
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/93703, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Novel and Efficient Variable Ordering and
Minimization Algorithm based on

Evolutionary Computation
Surbhi Jindal* and Manu Bansal

Department of Electronics and Communication Engineering, Thapar University, Patiala - 147004, Punjab, India;
ersurbhijindal@gmail.com, mbansal@thapar.edu

Abstract
Objectives: Considering the rapidly increasing scales of on-chip integration, the objective of this research is to propose
an improved and efficient genetic algorithm for area optimisation in limited computational time. Methods/Statistical
Analysis: A novel and efficient Evolutionary Algorithm, with three crossover operators – order, cycle and partially mapped,
has been employed to obtain an efficient variable ordering of Binary Decision Diagram (BDD) as it plays crucial role in
total node count and hence, the total used area, average computation time and storage requirement. The efficiency of
proposed algorithm has been tested on International Workshop on Logic Synthesis (IWLS), IWLS’93 combinational
benchmark circuits. Findings: It has been found, for node count reduction, that the proposed Genetic approach using
Order Crossover, gives an average reduction of 25.92% with a maximum value of 56.19%; using Cycle crossover, achieves
an average reduction of 26.43% with a maximum value of 59.79%; whereas, using PMX crossover, leads to the best possible
reduction with an average value of 35.26% with a maximum value of 84.54% as compared to average value of24.81%,
24.19% and 13.77%in case of already existing Window, Sifting and Random algorithms respectively. In terms of CPU time,
the best computation time of an average value of 0.15s, has been observed in case of Order Crossover though the Cycle
crossover also gives average value of about 0.17s as compared to PMX, which takes a little longer, about 1.18s, on an
average. The proposed algorithm is able to yield higher area optimisation in a limited CPU time. Depending on the priority
of the application based on area reduction and time dissipation, either of the algorithms and either of the crossovers can
be employed. Application/Improvements: The algorithm is able to give efficiently optimised results for about 90% of the
benchmark circuits; hence, these can be employed for Multi-Input- Multi-Output Systems (MIMO systems) in VLSI.

1.  Introduction

Nowadays, as the chip dimensions are reducing, there is
a significant need to be able to integrate more and more
components and functionality onto a single chip. This
requires more efficient usage of available chip area. In this
paper, an evolutionary algorithm, i.e., Genetic Algorithm

has been presented with three different crossover opera-
tors – order, cycle and partially mapped (PMX) for the
minimization of BDDs and its effectiveness as compared
to the existing Sifting Window and Random algorithms.

BDDs have been broadly used in Computer Aided
Design for the optimum logic synthesis and also in
formal verification and testing of Digital Circuits. A

Keywords: Binary Decision Diagram (BDD), Cycle Crossover, Genetic Algorithm, Order Crossover, Optimisation, Partially
Mapped Crossover

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 2

A Novel and Efficient Variable Ordering and Minimization Algorithm based on Evolutionary Computation

Binary Decision Diagram (BDD) is a data structure
widely used for the compact representation of Boolean
functions1. For representation of Boolean functions,
the use of BDDs was first proposed in2 and developed
to the form of the Reduced Ordered BDDs (ROBDDs)3.
The variable ordering employed for a BDD has a sig-
nificant effect on the total node count3 and hence, the
overall area. The technique of BDD has come out to
be one of the most effective styles of Boolean func-
tion representation and implementation4. BDDs have
been extensively used in logic synthesis, logic verifi-
cation, optimisation, fault simulation and test-pattern
generation for Digital systems5,6. The theory behind
this concept is that synthesis tools make use of BDDs
to solve many of the problems occurring in VLSI
Computer-Aided Design because of the fact that the
BDDs can be directly transformed into circuits by sub-
stituting every node of the underlying graph with a
multiplexer7. The reason for this transformation lies in
the Shannon decomposition8.

