
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/102493, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Detecting Blacklisted IP Access from Android Phone
Parag H Rughani*

Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar – 382007,
Gujarat, India; parag.rughani@gmail.com

Abstract
Objectives: To develop a method to detect access of blacklisted IP from Android. Methods/Statistical Analysis: Android
Operating System source code under AOSP was modified and customized to achieve objective of the work. Work was
tested on various simulators with variety of black listed and whitel listed IP to confirm outcome. Findings: A well-defined
method was derived and verified based on the results of tests carried out during the work. Outcome of the work is an
implementation on Android operating system, which customizes the way device connects to an IP through internet. The
customization done on operating system helps in identifying interaction of any black listed IP to or from an android device.
A supporting python script is also written to automate steps related to interception and interpretation. As being open
source, the solution is also extendable to accommodate more features in the same domain. Application / Improvements:
The method developed during this research can be used in behavioral analysis of android malware.

1.  Introduction

Android malware is becoming a major concern for android
users and security professionals. As per Kaspersky’s
SecureList Report1: “From the beginning of January till
the end of December 2015, Kaspersky Lab registered
nearly 17 million attacks by malicious mobile software
and protected 2,634,967 unique users of Android-based
devices”. These figures are increasing day by day as the
popularity and use of android phones are increased.

Most of the android based malware communicate with
some remote machine (command and control center)
either for getting instructions as it does in ransomware
or to send data / information stolen from device to the
attacker. Whatever intension is there, these malware are
mostly dependent on remote machine and always need to
communicate with it.

This paper is based on detecting such malicious
transaction with help of custom Android OS in simu-
lated environment. The work done here is focused on
intercepting the ip address and / or domains requested
by application under test. The automated process based
on python script with custom Android OS offers a pow-
erful and customizable solution than other existing
options.

The work done during this research can be considered
as small aspect of Intrusion Detection System as it deals
with malicious activities including attempts to communi-
cate any black listed IP addresses.

Main objective of this work is to provide a first-step
quick idea about malicious communication in android mal-
ware analysis. Many researchers are working in malware
analysis and especially sufficient work is done in android
malware analysis also, but very few of them have worked

Keywords: Android, Android Malware, Black Listed IP, Malicious Website, Malware, Malware Analysis

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 2

Detecting Blacklisted IP Access from Android Phone

on intercepting ip address (URL). Main reason behind less
work done in this regard is existence of interception tools
like wireshark which provides in-depth analysis of data
sent and received from android2. Though wireshark is very
powerful it also has pros and cons. This section discusses
work done in android malware analysis.

In malware analysis “host-based approaches are
required, since network-based monitoring alone is
not sufficient”3. Most of the researchers working on
Android Malware Analysis and Intrusion Detection
use variety of parameters in their research as some
authors focused on call logs to detect malicious activi
ties4, while others discussed importance of Function
Oriented approach in Malware Analysis5. Similarly, an
extensive feature based approach is proposed by some
authors6. One of very relevant works related to this
paper discusses taint tracking to monitor privacy sen
sitive information7.

Apart from intrusion based malware analysis there
are various other approaches to analyze a malware.
Code Clone using String Pattern Back Propagation
Neural Network Algorithm8, System Call Analysis9 and
use of Bayesian Technique and Nymble Algorithm in
malware detection10 are few other contribution in mal-
ware analysis.

2.  Proposed Technique

Behavioral malware analysis on any platform is suggested to
be carried out in sandbox or simulated environment. There are
various sandboxes available for desktop computers including
cuckoo. Similar to desktop computers, mobile malware analy-
sis can safely and efficiently done in simulated environment.
There is an advantage for mobile devices, as most of the Mobile
Operating Systems provide their own emulators / simulators for
application developers. Since, they are more reliable and effi-
cient than third party sandbox these emulators / simulators can
be used in malware analysis on mobile phones.

Importance of Mobile Sandbox in static and dynamic
analysis of mobile malware including Android is discussed by
some authors11. While some authors proposed and claimed
that their sandbox is capable of performing static and dynamic
analysis12. As various researchers have proposed various sand-
boxes for Android platform, a detailed Android Sandbox
Comparison is also given by some authors13, which can be
used by researchers in choosing appropriate sandbox for their
work. So far,14 and7 are the most popular sandboxes used by
developers and researchers.

