
Abstract
App Inventor developed by MIT is a visual programming development environment with drag-and-drop interface which
aims to help design and implement mobile apps with full functionality on Android operating system. App Inventor’s
intuitive blocks programming allow mobile app developers to focus on design and programming logic instead of language
syntax. Apps development processes are composed of five phrases, which are discovery, wire-framing, prototyping,
implementation, and deployment. In software design process, generally software architecture is divided into components
called modules. We analyze that a module is composed of related blocks of App Inventor. With applying App Inventor as
an Android application prototyping method, it allows android mobile application to be implemented much faster. In this
study, we show the development process using App Inventor as a prototyping method is more efficient compared to using
Android SDK only.

Application Study on Android Application
Prototyping Method using App Inventor

Hwansoo Kang1, Jinhyung Cho1 and Heechern Kim2*
1School of Computer Engineering, Dongyang Mirae University, Seoul, 152-714, Korea; hskang,cjh@dongyang.ac.kr

2Department of Computer Science, Korea National Open University, Seoul, 110-791, Korea; hckim@knou.ac.kr

Keywords: Android SDK, App Inventor, Development Process, Design Method, Mobile Application, Prototyping

1. Introduction

As the wide and fast-growing smart phones require
various broadband mobile services, mobile applications
should be developed rapidly and enormously to meet rap-
idly changing market conditions. App Inventor is a visual
blocks programming tool and web-based. It has two major
elements, the Component Designer and the Blocks Editor.
App Inventor allows inexperienced users with little or no
programming knowledge to develop mobile apps easily1,2.
Users can design an app’s interface and non-visible compo-
nents, and integrate them using the Component Designer.
With the Blocks Editor, users can specify an apps’ behav-
ior and set how the app acts under certain conditions3.
The Blocks Editor supports graphical guidance for select-
ing, composing, and understanding program structures,
which can help beginners reduce most common program-
ming errors4. App Inventor is reinforcing fundamentals
of programming, learning new concepts, teamwork and
building mobile apps5. In mobile apps development, a
prototype is a simulating model of a mobile application,

usually built for demonstration purposes or as part of the
development process. A prototype is early version of soft-
ware built to test and try some newly proposed design.
Prototyping of apps is very important for rapid develop-
ment of mobile apps. A prototyping tool should be easy
for designers to use in the conceptual app design phase.
It should be set and available in users’ general environ-
ment with little difficulties6. There are several prototyping
methods such as paper based prototyping, blended proto-
typing and tool based prototyping7. In this paper, we are
interested in tool based prototyping.

2. Android App Development
Process

Android, which is built on top of the Linux kernel, is a
mobile operating system. Android app development
processes by which new apps are created for the android
operating system8. The first step in developing an app is
to come up with an idea, which is discovery. The second
step is wire-framing. This is the stage where you toss

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(19), DOI: 10.17485/ijst/2015/v8i19/75919, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Application Study on Android Application Prototyping Method using App Inventor

Indian Journal of Science and Technology2 Vol 8 (19) | August 2015 | www.indjst.org

out ideas and see what works. Effective wire-framing
allows you to work through your apps’ navigation. Wire-
framing makes your ideas tangible and easier to evaluate.
Wire-framing is a structural representation of screen
skeletons for intended layout of an app with the form of
simple line-sketches. In Wire-framing stage, developers
make a structure design for your app with your prefer-
ences. It includes aspects of the feasibility, specifications,
platform, and features. This stage helps you verify that
the Android app development progresses harmoni-
ously with your requirements. Next step is prototyping,
which is gathering detailed requirements and devising
screens user interface, and then develop a prototyping
app simulating target app. Next step is developing and
testing a target app, called implementation. Some of the
other features are taken into account including passing
information between activities, SQ Lite Database, usage
intention, navigation, and list of views in this Android
app development process. In order to keep Quality
Assurance of App, regular checks are carried out to
ensure the application’s functionality during the whole
period of the Android app development. The app testing
process ensures that the app being developed is of high
quality with few errors. Final step is deployment, which
is to release and publish mobile apps. App deployment
is an essential task for preparing for publication and dis-
tribution. A release version of the application is created
and prepared for deployment to Android-based devices.
The release version can be available through a single or
multiple distribution channels.

3. App Inventor for Prototyping
App

We show a sample app for showing that App Inventor is
used efficiently as a prototyping tool in the app develop-
ment processes.

