
Indian Journal of Science and Technology, Vol 8(19), DOI:10.17485/ijst/2015/v8i19/77017, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Timing is the most important factor in any real time
applications where some applications should react in
very small amount of time in those situation applications
needs a platform where the timing constrain was meet.
In real-time systems, all real-time tasks are differentiated
based on their timing, such as sporadic, response time,
deadline etc. Real time systems are classified in to two
types’ hard real-time systems and soft real time systems.
Hard real time system means it should complete the task
with in the deadline period otherwise its computation is
useless. The damages caused by the hard real time systems
are irreparable. The system builder’s should responsible to
choose an operating system that can support and schedule
these jobs with respect to their timing criteria so that no
deadline will be missed. Soft real time systems require
performance assurances from the operating system.

Some applications such as video/audio visual gaming
require performance assurance and also acceptable jitter

in timing these applications comes under soft real-time
applications. The general architecture ofRTOS is shown
in Figure 1.

Figure 1. General architecture of RTOS.

Abstract
Background/Objectives: The objective of the paper is to analyze the General Purpose Operation System (GPOS)
performance with Real Time Operating System(RTOS) using a mobile robot as a real time application. The mobile robot
module is implemented on a single board computer having ARM11 as its core. Methods/Statistical Analysis: The method
used to calculate response is realfeel method which uses dedicated timer and interrupt to calculate the response. Findings:
The response of the mobile robot is calculated by interrupting the mobile robot with some obstacles. Findings:In addition
to this, other parameters such as speed, rotations time and precision resulted by the sensor are also calculated. RTOS have
an average of 20µs where as GPOS have an average of 102µs of response time in real time environment.Conclusion:The
results show that RTOS has better response time than GPOS. The minimum distance required to stop the mobile robot in
RTOS is more accurate than GPOS. Compare to GPOS, the RTOS is able to avoid the obstacle collision even for a shorter
distance.

Keywords: GPOS, Latency Calculation, Mobile Robot, Response Time, RTOS, Single Board Computer

Performance Analysis of Real Time Operating
System with General Purpose Operating

System for Mobile Robotic System
Akhilesh Murikipudi*, V. Prakash and T. Vigneswaran

School of Electronics Engineering, VIT University, Chennai–600127, India; murikipudi.akhilesh2013@vit.ac.in,
prakash.v@vit.ac.in, vigneswaran.t@vit.ac.in

Vol 8 (19) | August 2015 | www.indjst.org Indian Journal of Science and Technology2

Performance Analysis of Real Time Operating System with General Purpose Operating System for Mobile Robotic System

Any RTOS basically have the characteristics like
Multitasking and Preemptibility, Task Priority, Priority
Inheritance, Short Latencies (Task switching latency
Interrupt latency, Interrupt dispatch latency), Reliable
and Sufficient Inter Task Communication Mechanisms,
Control of Memory Management.

The general purpose operating system for the proposed
research work is based on Linux flavor (RaspbianOS).
Manyresearches from the past few years used Linux as
their platform Figure 2 it is inferred that, use of Linux
is increasing in developing countries where technology
increases1.

Figure 2. Use of Linux and internet in developed and
developing countries.

Increasing complexity of devices and systems, huge
competition, shorter time to Market and to reduce the
cost of development requirement makes to use high-end
software. Acatle began to develop OXO systems. OXO
belongs to hard real time systems where it must respond
to the event in predefined period whatever the load stress;
this makes them to think that existing real time kernel is
inadequate to support all the expected services.
Development of the OXO systems was divided in to three
classes’ non real time and soft real time Linux processes in
user space and hard real time processes in kernel space
and RTLinux shares the kernel space as well2. A
comparison of windows patched with RT kernel and
Linux patched with RTkernel is also carried out in this
development on services like voice services, Datapluse

internet services, Software development environment,
cost and support these results are shown in Table 1.