Many heuristics9–12 and algorithms13–23 have been
worked upon to determine the close-to-optimal solu-
tion for the optimisation of BDDs by improving the
variable ordering of the input variables- be it by using
static variable ordering10,11 which is dependent upon
circuit topology, to the dynamic variable ordering
using optimisation or evolutionary techniques13–23.
Traversing BDDs via algorithms through all the nodes
and edges of the ordered directed graph takes polyno-
mial time in the current size of the graph. However,
creation of new BDDs might lead to a major increase
in the number of nodes in the BDD depending on the
position of nodes in the graph, thereby, leading to expo-
nential memory and run time necessity. The choice of
BDD variable order is very crucial24, and to determine
an optimal variable ordering is an NP-hard problem25.
There are a large number of algorithms being used for
variable ordering in BDDs. Basically, there are three
broad categories for these algorithms- static variable
ordering16, dynamic variable ordering16and evolution-
ary algorithms18,26. In the last years, several methods
have been proposed with good quality outcomes, such
as, genetic algorithms or evolutionary algorithms,
simulated annealing etc. But they were applicable
only to small functions and had bad runtime behav-
iour8. To overcome the drawbacks, several approaches
have been suggested. In this paper, the effectiveness of
Evolutionary Approach has been presented using the

three crossover operators – order, cycle and PMX in
comparison with the Sifting, Window and Random
algorithms.

In this paper, the proposed algorithm has been found
out to be having better ability to give optimisation in
terms of node counts and hence, area in comparatively
improved CPU time.

The paper is organized as follows: Section 2 reviews
the BDD representation for the VLSI digital circuits.
Section 3 describes the Genetic Algorithm for achiev-
ing variable ordering for BDDs. Section 4 presents the
description of Crossover operators employed in the
research work. Problem Statement and the formulation
of the issues encountered when dealing with optimising
BDDs along with the proposed algorithmic approach
have been discussed in Section 5. Section 6 presents the
Experimental Results and discussion. Finally, Section 6
presents some concluding remarks and directions of the
future work.

2.  Binary Decision Diagram (BDD)
Representation for Digital
Circuits

The concept of Boolean function that defines a digital
circuit can be represented as a Binary Decision Diagram
(BDD) which is a directed acyclic graph27 with a compact
data structure28 as per a particular order and satisfying a
defined set of properties. It is usually based on the recur-
sive Shannon Expansion28 for the switching function f,
on which the graph based representation of BDD relies,
based on the decomposition of f28 around each variable yi
as is described by:

f = yi’.f│(x=0) + yi.f’│(x=1)				 (1)

Where x is a finite set of Boolean variables, x = {x1,
x2… xn} and yi’, f ’ denote the complements of yi, f respec-
tively.

A BDD can be implemented either in canoni-
cal form, ‘ordered in any order’ form (OBDD) or in
reduced ordered form (ROBDD). An OBDD gets con-
verted into an ROBDD when all duplicate terminals
and redundant nodes are eliminated, identical nodes
are shared and all duplicate nodes, if any, are merged
together3. A BDD is shown for a function f = ac + bc
in Figure 1.

Surbhi Jindal and Manu Bansal

Indian Journal of Science and Technology 3Vol 9 (48) | December 2016 | www.indjst.org

Figure 1.  BDD for the function f = ac + bc.

Figure 2.  Reduced BDD for the function f = ac + bc.

Figure 2 shows its equivalent Reduced BDD (RBDD).
The reduction in the overall size can be easily seen from
here. The total node count has been reduced from 15 to 5.

The size of a BDD strongly depends on the order of input
variables. Moreover, a function can have multiple ROBDDs16
depending on the ordering of variables. It may happen that
the size of a BDD is getting increased exponentially with
the circuit size using one variable ordering, and in a linear
fashion using another variable ordering. Since the memory
requirement, area and evaluation time increase with the
increasing size of BDD, it is desirable to keep the size of
the BDD as small as possible. Hence a number of heuristic
methods and algorithms have been developed till now, to
determine the optimal ordering for input variables.

3.  Genetic Algorithm for
Optimisation of BDDs

Four well-known paradigms for evolutionary algo-
rithms are Genetic Algorithms (GAs)29, Evolutionary

Programming (EP), Evolution Strategies (ES), and
Genetic Programming (GP)30. Natural evolution is the
motivation behind the basis of such algorithms.