Keeping in consideration, importance of sandbox in
behavioral analysis of malware, I have selected to work on
Android Emulator by customizing AOSP and writing a python
script to automate necessary steps for complete analysis.

Proposed work is focused on very basic but very impor-
tant and crucial information required in any malware
analysis. The idea behind the work is to provide customiz-
able way of intercepting requested IP address and / or URL
for detecting malicious transactions initiated by an applica-
tion running on the android phone. The method further
compares this IP Address with a list of blacklisted IPs.

To achieve my objective, I customized Android OS
Version 5.0.2 by modifying its source code. The changes
are made in files required for intercepting IP address. The
requested IP addresses are printed using Log for interpreta-
tion at the runtime. Customized android source code is then
compiled to get binaries (img files) required by the emulator.
The detailed process on making code and running emulator
can be referred from official android source website15.

A python script is written to automate steps required
in performing the task. Once the emulator is running the
script can be executed before beginning behavioral analy-
sis of sample. The script once started extracts emulator
log automatically. These logs are than interpreted to filter
IP Addresses. The script then compares details extracted
from emulator log with the list of blacklisted IPs. Python
script is capable of getting updated list of blacklisted IPs
from predefined URL(s). Final results retrieved from the
script are stored in a separate file called analysis.txt. The
results are very user friendly and can help any layman in
understanding them. Following steps with screen shots
explains the proposed technique.

3.  Implementation

Assuming that user has Android SDK configured on his
computer with the custom img files generated as an out-
come of this research, the first step in implementation is
to start the android emulator. The emulator with help of
custom image can be started using following command as
shown in Figure 1.

Figure 1.  Command to execute android emulator with
custom images.

Parag H Rughani

Indian Journal of Science and Technology 3Vol 9 (48) | December 2016 | www.indjst.org

Once the emulator is loaded one can install sample
apk (suspected malware) into the emulator using adb
install command.

I have used an existing application called Server Status
Checker which is designed to check status of a server
based on ip addresses or URL, the sample application
taken here is not a malware but it is used to illustrate pur-
pose of IP Address interception. The Black listed IP used
for testing (i.e. 221.214.10.16) is set to the testing applica-
tion and can be seen in Figure 2.

Figure 2.  A sample application to test proposed technique.

After installing application or many times before the
installation one can start the python script, which runs in
the background and automatically intercepts, interprets,
and compares IP address with existing list of black listed
IP addresses.

I used open source feeder16 as a source to get list
of black listed IP Addresses. The reason behind select-
ing openbl is its real time updates and rich collection.
The IP addresses are checked against the IP addresses
intercepted using custom image and python script. The
analyst based on the requirement can use any source
instead of openbl.org. Since, the script is written in
python, researchers and analyst can modify it to get list
of black listed IP addresses from multiple sources (files
or websites). Figure 3 shows a screen containing openbl
data at the time of experiment.

Again the ip used for testing is highlighted as one of
the blacklisted IP and can be seen in above figure.

The script keeps running in the background till the
emulator is running. Figure 4 is a screen shot of running
script.

Figure 3.  Openbl.org data.

Figure 4.  Python script is running in background.

As the analyst closes the emulator the script performs
necessary steps to generate final analysis.txt file. The
script after completing tasks displays appropriate message
to the end user as shown in Figure 5.

Figure 5.  Output of the script.

The analysis.txt file contains list of black listed IP
addresses (if there are any) which application tried to
connect. A sample analysis.txt file generated from this
experiment can be seen in Figure 6.

Figure 6.  Analysis report generated by the script.

The analysis.txt file generated after the test run here
shows IP address: 221.214.10.16, which was set in the
application running into the emulator. The IP address

Indian Journal of Science and TechnologyVol 9 (48) | December 2016 | www.indjst.org 4

Detecting Blacklisted IP Access from Android Phone

is blacklisted as per the openbl.org records. Now, when
sample application will try to connect to the above IP, cus-
tom OS source code will intercept it with other IP access
requests. While the automated python script running in
the background will sense this IP address and will com-
pare it will blacklisted IP addresses (as retrieved from
openbl.org).

As a result it will mark this IP address and will put it
in final resultant file called analysis.txt with appropriate
message.

