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Abstract
Objectives: The article presents the study of the quadrature formula for the integral with Hilbert’s kernel. Methods: The 
sub integral function is close to interpolation polynomial on such equally spaced nodes that the values of the Weyl fractional 
integral coincide in these nodes for the function and polynomial. At the derivation of a formula, the known values of the 
integral are used with Hilbert’s kernel of certain functions, the properties of trigonometric polynomials and the properties 
of trigonometric functions Results: The obtained quadrature formulas were tested using Wolfram Mathematica system. 
Calculations performed at different values of node number and the order of integration. The values obtained using the 
studied quadrature was compared with the values obtained using the previously known formula. Conclusion: The growth 
of node number improves by the quadrature formula, the dependence of approximation on the values,   is observed. At the 
resemblance to the section ends the difference between integral values calculated by different formulas increases.

1. Introduction
The issues of fractional integration and differentiation are 
being studied currently by various authors. In1 provides a 
new definition of fractional derivative and fractional inte-
gral. In the work2 the fractional derivative is regarded as 
the generalization of derivatives and integrals of the whole 
order. The solutions of fractional integral equations3 are 
also studied. In4 a new approach to fractional integration 
and the summary fractional Riemann-Liouville integral 
introduced, and some properties are proved.

Earlier in the work5, we determined the form of a 
polynomial operator associating trigonometric polyno-
mial with 2π -periodic function, satisfying the following 

conditions ))(())(( kkn tItTI ϕαα
±± = , where tk kt  are equidis-

tant nodes at (-π, π), , α
±I  – Weyl fractional integral. 

In this paper, we study the quadrature formula for 
the integral with Hilbert kernel based on a trigonometric 
interpolational polynomial. 
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This function has the peculiarity of the first order, there-
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Quadrature process for a singular integral with the 

kernel of Hilbert type was proposed previously in6, the 
methods of error estimates were also considered there. 
Radial based Kernel functions developed based on ker-
nel of Hilbert is the core of support vector mapping for 
higher dimension representation7–9.

2. Quadrature Formula Derivation 
for the Integral with Hilbert 
Kernel 
Let’s draw up quadrature formula for the integral with 

Hilbert kernel );( tIS ϕα .

Let’s approximate the desired function by trigonomet-
ric polynomial10:
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Let’s substitute ak, bk by Formula (1) and consider 
Formula (2) and (3):
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The convergence of such a series at 0≠t follows 
from the theorem
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Quadrature formula for the integral with Hilbert ker-
nel based on );( tAn ϕ

Let us consider the singular integral with the Hilbert 
kernel
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Substituting this result, we obtain the quadrature for-
mula for the integral with Hilbert kernel:
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widely adopted the mentioned results to apply it on 

many different mechanical problems12–17.

3. Calculations in Wolfram 
Mathematica System
Here are the results of calculations carried out in Wolfram 
Mathematica system. This method is often used in calcu-
lations18.

As for the studied case Weyl fractional integral coin-
cides with the fractional Riemann-Liouville integral, we 
compared at first the values of the fractional integral for 
the function φ(t)=sin3, 6t at n=6, α=0,6 calculated accord-
ing to the formula 
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The results of calculations for φ(t)=sin3, 6t at n=20, 
α=0,6 are shown on Figure 1:

Then we checked the obtained Formula (4) for the 
integral with the Hilbert kernel:
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In order to calculate the integral with the Hilbert ker-
nel, we used the formula given in19:

Figure 1. Approximated calculations.
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Figure 2 shows the values calculated according to 
the Formulas (4) and (5) for the function φ(t)=sin3, 6t 
at n=50, and α=0,6  on the section [0.1, 3] with the step 
of 0.01. In this case the values );( jtI ϕα are calculated 
according to the following formula 

1

1 ( )
( ) ( )

t x dxI
t x

α
α

ϕφ
α+ −

−∞

=
Γ −∫

Figure 3 shows the values calculated according to 
the Formulae (4) and (5) for the function φ(t)=sin3, 6t 
at n=100, and α=0,6 on the section [0.1, 3]. The values  
Iα(φ;tj) are calculated according to the following formula:

Table 1. Compared at first the values of the fractional integral
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Figure 2. Integral values with Hilbert kernel, n=50, α =0,6.

Figure 3. The values of the integral with the Hilbert kernel, 
calculated according to various formulas.
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Figure 4 shows the values calculated according to the 
Formulas (4) and (5) for the function φ(t)=sin3, 6t at 
n=100, and α=0,6 on the section [0.1, 3].

Figure 4. The values of the integral with the Hilbert kernel,  
n=100, α=0,6

Figure 5 shows the values calculated according to the 
Formulas (4) and (5) for the function φ(t)=sin3, 6t at 
n=100, and α=0,9 on the section [0.1, 3].

4. Conclusions
The values obtained using a studied quadrature formula 
compared with the values obtained using a previously 

known method. The growth of node number of n improves 
the approximation, the dependence of the estimate on 
values is observed.

Figure 5. The values of the integral with the Hilbert kernel, 
n=100, α=0,9 .

5. Summary
Thus, quadrature formula for an integral with Hilbert ker-
nel based on trigonometric interpolational polynomial 
are determined and studied. The check of the formula is 
performed using Wolfram Mathematica system. The work 
in the system showed that with the increasing number of 
nodes n the approximation is improved that is usually 
observed for similar tasks.
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