Based on the initial population size31,32, the two par-
ents are selected from the population and are subjected
to produce offspring. The objective of these algorithms is
to find the optimal solution to the given problem. Since,
these are heuristic techniques, so the result obtained with
these algorithms may not be the best one. But they are
found to give very good near-optimum solutions. The
worst solutions are eliminated and good solutions are
accepted at every level of the iteration. The number of
iterations is kept large enough to get a best-fit solution for
the problem.

So, it is possible that the new individuals completely
replace the old ones or the old ones reproduce with the
new ones to produce optimal results as the population
size is kept constant throughout. The number of itera-
tions is decided either based on some kind of stopping
criteria or till the time when no further improvements in
the fitness values are achieved. The two basic processes24
employed by any genetic algorithm33,34 are:

•	 Inheritance (passing of features from one generation
to the next).

•	 Competition (Survival of the Fittest as per Darwin’s
principle).

The basic flow of Genetic Algorithm is as shown in
Table 1.

Table 1.  Basic genetic algorithm
Generate initial population
Initialize population (Either randomly or as per some
algorithm)
Find fitness function
Evaluate each individual
Choose the best-fit ones (avoid repetition in crucial and high
speed requiring cases)
Apply genetic operators (crossover, mutation, inversion)
Repeat 3 to 6 Until stopping criteria is met (or no more
improvements are obtained)

4.  Crossover Employed in
Genetic Algorithm

Crossover is the processes of making the parents combine
their genes to produce offspring. Various techniques for
Crossovers have been proposed and accepted till now, out

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 4

A Novel and Efficient Variable Ordering and Minimization Algorithm based on Evolutionary Computation

of which, improved Order Crossover (using concept of
selective positions or using cut points), Cycle Crossover,
and Partially Matched Crossovers (PMX)28 have been
employed in this research.

•	 In case of ‘Order Crossover’, a component of one par-
ent is mapped to a component of the other parent.
From the replaced part on, the remaining is filled up
by the left over genes, whereas the already present
genes are excluded keeping the order intact.

•	 In case of ‘Cycle Crossover’, a cycle is found between
the two parents. Genes from the first parent, which
form the cycle, are copied as it as to the child. The
remaining genes of the child are filled with the genes
from second parent.

•	 In case of ‘Partially Mapped Crossover (PMX)’, a ran-
dom sub set of a parent is chosen, that part is swapped
with the corresponding part from the second parent,
the cycle between the genes is established, and the cor-
responding genes are swapped according to that.

5.  Issue Formulation and
Proposed Improved Genetic
Algorithm

Nowadays, as the chip dimensions are reducing, there
is a significant need to be able to integrate more and
more components and functionality onto a single chip.
This requires more efficient usage of available chip area.
When expressing the Boolean functionality in terms
of BDDs, the main objective is the variable ordering of
BDDs as it largely influences the overall node count3 and
hence, the area. For a wide range of Boolean functions,
there are polynomial-sized BDDs for “good” variable
orderings, while the size of BDDs grows exponentially
under “bad” variable ordering. Unfortunately, improv-
ing the variable ordering of BDDs is NP-Complete and
finding the best order is NP-hard3,26. However, the most
tedious job in case of Ordered BDDs16 is to find an opti-
mal variable order.

Moreover, in today’s era of fast computing, there
is an urgent need for those methodologies which are
able to compute the optimised results in a limited CPU
time. Optimisation of variable ordering of BDDs using
algorithms has long been an important optimisation
methodology in Computer Aided Design (CAD/CAM)
applications35.

Many variable ordering methods have been pro-
posed in the last decades. These methods include
static and dynamic techniques. Static techniques are
applied before constructing the BDD to generate an
order, dependent upon the implemented function as
in11. The drawback of using Static techniques is that
it requires a prior knowledge of the function’s behav-
iour, like effect of each input variable on the function,
which may not be always known24. Whereas, the
Dynamic techniques are focused on generating new
variable orders to improve the size of the already con-
structed BDD.

