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Abstract
Objective: The purpose of this paper to highlight the comprehensive overview of Furstenberg family which creates a bridge 
for future research. Methods: For this, a detailed study of topology as well as dynamical systems is required. In addition 
to this a deep study of the term chaos as well as Furstenberg family is required. Also, the main of application of dynamical 
system is chaos theories which play an important role in the study of Furstenberg Family using topology. Findings: This 
paper demonstrates the development of dynamical system and some important terms related to dynamical systems such 
as topological entropy, weakly mixing sets, topologically transitive, period, orbit etc are well explained. The beauty of this 
study lies in its overview on the term chaos as well as its role in the study of dynamical system using topology. This paper 
brings a great attention on the term Furstenberg Family which is studied on the platform made by the combination of 
dynamical system and topology. Application: This paper gives a fruitful overview on Furstenberg family in topological 
dynamical systems having chaotic nature.
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1. Introduction 

The exploration of enduring behaviour of developing 
systems gives the birth of dynamical systems. Henri 
Poincare was the first pioneer who had explored many 
hypothesis associated with dynamical systems during 
his study on celestial mechanics. In 1961, S. Smale’s 
discovered structurally stable dynamical systems 
having infinite periodic orbits. Introduced the term 
topological entropy1, while2 Introduce the concept 
of weak mixing3. Had coined the term chaos. After 
this, the term sensitivity was introduced4. Based on 
this term5 had proposed the idea of sensitive depen-
dence6 on preliminary state of neighbourhood points 

of the orbits showing exponential divergence. Further 
in 1989 people got a new name of chaos as given by7. 
Afterward8 found that Li-Yorke chaos is due to weak 
mixing. Further9 gave an evidence for the fact that 
weakly mixing systems have points whose orbits 
exhibit highly inconsistent time dependence. In 199410, 
had introduced the term Distributional chaos.

2. Preliminaries

2.1 Dynamical System
This section will give an introduction to dynamical  
systems.
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Dynamical system is a collection of probable states 
governed by certain rules to determine the current state 
of the system in context of the past state. There are some 
models where current state is not governed by fixed rules. 
For example, the prices of commodities keep fluctuating; 
therefore in this instance, there is no specific rule. Hence, 
it is not the case of dynamical system even though the 
current state is governed by time11. Dynamical system 
is categorized mainly into two different forms. When 
the dynamical system is restricted by discrete time, it is 
termed as discrete-time system/dynamical system. In 
such system, input and output are the current state and 
new state respectively. State of the system is a rule which 
is governed by some information referred as input for the 
system12.Composition of mapping is an evolutionary pro-
cess of studying dynamical system5. If : ,f S S S→ ≠ φ
, then by using mathematical induction, you can obtained 
the functions ( )1 2 3 1 1, , , , ,n n nf f f f f f of− −=  
using iteration of function f13.

Dynamical systems have differ-
ent notations for its categorised forms. The 
mapping : ,f X X X→ ≠ φ is termed as discrete 

dynamical system, where 1 ,n nf f o f n N+ = ∀ ∈
and ( )0 Identity functionf I= . In dynami-
cal system the composite mapping is defined as

, ,m n m nf f o f m n+ = ∀ ∈¥ , while the invert-
ible mapping for isomorphic function f is defined as

( ) 1
,n nf f n

−− = ∀ ∈¥ . For the dynamical sys-

tems ( ),X f  and ( ),Y g we get anew dynamical 

system ( ) ( ) ( )( ), , ; ,h x y f x g y x X y Y= ∈ ∈  and 
its inverse function is defined as

( ) ( ) ( )( )1 1 1, , ; ,h x y f x g y x X y Y− − −= ∈ ∈ .
The second main category of dynamical system is the 

limiting case of discrete dynamical systems where inputs 
are updated even for very small interval of time. For such 
system, the governing rule consists of sequence of dif-
ferential equations; which referred as continuous-time 
dynamical system. 

In dynamical system forecasting of developing system 
is performed with the passage of time. Thus, for given 
value of x, you will get the function ( )f x  for large k.

In dynamical system ( ),X f , for any point a X∈ , 

( ) ( ) ( ) ( ) ( )2 3 1, , , , , ,n na f a f a f a f a f a−
  termed 

as orbit of a and a is known as the seed or initial value 
of the orbit11. Since, here for the function f domain and 
range both are the same; hence it is termed as map. 
Some time the functional value at any stage becomes 
equal to its initial value. The initial value a is termed as 
fixed point of the map5, i.e., ( )f a a= 13. The iterated 

value of the function : ,p X X X→ ≠ φ  defined by 
( ) ( )2 1p x x x= − are given by {0.01, 0.0198, 0.0388,..} 

which represents the orbits of p. Here, ( )p a a=  for

10,
2

a = , thus these are the fixed point of p. It is not 

necessary that every point of an orbit is a fixed point; 
there are some points on the map of the function which 
are not fixed and termed as eventually fixed. For exam-
ple, x = −1 which is a seed of the function f defined by 

( ) 2f x x=  is eventually fixed since ( )1 1 1f − = ≠ − but

( ) ( )( ) ( )2 1 1 1 1f f f f− = − = = . Thus, the point 1 
lying on the orbit of x is fixed which shows that x is even-
tuallyfixed13.The fixed point of the orbit may be stable or 
unstable that can be checked using differentiation. There 
are functions whose derivatives of all the orders exist and 
are always continuous functions recall as smooth func-
tions.