3.1 App Inventor
App Inventor is a web-based developing environment
with two main elements, the Component Designer and
the Blocks Editor shown in Figure 1. App Inventor makes
it easy for users to develop an Android app, although
users are lacking in programming experience. With the
Component Designer to create an app on Android devices,
users can specify the app’s visible (e.g., menus or but-
tons) and non-visible components (e.g., web connections

or sounds) and then integrate them. The Component
Designer is a user interface design tool with a WYSIWYG
interface. Users can drag and drop visual objects into a
view, set and change component properties like size and
color for each object, and specify the app’s general look.

With the Blocks Editor, users can specify an apps’
behavior and set how the app acts under certain condi-
tions. The core strength of App Inventor is to provide
visual programming interface. It is possible to create
full functioning mobile apps by arranging visible and
non-visible components and behavior logic blocks with
drag-and-drop editing. The blocks language provides
easy-to-use programming interface. The decrease of typ-
ing rate considerably reduces chances of syntax errors
for beginners, the blocks give visual hints to simplify the
development task, and only some blocks are held in their
positions to minimize the possibility of errors9–13.

Figure 1. App Inventor elements: Component Designer
and Blocks Editor.

Hwansoo Kang, Jinhyung Cho and Heechern Kim

Indian Journal of Science and Technology 3Vol 8 (19) | August 2015 | www.indjst.org

3.2 Target App
Target app project is shown in Figure 2. Target app is
showing a message displayed in various text and back-
ground colors composed of red, green and blue color
value of between 0 and 255.

3.3 Prototyping Target App
We develop a proto type of a target app with App Inventor.
App Inventor has two core modules, the Component
Designer and the Blocks Editor. The Component Designer
designs the app’s user interface by arranging visual and
non-visual components. Figure 3 shows Designer screen
of target app project.

3.4 Blocks Programming
Next, let’s program the components using blocks. With
the Blocks Editor, you can program the behavior of your
app by putting blocks together with intention. Upper

blocks of Figure 4 are the blocks that screen will initial-
ize edit text components (tBoxR, tBoxG, and tBoxB)
color to red, green, blue and value to 0 when screen1
is opened. Also lower blocks show that when button
btnCngLb is clicked, label text of lbDislay is set to tBox
Input text.

Figure 5 shows that When btnT Color button is clicked,
the color is created as the text color of lbDisplay label and
the message in lbDisplay is displayed that color.

The check Color procedure of Figure 6 gets an input
value and checks its limits of between 0 and 255, because
this value is a red, green or blue color value of 8 bit. If it’s
less than 0 or not a number at all, the return value will be

Figure 2. Target app’s screen.

Figure 3. Designer screen of target app.

Figure 4. Event handing.

Figure 5. Blocks for setting color.

Figure 6. Blocks for procedure.

Application Study on Android Application Prototyping Method using App Inventor

Indian Journal of Science and Technology4 Vol 8 (19) | August 2015 | www.indjst.org

0. If it’s greater than 255, the result will be 255. The check
Color procedure calls the limit Range procedure. The
limit Range procedure is a procedure having an input, a
lower limit and an upper limit of parameters, and checks
the limits of input within that range, and then returns and
then returns a value of between the lower limit 0 and the
upper limit 255.

The limit Range procedure is interested. If the input
of the procedure is not a number, the result is the lower
limit 0. If the input of the procedure is a number, the
procedure returns a final number between 0 and 255.
To restrict the range, first of all the procedure take the
maximum of the input and the lower limit 0 and then
returns the minimum of the result of the maximum and
the upper limit 255.

3.5 Easy to Implement Java Source of App
App Inventor’s block can be translated easily into app java
source. Therefore, with prototyping target app with App
Inventor, we can develop a target app rapidly. For example,
blocks for when Screen1 is initialized can be translated
into app java source of following Figure 7.

4. Prototyping Significance
A significant function of prototyping is to simulate a
target app quickly and easily. The other function is how
to help other processes of app development processes
in actual development processes. That is, prototyping

Figure 7. Blocks and java source.

Table 1. Prototyping Connectivity with the other app development processes

Step Process Connectivity of Prototyping

1 Discovery
to come up with an idea

A prototyping tool that simulates a target app easily is
effective for good ideas.

2 Wire-framing
providing a structural design of screen skeletons
at the layout of an app

As wire-framing simulates a target app, a prototype tool
having easy screens design is very effective.