One out of such techniques is Rudell’s sifting algo-
rithm13. It is based on the ordering achieved by swapping
the variables. It first selects one variable, moves it to every
possible position and finds the number of nodes. Then
the position, which gives the minimum number of nodes,
is fixed for that variable. Now, the next variable is picked
and moved to every possible position except the positions
already been fixed. The position of the new variable is
again fixed considering the minimum number of nodes.
The process is repeated till all variables are sifted accord-
ing to new optimal solution. The final ordering by fixing
all variables is the improved ordering achieved by the sift-
ing8,13,29 algorithm.

Although this algorithm decreases the number of
ordering permutations from n1 to n2, in many cases the
size of resulting BDD is far from optimal. Another tech-
nique is Window permutation, which has been found out
to be fast, but rather a weak minimization heuristic29

Many other methods have been using genetic algo-
rithm8,18,28,29,32 and different heuristics10–12 to generate new
orderings. The Genetic algorithm based approach used
genetic operations like crossover and mutation18 in order
to generate new variable ordering based on some fitness
criteria. Genetic algorithm based approaches have been
found to be yielding good run times but when compared
to other techniques, node reduction result hasn’t found
much improvement. Simulated annealing based approach
has been found to give better area results but on the cost
of long run times24.

Considering the drawbacks, in this paper, an improved
Genetic Algorithm approach for optimising the node
count and hence, area has been presented and the simula-
tion results have shown significant minimization in the
node count, in a limited CPU time.

The proposed algorithm for the Genetic approach is as
shown in Figure 3.

Surbhi Jindal and Manu Bansal

Indian Journal of Science and Technology 5Vol 9 (48) | December 2016 | www.indjst.org

Figure 3.  Flowchart for the proposed genetic approach.

 A new random population of BDDs for every bench-
mark circuit was initialized. After that, individual fitness
i.e. node count for each BDD was calculated. And then the

application of Crossover Operators (Order/PMX/Cycle) i.e.,
combining features from two different parent individuals to
generate a new placement was carried out. Then Mutation
i.e., modifying characteristics of existing solution to generate
a new one with number of mutations not more than [(num-
ber of elements)/2 + 1], was applied. Then, the obtained
solution, if found to be consistent, was led to the calculation
of computation time. In case of inconsistent solution, the
iteration was repeated till consistent solution was obtained.

6.  Experimental Results and
Discussion

The genetic algorithm using three types of crossover
operators has been implemented with C++ codes and sim-
ulated using BDD package Buddy 2.436 on Ubuntu 14.04.
Simulation Results i.e., node count and corresponding
computation times for IWLS’93 combinational benchmark
circuits have been presented in the tables. The compari-
son has been made with the existing Window (WIN2,
WIN2ITE, WIN3), Sifting (SIFT, SIFTITE) and Random
algorithms that have been included in the Buddy 2.4. The

Table 2.  Node count comparison against initial values for window algorithms for IWLS’93 benchmarks
Ben Ckt #i - #o Initial NC WIN2 WIN2ITE WIN3

NC %age reduction
in NC by

WIN2

NC %age reduction
in NC by

WIN2ITE

NC %age reduction
in NC by WIN3

5xp1 7 - 10 95 83 12.6316 81 14.7368 75 21.0526
alu4 14 - 8 990 746 24.6465 752 24.0404 743 24.9495
b12 15 - 9 76 87 -14.4740 80 -5.2632 72 5.2632
Bw 5 - 28 115 115 0.0000 110 4.3478 106 7.8261
clip 9 - 5 215 158 26.5116 108 49.7674 105 51.1628
con1 8 - 2 20 17 15.0000 15 25.0000 15 25.0000
duke2 22 - 29 736 543 26.2228 500 32.0652 588 20.1087
Inc 7 - 9 83 74 10.8434 72 13.2530 74 10.8434
misex1 8 - 7 45 41 8.8889 40 11.1111 39 13.3333
misex2 25 - 18 138 141 -2.1739 125 9.4203 95 31.1594
sao2 10 - 4 123 122 0.8130 100 18.6992 105 14.6341
sqrt8 8 - 4 48 43 10.4167 43 10.4167 42 12.5000
squar5 5 - 8 41 37 9.7561 42 -2.4390 39 4.8780
t481 16 - 1 194 32 83.5052 32 83.5052 32 83.5052

vg2 25 - 8 647 521 19.4745 410 36.6306 350 45.9042
Average Reduction %age: 15.4708 21.6861 24.8080