Table 1. Comparison of Windows RT with Linux RT
SERVICES WINDOWS + RT

EXTENSION
LINUX + RT
EXTENSION

Voice Services Sufficient Good
Datapluse Internet
Services

Very Good Very Good

Software Development
Environment

Good Sufficient

Support Good Good
Cost High Low

A new low cost approach for course and laboratory
designed to allow students to design robotics, embedded
devices that feature IOT, networking, a Real Time
Operating System (RTOS) with different languages
support like C, C++, python java and others3. Power
consumption in mobile and handheld devices is the key
embedded design issue; by varying the cache parameters
in RTOS can reduce the consumption of the power by
the embedded systems is designed by S.K. Dash and T.
Srikanthan4. The xenomai RTOS can perform better than
RT patched Linux on overload conditions and RT patched
Linux can provide high throughput than Xenomai5.

Luis Burdalo, Andres Terrasa, Agustin Espinosa,
and Ana Garcia-Fornes presents analyzing the effect of
gain time on soft task scheduling in real time systems.
Results show that, in general, the presence of a significant
amount of gain time reduces the performance benefit of
the scheduling policies under study when compared to
serving the soft tasks in background, which is considered
the theoretical worst case. In some cases, this performance
benefit is so small that the use of a specific scheduling
policy for soft tasks is questionable6.

Performance comparison of Vxworks, Linux, RTAI,
xenomai in hard real time applications presented in7

and the experimental results shows that open sources
software is suitable for real time application. The
underlying hardware should be shared by Linux and
with other additional component this can be achieved by
Xenomai and RTAI by using ADEOS nanokernel which
acts as communicator between hardware functionality8,9.
A hybrid operating system implemented using ARM
processor that contains a real time kernel and time
sharing OS10.

This approach also improves real time interrupt
latencies of hybrid operating system with two level
hardware interrupt. Real time operating system

Akhilesh Murikipudi, V. Prakash and T. Vigneswaran

Vol 8 (19) | August 2015 | www.indjst.org Indian Journal of Science and Technology 3

comparison by Rafael V. Aroca, GlaucoCaurin11 this
paper presents different real time operating system
(QNX neutrino, µC/OS II, RTAI, Vxworks) and few
General purpose operating system (Windows XP, Linux)
comparison on parameters like worst case response time,
Interrupt latency, Latency jitter. Worst case response time
was calculated by using method proposed by ISA. All
these compared parameters are tabulated and shown in
Table 2.

Table 2. A: Worst case response time(µs), B: Interrupt
Latency(µs), C: Latency jitter(µs)

 Win XP Linux Neutrino µc/OSII RTAI Vx Works
A 200 1389 20 192 5 385
B 848 98 352 32 114 134
C 700 776 32 232 7.01 104

The well consolidated systems QNX Neutrino and
Vx Works shown determinism and reliability throughout
the experiment. QNX Neutrino and Vx works has better
performance critical task and noncritical embedded task
is very crucial job. It totally depends up on the application
and its inter-process communication and platform.

The paper is organized as follows; Section 2 discusses
the system design flow of research and parameters
calculation steps. Section 3 presents the experimental
setup and flow chart for the real time application. The
results and its discussion are presented in Section 4.
Section 5 concludes the paper.

2. System Design

The proposed system design is implemented on Raspberry
pi consists ARM11 as processor running Real time
application consists four main components
1. Raspberry pi
2. Ultrasonic sensor module
3. DC motor drivers
4. DC motors.

The proposed system with GPOS and with RTOS
showed in Figure 3 and 4 respectively. Figure 3 shows
Raspberry pi was booting with GPOS (Raspbian OS) and
in Figure 4 shows Raspberry pi was booting with RTOS
(RT-Preempt patched Raspbian) and same application
was executed on both platforms and response time is
calculated.

Figure 3. Proposed system with GPOS.

Figure 4. Proposed system with RTOS (RT patched
Raspbian).

The main system of mobile robot is control by the
raspberry pi in both Methodologies, where the Ultrasonic
sensor receive input from the control module and send
the acquire data in the form of distance Measurement.
The control module will make the decision when obstacle
conditions are meeting and move in according to avoid
the obstacle.

The motor driver circuit is used to receive the signals
from the control module in the form of binary logic and it
will be supplied to the DC motors with sufficient voltage
and current supply. The motor driver circuit will also
protect the control module from DC motors when they
get damaged.

