144 -4.3478
sao2 10 - 4 123 109 11.3821 106 13.8211 130 -5.6911
sqrt8 8 - 4 48 41 14.5833 41 14.5833 50 -4.1667
squar5 5 - 8 41 42 -2.4390 41 0.0000 43 -4.8780

t481 16 - 1 194 32 83.5052 32 83.5052 55 71.6495
vg2 25 - 8 647 395 38.9490 350 45.9042 343 46.9861

Average Reduction %age:   22.5336   24.1911   13.7736

Table 4.  Node count comparison for proposed genetic (order, cycle, PMX) for IWLS’93 benchmarks
Ben Ckt #i - #o Initial NC Order Cycle PMX

NC %age  reduction in 
NC by Order

NC %age  reduction 
in NC by Cycle

NC %age  reduction 
in NC by PMX

5xp1 7 - 10 95 68 28.4211 69 27.3684 68 28.4211
alu4 14 - 8 990 891 10.0000 939 5.1515 734 25.8586
b12 15 - 9 76 70 7.8947 68 10.5263 50 34.2105
bw 5 - 28 115 106 7.8261 106 7.8261 106 7.8261
clip 9 - 5 215 102 52.5581 108 49.7674 93 56.7442
con1 8 - 2 20 16 20.0000 15 25.0000 15 25.0000
duke2 22 - 29 736 506 31.2500 512 30.4348 390 47.0109
inc 7 - 9 83 72 13.2530 72 13.2530 72 13.2530
misex1 8 - 7 45 36 20.0000 36 20.0000 36 20.0000
misex2 25 - 18 138 100 27.5362 102 26.0870 87 36.9565
sao2 10 - 4 123 92 25.2033 90 26.8293 85 30.8943
sqrt8 8 - 4 48 33 31.2500 33 31.2500 33 31.2500
squar5 5 - 8 41 37 9.7561 37 9.7561 37 9.7561

t481 16 - 1 194 85 56.1856 78 59.7938 30 84.5361
vg2 25 - 8 647 339 47.6043 301 53.4776 148 77.1252

Average Reduction %age:   25.9159   26.4348   35.2562
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area optimisation results for different IWLS’93 benchmark 
circuits for Window algorithms have been shown in Table 
2; for Sifting and Random algorithms, results are shown in 
Table 3; and shown in Table 4 are the results of the proposed 
Genetic approach. Table 5 lists the Computation Times 
taken to obtain the optimum results using the respective 
Genetic operators of the proposed approach.

Table 5.  Computation time (seconds) comparison 
for proposed genetic (order, cycle, PMX) for IWLS’93 
benchmarks
Ben Ckt #i - #o Computation Time (seconds)

Order Cycle PMX

5xp1 7 - 10 0.09 0.11 0.19

alu4 14 - 8 0.22 0.30 6.63

b12 15 - 9 0.06 0.07 0.18

bw 5 - 28 0.20 0.26 0.31

clip 9 - 5 0.13 0.21 0.74

con1 8 - 2 0.04 0.04 0.05

duke2 22 - 29 0.27 0.29 1.40

inc 7 - 9 0.07 0.08 0.17

misex1 8 - 7 0.06 0.06 0.13

misex2 25 - 18 0.08 0.08 0.16

sao2 10 - 4 0.10 0.13 0.37

sqrt8 8 - 4 0.06 0.06 0.14

squar5 5 - 8 0.05 0.06 0.06

t481 16 - 1 0.66 0.66 5.75

vg2 25 - 8 0.18 0.18 1.36
Average Computation 
Time:

0.15 0.17 1.18

In the tables, ‘Ben Ckt’ refers to the ‘Benchmark 
Circuits’ of IWLS’93 on which the algorithms have been 
tested; #i and #o indicate the number of inputs and out-
puts respectively, for the corresponding benchmark 
circuits; and, NC refers to the Node Count.

From Table 2, it has been observed that out of Window 
algorithms, WIN3 algorithm resulted in the best node count 
reduction, with an average value of about 24.81%. Similarly, 
Table 3 has shown that SIFTITE is able to achieve an average 
node count reduction of about 24.19%, which is best out of 
Sifting and Random algorithms. From the results in Table 
4, it can be found that the proposed approach using Order 
Crossover, results in an average reduction of about 25.92% 
with a maximum value of about 56.19%; using Cycle crossover,  

achieves an average reduction of about 26.43% with a maxi-
mum value of about 59.79%; whereas, using PMX crossover, 
leads to the best possible reduction with an average value of 
about 35.26% with a maximum value of 84.54%.

Hence, the proposed approach has been able to yield 
best optimisation results in terms of node count when 
compared to the Sifting, Window and Random algo-
rithms, with PMX yielding the best reduction out of all 
the three crossover techniques.

The best computation time of an average value of 0.15s, 
has been observed in case of Order Crossover though the 
Cycle crossover also gives average value of about 0.17s as 
compared to PMX, which takes a little longer, about 1.18s, 
on an average but at the same time, is able to result in best 
optimisation in node count.

The graphs comparing the results in terms of node 
count have been shown in Figure 4, Figure 5, Figure 6 
and Figure 7. The results of Computation times have been 
plotted in Figure 8.

Figure 4.  Node count comparison against initial values for 
window algorithms for IWLS’93 benchmarks.

Figure 5.  Node count comparison against initial values for 
sifting, random algorithms for IWLS’93 benchmarks.
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Figure 6.  Node count comparison for proposed genetic 
(order, cycle, PMX) for IWLS’93 benchmarks.

Figure 7.  Node count comparison of best from sifting, 
window, proposed genetic for IWLS’93 benchmarks.

Figure 8.  Computation time (seconds) comparison 
for proposed genetic (order, cycle, PMX) for IWLS’93 
benchmarks.

7.  Conclusions

The proposed algorithm for area optimisation i.e., reduc-
tion in code count, is based on the improved crossover 
techniques in Genetic Algorithm. It has been observed 
that the proposed methodology is a good improve-
ment over the previous methods like Sifting, Window 
and Random algorithms in terms of minimization of 
the number of nodes, and hence, area when tested on 
many circuits. From the results it is evident that PMX is 
yielding the best node count but on the cost of increased 
computation times than the other two crossovers while 
the Order crossover and Cycle crossover are able to 
provide the node count results in a much lesser com-
putation time. So, there has to be a trade-off between 
the choices. Depending on the priority of the applica-
tion based on area or time, either of the crossovers can 
be employed. The results obtained here can be used as a 
good initial solution as inputs to the other optimisation 
algorithms in order to achieve multi-objective optimisa-
tion along with consideration to timing and switching 
activity concerns.
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