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 6

A Novel and Efficient Variable Ordering and Minimization Algorithm based on Evolutionary Computation

Table 3.  Node count comparison against initial values for sifting, random algorithms for IWLS’93 benchmarks
Ben Ckt #i - #o Initial

NC
SIFT SIFTITE RANDOM

NC %age reduction
in NC by SIFT

NC %age reduction
in NC by SIFTITE

NC %age reduction in
NC by RANDOM

5xp1 7 - 10 95 76 20.0000 76 20.0000 86 9.4737
alu4 14 - 8 990 758 23.4343 742 25.0505 737 25.5556
b12 15 - 9 76 72 5.2632 72 5.2632 63 17.1053
bw 5 - 28 115 108 6.0870 108 6.0870 116 -0.8696
clip 9 - 5 215 106 50.6977 106 50.6977 112 47.9070
con1 8 - 2 20 16 20.0000 16 20.0000 18 10.0000
duke2 22 - 29 736 609 17.2554 589 19.9728 725 1.4946
inc 7 - 9 83 70 15.6627 70 15.6627 86 -3.6145
misex1 8 - 7 45 39 13.3333 39 13.3333 45 0.0000
misex2 25 - 18 138 110 20.2899 98 28.9855 144 -4.3478
sao2 10 - 4 123 109 11.3821 106 13.8211 130 -5.6911
sqrt8 8 - 4 48 41 14.5833 41 14.5833 50 -4.1667
squar5 5 - 8 41 42 -2.4390 41 0.0000 43 -4.8780

t481 16 - 1 194 32 83.5052 32 83.5052 55 71.6495
vg2 25 - 8 647 395 38.9490 350 45.9042 343 46.9861

Average Reduction %age: 22.5336 24.1911 13.7736

Table 4.  Node count comparison for proposed genetic (order, cycle, PMX) for IWLS’93 benchmarks
Ben Ckt #i - #o Initial NC Order Cycle PMX

NC %age reduction in
NC by Order

NC %age reduction
in NC by Cycle

NC %age reduction
in NC by PMX

5xp1 7 - 10 95 68 28.4211 69 27.3684 68 28.4211
alu4 14 - 8 990 891 10.0000 939 5.1515 734 25.8586
b12 15 - 9 76 70 7.8947 68 10.5263 50 34.2105
bw 5 - 28 115 106 7.8261 106 7.8261 106 7.8261
clip 9 - 5 215 102 52.5581 108 49.7674 93 56.7442
con1 8 - 2 20 16 20.0000 15 25.0000 15 25.0000
duke2 22 - 29 736 506 31.2500 512 30.4348 390 47.0109
inc 7 - 9 83 72 13.2530 72 13.2530 72 13.2530
misex1 8 - 7 45 36 20.0000 36 20.0000 36 20.0000
misex2 25 - 18 138 100 27.5362 102 26.0870 87 36.9565
sao2 10 - 4 123 92 25.2033 90 26.8293 85 30.8943
sqrt8 8 - 4 48 33 31.2500 33 31.2500 33 31.2500
squar5 5 - 8 41 37 9.7561 37 9.7561 37 9.7561

t481 16 - 1 194 85 56.1856 78 59.7938 30 84.5361
vg2 25 - 8 647 339 47.6043 301 53.4776 148 77.1252

Average Reduction %age: 25.9159 26.4348 35.2562

Surbhi Jindal and Manu Bansal

Indian Journal of Science and Technology 7Vol 9 (48) | December 2016 | www.indjst.org

area optimisation results for different IWLS’93 benchmark
circuits for Window algorithms have been shown in Table
2; for Sifting and Random algorithms, results are shown in
Table 3; and shown in Table 4 are the results of the proposed
Genetic approach. Table 5 lists the Computation Times
taken to obtain the optimum results using the respective
Genetic operators of the proposed approach.