Same experiment can be done with any suspect appli-
cation to check if it is connecting to any black listed IP.
In case if it does then it becomes very easy for malware
analyst to put it in malware category without going in
detailed analysis. This quick and affordable technique
in no time can tell whether the application under test is
communicating to any unexpected IP or not.

4.  Future Scope

The technique used in this research can be further
enhanced to detect information sent and received to any
IP address. Already, there are some solutions available in
the market which intercepts packets including wireshark,
but the solution used here gives more options for custom-
ization to researchers and analyst.

Another expansion to work can be related to detec-
tion of zombie running in an android phone. Based on
frequency of the request sent to an IP address one can
analyze whether the device is being used as a zombie for
causing DoS / DDoS.

5.  Conclusion

The final outcome lets users customize each component
involved in achieving final objective. This not only makes
the solution more acceptable, but it also leads to detailed
investigation. Compared to other solutions like wireshark
and bundled sandboxes available for Android, this solu-
tion is light weight and heavily customizable.

The results generated by the python script are very
specific and user friendly, which can be easily understood
by a non-technical person or a beginner. The proposed
technique can also become first step for android malware
researchers in developing new techniques by enhancing
this solution or by creating new solution based on this
concept.

6.  References
1.	 Unuchek R, Chebyshev V. Mobile malware evolution in

Securlist from Kaspersky Lab, 2016.
2.	 Banerjee U, Vashishtha A, Saxena M. Evaluation of the

Capabilities of WireShark as a tool for Intrusion Detection.
International Journal of Computer Applications. 2010; 6(7):1–7.

3.	 Miettinen M, Halonen P, Hätönen K. Host-based intru-
sion detection for advanced mobile devices in Proceedings
- International Conference on Advanced Information
Networking and Applications, AINA. 2006; 2: p. 72–6.

4.	 Saudi M, Ridzuan F, Basir N, Nabila N, Pitchay S, Ahmad I.
Android Mobile Malware Surveillance Exploitation Via Call
Logs: Proof of Concept in 17th UKSIM-AMSS International
Conference on Modelling and Simulation.2015;176–81.

5.	 Jang J, Kim H. Function-Oriented Mobile Malware Analysis
as First Aid in Mobile Information Systems. 2016;1–11.

6.	 Muttik I, Yerima S, Sezer S. High Accuracy Android
Malware Detection Using Ensemble Learning in IET
Information Security. 2015; 9(6):313–20

7.	 Enck W, Gilbert P, Chun B, Cox L, Jung J, McDaniel P, Sheth
A. TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones in ACM
Transactions on Computer Systems (TOCS). 2014; 32(2): 5.

8.	 Kaur S, Kaur A. Detection of Malware of Code Clone using
String Pattern Back Propagation Neural Network Algorithm.
Indian Journal of Science and Technology. 2016; 9(33):1–12.

9.	 Malik S, Khatter K. System Call Analysis of Android
Malware Families. Indian Journal of Science and
Technology. 2016; 9(21).

10.	 Jeyaseelan W, Hariharan S. Malware Detection and
Elimination using Bayesian Technique and Nymble
Algorithm. Indian Journal of Science and Technology.
2015; 8(34):1–7

11.	 Spreitzenbarth M, Freiling F, Echtler F, Schreck T,
Hoffmann J. Mobile-Sandbox: Having a Deeper Look into
Android Applications in Proceedings of the 28th Annual
ACM Symposium on Applied Computing. 2013; 1808–15.

12.	 Asing T, Batyuk L, Schmidt A, Camtepe S, Albayrak S.
An Android Application Sandbox System for Suspicious
Software Detection in proceedings of Malicious and
Unwanted Software (MALWARE). 2010;–55–62.

13.	 Neuner S, Veen V, Lindorfer M, Huber M, Merzdovnik G,
Mulazzani M, Weippl E, Enter Sandbox : Android Sandbox
Comparison in 3rd IEEE Mobile Security Technologies
Workshop. 2014.

14.	 Droidbox website. 2015 September 25. Available from:
https://github.com/pjlantz/droidbox

15.	 OfficialAndroid Source Code Website. http://source.
android.com/.

16.	 Official OpenBL Project website. 2009 Dec 26. Available
from: http://www.openbl.org/lists/base.txt