3 Prototyping
develop a prototyping app simulating target app

A prototype tool should simulate a target app easily and
quickly.

4 Implementation
developing and testing a target app

Developing a prototyping app should help to develop a
target app with original development environment.

5 Deployment
essential tasks for preparing for publication and
distribution

Prototyping is recommended to help to release and
distribute a target app.

process is meaningless by itself. It should have con-
nectivity to other processes. As shown in the following
Table 1, discovery, wire-framing, implementation and
deployment process are related with prototype process
closely. As shown in the chapter 2, Android application
prototyping method using App Inventor is effective on
connectivity with other process of app development
processes. Especially Designer of App Inventor helps to
wire-framing process. Block coding of App Inventor is
very easy, effective in implementation process as well.

Hwansoo Kang, Jinhyung Cho and Heechern Kim

Indian Journal of Science and Technology 5Vol 8 (19) | August 2015 | www.indjst.org

5. Conclusion
The process of app development is not so different from
the traditional software development process. However,
if we develop Android apps more quickly with a project
team having developers who deficient in Android SDK
and Java programming experience, it will greatly contrib-
ute to improving apps development productivity. The App
Inventor is used by many departments relating computer
science and engineering in college and many students
interested in smart apps in the school. Everyone insuf-
ficient to programming knowledge can create Android
apps by using App Inventor.

You can design Android app on a web page, put a few
of logic blocks together on the same page, and test Android
app on an emulator or on your phone at the same time.

App Inventor is the advantage of component visual
programming, where one can drag and drop visual
components, and then give programmable behaviors to
logic blocks to develop mobile apps easy. Therefore, App
Inventor using for app prototyping is highly efficient
because App Inventor is easy to use and intuitive for app
programming and App Inventor is effective on connectiv-
ity with other process of app development processes.

6. Acknowledgment
This research has been supported by 2014 Academic
Research Project funded by Dongyang Mirae University
in the Republic of Korea.

7. References
1. MIT App Inventor home page, MIT Center for Mobile

Learning. 2014. Available from: http://appinventor.mit.edu
2. MIT App Inventor tutorials page, MIT Center for Mobile

Learning. 2014. Available from: http://appinventor.mit.
edu/explore/tutorials.html

 3. Turbak F, Okerlund J. A preliminary analysis of app inventor
blocks programs. IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC ’13); 2013; San
Jose CA.

 4. Pokress SC, Veiga JJD. MIT App inventor: Enabling per-
sonal mobile computing; PRoMoTo 2013 Proceedings;
2013.

 5. Soares A, Martin NL. Teaching non-beginner
programmers with app. inventor: survey results and impli-
cations. Proceedings of the Information Systems Educators
Conference; 2014.

 6. Bahr B. Rapid creation of sketch-based,native Android
prototypes with Blended Prototyping. PID-MAD 2013 (In
Conjunction with Mobile HCI ‘13); 2013.

 7. Jorgensen AP, Collard M. Prototyping iPhone apps: realistic
experiences on the device. Proceedings of the 6th Nordic
Conference on Human-Computer Interaction: Extending
Boundaries (NordiCHI ‘10); ACM; 2010. p. 687–90.

 8. Eom, Lee. Human-centered software, development
methodology in mobile computing environment: agent-
supported agile approach. EURASIP Journal on Wireless
Communications and Networking. 2013; 2013:111.

 9. Hsu Y–C, Rice K, Dawley L. Empowering Educators with
Google’s Android App Inventor: An Online Workshop
in Mobile App Design. British Journal of Educational
Technology. 2012; 43(1): E1–5.

10. Wolber D. App Inventor and Real-World Motivation.
Proceedings of the 42nd ACM technical symposium on
Computer science education (SIGCSE ‘11); 2011. p. 601–6.

11. Gestwicki P, Ahmad K. App Inventor for Android with
Studio-Based Learning. Journal of Computing Sciences in
Colleges archive. 2011; 27(1):55–63.

12. Gestwicki P, Ahmad K. Studio-based learning and app
inventor for android in an introductory CS course for
non-majors. Proceeding of the 44th ACM technical sympo-
sium on Computer science education (SIGCSE ‘13); 2013.
p. 287–92.

13. Gestwicki P. App Inventor for Android with Studio-Based
Learning. 2014. Available from: https://sites.google.com/
site/appinventorsbl/home