Table 5.  Computation time (seconds) comparison
for proposed genetic (order, cycle, PMX) for IWLS’93
benchmarks
Ben Ckt #i - #o Computation Time (seconds)

Order Cycle PMX

5xp1 7 - 10 0.09 0.11 0.19

alu4 14 - 8 0.22 0.30 6.63

b12 15 - 9 0.06 0.07 0.18

bw 5 - 28 0.20 0.26 0.31

clip 9 - 5 0.13 0.21 0.74

con1 8 - 2 0.04 0.04 0.05

duke2 22 - 29 0.27 0.29 1.40

inc 7 - 9 0.07 0.08 0.17

misex1 8 - 7 0.06 0.06 0.13

misex2 25 - 18 0.08 0.08 0.16

sao2 10 - 4 0.10 0.13 0.37

sqrt8 8 - 4 0.06 0.06 0.14

squar5 5 - 8 0.05 0.06 0.06

t481 16 - 1 0.66 0.66 5.75

vg2 25 - 8 0.18 0.18 1.36
Average Computation
Time:

0.15 0.17 1.18

In the tables, ‘Ben Ckt’ refers to the ‘Benchmark
Circuits’ of IWLS’93 on which the algorithms have been
tested; #i and #o indicate the number of inputs and out-
puts respectively, for the corresponding benchmark
circuits; and, NC refers to the Node Count.

From Table 2, it has been observed that out of Window
algorithms, WIN3 algorithm resulted in the best node count
reduction, with an average value of about 24.81%. Similarly,
Table 3 has shown that SIFTITE is able to achieve an average
node count reduction of about 24.19%, which is best out of
Sifting and Random algorithms. From the results in Table
4, it can be found that the proposed approach using Order
Crossover, results in an average reduction of about 25.92%
with a maximum value of about 56.19%; using Cycle crossover,

achieves an average reduction of about 26.43% with a maxi-
mum value of about 59.79%; whereas, using PMX crossover,
leads to the best possible reduction with an average value of
about 35.26% with a maximum value of 84.54%.

Hence, the proposed approach has been able to yield
best optimisation results in terms of node count when
compared to the Sifting, Window and Random algo-
rithms, with PMX yielding the best reduction out of all
the three crossover techniques.

The best computation time of an average value of 0.15s,
has been observed in case of Order Crossover though the
Cycle crossover also gives average value of about 0.17s as
compared to PMX, which takes a little longer, about 1.18s,
on an average but at the same time, is able to result in best
optimisation in node count.

The graphs comparing the results in terms of node
count have been shown in Figure 4, Figure 5, Figure 6
and Figure 7. The results of Computation times have been
plotted in Figure 8.

Figure 4.  Node count comparison against initial values for
window algorithms for IWLS’93 benchmarks.

Figure 5.  Node count comparison against initial values for
sifting, random algorithms for IWLS’93 benchmarks.

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 8

A Novel and Efficient Variable Ordering and Minimization Algorithm based on Evolutionary Computation

Figure 6.  Node count comparison for proposed genetic
(order, cycle, PMX) for IWLS’93 benchmarks.

Figure 7.  Node count comparison of best from sifting,
window, proposed genetic for IWLS’93 benchmarks.

Figure 8.  Computation time (seconds) comparison
for proposed genetic (order, cycle, PMX) for IWLS’93
benchmarks.

7.  Conclusions

The proposed algorithm for area optimisation i.e., reduc-
tion in code count, is based on the improved crossover
techniques in Genetic Algorithm. It has been observed
that the proposed methodology is a good improve-
ment over the previous methods like Sifting, Window
and Random algorithms in terms of minimization of
the number of nodes, and hence, area when tested on
many circuits. From the results it is evident that PMX is
yielding the best node count but on the cost of increased
computation times than the other two crossovers while
the Order crossover and Cycle crossover are able to
provide the node count results in a much lesser com-
putation time. So, there has to be a trade-off between
the choices. Depending on the priority of the applica-
tion based on area or time, either of the crossovers can
be employed. The results obtained here can be used as a
good initial solution as inputs to the other optimisation
algorithms in order to achieve multi-objective optimisa-
tion along with consideration to timing and switching
activity concerns.