The GUI application was design using python where

Vol 8 (19) | August 2015 | www.indjst.org Indian Journal of Science and Technology4

Performance Analysis of Real Time Operating System with General Purpose Operating System for Mobile Robotic System

it will display the distance, latency and create a log file
which stores previous latency values to a file in read and
write only mode.

The experimental results were carried out on both
platforms using mobile robot in real-time environment.
Linux was booted first and following steps are carried out,
after that same was done on RTOS.

1. Calculate the response time of the mobile robot in re-
al-time environment.

2. Calculate the time taken by mobile robot to move full
rotation and half rotation on flat surface.

2.1 Hardware Setup
The Hardware experimental setup was shown in Figure
having two ultrasonic sensors used to find the distance
between the mobile robot and obstacle with in the
threshold set in the application program. When high
logic was captured from echo pin of ultrasonic sensor
the distance was calculated. Hc-sr04 was the ultrasonic
model used in this application. The distance between the
obstacle and mobile robot is calculated using Equation 1.
 ----- (1)

The control module will control the two DC motors of
the mobile robot with the help of the Motor driver circuit.
Hardware setup was shown in Figure 5.

Figure 5. Experimental hardware setup for system design.

2.2 Software Setup
The raspberry was booted with a Raspbian OS having
kernel version of 3.12.28+. The Raspberry pi kernel was
changed to raspberrypi 3.12.36-rt50+. Where RT-Preempt
patch converts the Raspbian OS kernel into a fully pre-
emptible kernel. By changing the futures like in-kernel
locking-primitives was implemented using spinlocks in
Raspbian OS this was reimplemented using rtmutexes.

Converting the old Linux timer API into separate
infrastructures for high resolution kernel timers and
one for timeouts used in user space POSIX timer having
high resolution. For in-kernel spinlocks and semaphores,
priority inheritance was implemented. Interrupt handlers
were converted in to pre-emptible kernel threads. The
RT-Preempt patch treats soft interrupt handlers in kernel
thread context.

The application was developed on these both operating
system and executed and comparison was done. The
raspberry pi has general purpose input and output pins
these pins can be used by the ultrasonic sensor and DC
motor. The ultrasonic sensor is triggered, when echo was
generated timer starts counting the time these timers
are very high resolution timers. A signal is generated
based on the thresh hold value to the DC motor drive
then timer should be stopped. The timer value gives the
response time of the mobile robot and other parameters
were calculated using this approach. Figure 6 shows the
flow of the application.

Figure 6. Flow chart of the Robot control.

Akhilesh Murikipudi, V. Prakash and T. Vigneswaran

Vol 8 (19) | August 2015 | www.indjst.org Indian Journal of Science and Technology 5

3. Results

This section presents the results of the research about the
calculation of the response time on Raspbian OS and its
comparison on RT-Preempt patched with Raspbian OS in
real time environment.

When Raspberry pi was booted with Raspbian OS the
response time of the mobile robot was shown in Figure
7. The response of the GPOS was measured, obtained
results shows that 102µs–105 µs as response time from
the ultrasonic sensor to DC motor where the distance
change, varying the response time in the GPOS.

Figure 7. GPOS response time.

The same application was carried out in RTOS
when Raspberry pi was booted with Raspbian RT-Pre-
empt patched operating system the measuring system
console shown in Figure 8. The response of the RTOS
was measured, the obtained results shows that 22–24µs
as response time from ultrasonic sensor to DC motor and
it is also inferred that the change in distance varies very
small change in response time.

Figure 8. RTOS response time.

Figure 9. Comparison of response time.

The response time for distance from 2.5cm to 30cm
was calculated with a scale of 5cm and tabulated in Figure
9. The graph shows in Table 3 the difference of response
between GPOS and RTOS there was an average difference
of 82µs was observed. The timer shouldstart accurately to
calculate the distance between obstacle and mobile robot
and response time.