8.  Acknowledgements

The research work was supported by Thapar University.
The authors would like to thank Mr. Gagandeep Singh
Dhingra (Thapar University, Punjab, India) for shar-
ing their precious knowledge during this research, Ms.
Rupinder Kaur (Chitkara University, Punjab, India),
Mr. Raj Shah (Thapar University, Punjab, India) and
Ms. Chandni Dodiya (VIT University, Chennai, India)
for their valuable suggestions and motivation. Special
thanks to the editors and reviewers for their valuable
comments.

9.  References
1.	 Akers SB. Binary decision diagrams. IEEE Trans Comput.

1978 Jun; 27(6):509–16.
2.	 Lee CY. Representation of switching circuits by binary-

decision programs. The Bell System Technical Journal. 1959
Jul; 38(4):985–99.

3.	 Bryant RE. Graph-based algorithms for Boolean func-
tion manipulation. IEEE Trans Comput. 1986 Aug; 35(8):
677–91.

4.	 Cabodi G. Improving the efficiency of BDD-based opera-
tors by means of partitioning. IEEE Transactions on

Surbhi Jindal and Manu Bansal

Indian Journal of Science and Technology 9Vol 9 (48) | December 2016 | www.indjst.org

Computer-Aided Design of Integrated Circuits and
Systems. 1999 May; 18(5):545–56.

5.	 Rehan S, Bansal M. Performance comparison among dif-
ferent evolutionary algorithms in terms of node count
reduction in BDDs. International Journal of VLSI and
Embedded Systems. 2013 Jul; 4:1–6.

6.	 Minato SI. Binary decision diagrams and applications for
VLSI CAD. Kluwer Academic Publishers; 1996.

7.	 Drechsler R, Kerttu M, Lindgren P, Thornton M. Low
power optimisation techniques for BDD mapped circuits
using temporal correlation. Can J Elec Comput Eng. 2002
Oct; 27(4):1–6.

8.	 Furdu I, Patrut B. Genetic algorithm for ordered decision
diagrams optimisation. Proceedings of ICMI; Bacau. 2006
Sep. p. 1–8.

9.	 Aloul FA, Markov IL, Sakallah KA. MINCE: A static global
variable-ordering heuristic for SAT search and BDD manip-
ulation. J Univers Comput Sci. 2004; 10(12):1562–96.

10.	 Chung PY, Hajj IM, Patel JH. Efficient variable ordering
heuristics for shared ROBDD. Proceedings of the IEEE Inte
rnational Symposium on Circuits and Systems; Chicago, IL.
1993 May. p. 1690–3.

11.	 Fujita M, Fujisawa H, Matsunaga Y. Variable ordering
algorithms for ordered binary decision diagrams and
their evaluation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 1993 Jan;
12(1):6–12.

12.	 Fujji H, Ootomo G, Hori C. Interleaving based variable
ordering methods for ordered binary decision diagrams.
IEEE/ACM International Conference on Computer-Aided
Design. Santa Clara, CA, USA. 1993. p. 38–41.

13.	 Rudell R. Dynamic variable ordering for ordered binary
decision diagrams. IEEE/ACM International Conference
on Computer-Aided Design11; Santa Clara, CA, USA. p.
42–7.

14.	 Meinel C, Somenzi F, Theobald T. Linear sifting of deci-
sion diagrams. IEEE Proceedings of the 24th ACM/IEEE
Design Automation Conference; CA, USA. 1997 Jun. 1993.
p. 202–7.

15.	 Friedman SJ, Supowit KJ. Finding the optimal variable
ordering for binary decision diagrams. Proceedings of
the 24th ACM/IEEE Design Automation Conference; New
York, USA. 1987. p. 348–56.

16.	 Grumberg O, Livne S, Markovitch S. Learning to order BDD
variables in verification. J Artif Intell Res. 2003; 18:83–116.

17.	 Zhuang N, Benten MST, Cheung PYK. Improved vari-
able ordering of BDDs with novel genetic algorithm.
Proceedings of the IEEE International Symposium on Circ
uits and Systems; Atlanta, GA. 1996. p. 414–7.

18.	 Chaudhury S, Dutta A. Algorithmic optimisation of BDDs
and performance evaluation for multi-level logic circuits

with area and power trade-offs. Circuits and Systems. 2011
Jul; 2(3):217–24.

19.	 Ishiura N, Sawada H, Yajima S. Minimization of binary
decision diagrams based on exchanges of variables. IEEE
International Conference on Computer-Aided Design;
Santa Clara, CA, USA. 1991. p. 472–5.

20.	 Fey G, Drechsler R. Minimizing the number of paths in
BDDs. Proceedings of the 15th Symposium on Integrated
Circuits and Systems Design; 2002. p. 359–64.

21.	 Kerttu M, Lindgren P, Thornton M, Drechsler R. Switching
activity estimation of finite state machines for low power
synthesis. IEEE International Symposium on Circuits and
Systems; Sweden. 2002. p. 65–8.

22.	 Sathya N, Muthukumaravel A. A review of the optimisa-
tion algorithms on travelling salesman problem. Indian J
Sci Technol. 2015 Nov; 8(29):1–4.

23.	 Takapoo M, Ghaznavi-Ghoushchi MB. IDGBDD: The
novel use of ID3 to improve genetic algorithm in BDD
reordering. International Conference on Electrical
Engineering/Electronics Computer Telecommunications
and Information Technology; Chiang Mai. 2010. p. 117–21.

24.	 Siddiqui MDB, Bansal M. BDD ordering: A method
to minimize BDD size by using improved initial order.
International Journal of VLSI and Embedded Systems.
2013 Jun; 4(3):1–4.

25.	 Prasad PWC, Assi A, Harb A, Prasad VC. Binary deci-
sion diagrams: An improved variable ordering using
graph representation of Boolean functions. International
Journal of Computer, Electrical, Automation, Control and
Information Engineering. 2008; 2(2):1–7.

26.	 Sharma G. Algorithmic reduction and optimisation of
logic circuit in area and power tradeoffs’ with the Help of
BDD. International Journal of Engineering and Computer
Science. 2014 May; 3(5):6132–9.

27.	 Roeva O, Fidanova S, Paprzycki M. Influence of the popu-
lation size on the genetic algorithm performance in case
of cultivation process modeling. Federated Conference
on Computer Science and Information Systems; 2013 Sep
8-11. p. 371–6.

28.	 Lenders W, Baier C. Genetic algorithms for the variable
ordering problem of binary decision diagrams. Proceedings
of the 8th International Conference on Foundations of
Genetic Algorithms; Springer. 2005. p. 1–20.

29.	 Kaur R, Bansal M. BDD ordering and minimization
using various crossover operators in genetic algorithm.
International Journal of Innovative Research in Electrical,
Electronics, Instrumentation and Control Engineering.
2014 Mar; 2(3):1–4.

30.	 Gotshall S, Rylander B. Optimal population Size and the
genetic algorithm. USA. 2002. p. 1–5.

31.	 Somenzi F. Binary decision diagrams. 2006; 27(6):509–16.

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 10

A Novel and Efficient Variable Ordering and Minimization Algorithm based on Evolutionary Computation

32.	 Esmin AAA, Matwin S. HPSOM: A hybrid particle swarm
optimisation algorithm with genetic mutation. International
Journal of Innovative Computing, Information and Control.
2013 May; 9(5):1919–34.

33.	 Kaghed HN, Al–Shamery SE, Al-Khuzaie FEK. Multiple
sequence alignment based on developed genetic algorithm.
Indian J Sci Technol. 2016 Jan; 9(2):1–7.

34.	 MarSadeghi, Gholami M. Genetic algorithm optimisation
methodology for PWM inverters of intelligent universal

transformer for the advanced distribution automation of
future. Indian J Sci Technol. 2012 Feb; 5(2):1–6.

35.	 Simolowo OE, Okonkwo FC, Kehinde OO. CAD/CAM
applications: Status and impact in Nigerian industrial sec-
tor. Indian J Sci Technol. 2010 Jun; 3(6):1–5.

36.	 Lind-Nielsen J. BuDDy: A binary decision diagram pack-
age; 2011. p. 1–36.