Table 3. Comparison of response time between GPOS
and RTOS
Distance GPOS Response Time RTOS Response Time
2.5 Failed to respond Failed to respond
5 Failed to respond 22.940636
10 Failed to respond 23.004784
15 102.200508 23.549629
20 102.478211 23.400789
25 102.641000 23.829937
30 102.784131 23.89238

The secondary part was to calculate the time taken by
the mobile robot for an angle 180º and 360º. It is observed
that 1.2sec for 180º and 2.5 for 360º.For one minute the
mobile robot did ninety two wheel rotations, this is the
speed of the mobile robot.

When GPOS was running on Raspberrypi the
minimum distance that mobile robot can detect an
obstacle and stop the collision was 13.5cm where it was
4.5cm in RTOS. The reaction time taken by the mobile
robot to avoid the obstacle in GPOS was 500ms where it
was 250ms in the RTOS. This is the reaction time can by

Vol 8 (19) | August 2015 | www.indjst.org Indian Journal of Science and Technology6

Performance Analysis of Real Time Operating System with General Purpose Operating System for Mobile Robotic System

the hardware in the mobile robot. The major reasons for
short response time in RTOS are

1. The scheduling used in the RT-Preempt patched
Raspbian was different from the Raspbian OS.

2. The memory used by the application was dedicated
by the RTOS and it was shared in the GPOS system.

3. Kernel options are changed for RTOS compared to
GPOS
So a difference of on an average of 82µs response time

was observed in this real time application.

4. Conclusion

The overall research shows that ultrasonic sensor can
detect the obstacle and communicate with control
module to avoid the obstacle all this happens in 500ms
second in GPOS and it is 250ms in RTOS. The results
show that real time operating system have better response
time compared to the general purpose operating system.
RTOS is reliable even the threshold limit is given as 5cm.
The average difference between the response time of
GPOS and RTOS is 82µs. This response time is important
in many real time applications. They are many direction
of future work for this analysis one of it is this can be
implemented in a maze and calculate the response of the
mobile robot using GPOS and RTOS.This research can
be implemented in many industries needs low response
reactions, fire rescue operations and advance areas.

5. References
1. Kshetri N.Economics of Linux adoption in developing

countries. IEEE Softwares. 2004 Jan/Feb; 20(4):7 4–81.

2. Marchesin A.Using Linux for Real Time Applications. IEEE
Softwares.2004; 15:18–21.

3. Hamblen JO, van Bekkum GME.An embedded systems
laboratory to support rapid prototyping of robotics and
the internet of things. Transactions on Education.2013 Feb;
56(1):121–8.

4. Dash SK,Srikanthan T.Instruction cache tuning for em-
bedded multitasking applications. IET Comput Digit Tech.
2010; 4(6):439–57.

5. Marieska MD, Kistijantoro AI, Subair M. Analysis and
benchmarking performance of real time patch Linux and
Xenomai in serving a real time application. IEEE Electrical
Engineering and Informatics.2011 Jul; 32(8):21–19.

6. Burdalo L, Terrasa A, Espinosa A, Garcia-Fornes A. An-
alyzing the effect of gain time on soft-task scheduling
policies in real-time system. IEEE on Software Engineer-
ing.2012 Nov/Dec; 38(6):1305–18.

7. Barbalace A, Luchetta A, Manduchi G, Moro M, Soppelsa
A, Taliercio C.Performance comparison of VxWorks, Linux,
RTAI and Xenomai in a hard real-time application. IEEE
Transactions on Nuclear Science.2008 Feb;55(1):435–9.

8. ADEOS [Online]. 2015 Mar. Available from: http://www.
adeos.org

9. Weinberg B.Uniting mobile Linux application platforms.
Linux Pundit. 2008.

10. Liu M, Liu D, Wang Y, Wang M, Shao Z. On improving re-
al-time interrupt latencies of hybrid operating systems with
two-level hardware interrupts. IEEE Transactions on Com-
puters.2011 Jul; 60(7):978–91.

11. Regehr J,Stankovic JA. HLS: A framework for compos-
ing soft real-time schedulers.RTSS’01.The 22nd IEEE Re-
al-Time Systems Symposium; 2001.