If :f R R→  and a is any its fixed point. Then,

•	 a is of attracting nature if $ ( ),I = α β and a ÎI, if x is any 

member of the open interval I then ( )lim n

n
f x a

→∞
= .

•	 a is of repelling nature if $ ( ),I = α β and a ÎI, if x is any 

member of the open interval I then ( )lim n

n
f x a

→∞
≠ .

There are some points termed as neutral fixed point 
which is neither attracting nor repelling13.

There is some point on a map whose value is equal to 
the functional value of some iterated function; this value 
is termed as periodic point. Thus, point α is known as a 
periodic point of period m or period-m point if for any 
smallest positive integer m such that ( )mf α = α  and 
the orbit associated with this point is recall as a periodic 
orbit of period m or period-m orbit. 

For example, the function f defined by ( ) 2 1f x x= −
has a periodic point α = 0 of period m = 2, since 

( ) ( )( ) ( )2 1 0f f f fα = α = − = = α . It is not neces-
sary that every seed α of the orbit becomes periodic point, there 
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are some points in the orbit of x0 which becomes periodic point 
and this x0 is said to be eventually periodic13. The next section 
will give attention on topological dynamical systems.

2.2 Topological Dynamical System
In 1927, the Russian scientist - G.D. Birkhoff had 
extended the research of Poincare on celestial mechanics 
and Hadamard’s on geodesic flows and gave new name 
to dynamical system as topological dynamical systems in 
which qualitative and asymptotic properties of dynami-
cal system is explored. The dynamical system is governed 
by the time factor14. Thus, the metric d and continuous 
function f defined over the non-empty set X constitute a 
dynamical system ( ),X f 13. The given system is said to be 
trivial if it contain single point, for such system mapping 
is said to be an identity mapping which is always unique14. 
If the metric d defined over a compact metric space X hav-
inga countable basis the given dynamical system ( ),X f
recall as topological dynamical system. A discrete dynam-
ical system becomes a topological dynamical system if 
the continuous mapping f is one-one, onto and 1f −  is 
continuous. For this case topological dynamical system is 
also invertible. If there is homeomorphism h between the 
metric spaces ( )1 1,X d  and ( )2 2,X d respectively such 

that 2 1f o h ho f= i.e., ( )( ) ( )( )2 1f h x h f x= ∀x ∈X1, 

then the dynamical systems ( )1 1,X f  and ( )2 2,X f  
defined over the given metric spaces are said to be conju-
gate dynamical systems. Here, the mapping h is called the 
conjugate map. If for any seed a of the system X, if its orbit 

( ) ( ) ( ) ( ) ( ){ }2 3 1, , , , , , ,n na f a f a f a f a f a−
  is 

dense in X, then the dynamical system ( ),X f is said to 
be transitive13. Also f is isometric if it preserves the dis-
tance12. The n-th fold product for 2n ≥ of the topological 

dynamical space ( ),X f is denoted by ( ),n nX f . The 

diagonal of Xn is Dn where ( ){ }, ,..., ,..., n
n x x x x X∆ = ∈

and ( ) ( ){ }1 2, ,...,n n
nx x x X= ∈ , then $1 

£i <j £n such that i jx x= . For each mem-

ber x of ( ),X f its orbits is the set denoted by 

( ) ( ) ( ) ( ){ }2Orb , ,  ,  ,..., ,...  nx f x f x f x f x= a n d 

its limiting case is ( ) ( ){ }
1

, ,i

n

x f f x i nω
∞

=

= ≥


. Every 

member of the limiting case is recall as recurrentpoint14 

and its collection ( )R f  is f-invariant. Periodic points are 

always recurrent. In ( ),X f if f is invertible, then a-limit 

set of x is ( ) ( ) { }, ,i
n Nx x f f x i nα α −
∈= = ≥  . 

Both the sets ( ),x fω and ( ),x fα
 
are closed as well 

as f-invariant. A point x the member of the phase space 
Xis non-wandering point if for any neighbourhood G 
of x n∃ ∈¥ such that ( )nf G G∩ =φ . The set of non-

wandering points ( ),NW x f is closed, f -invariant, and 
contains the points of ω(x) and a(x) for all the members x 
of X ( ) ( ),R f NW x f⇒ ⊂ . If Y is a non-empty closed 

invariant subset of X, then ( ),Y f is also a dynamical sys-

tem recall as a subsystemof ( ),X f .

If Y Xφ ≠ ⊂ where Y Y= and ( )f Y Y⊂ , then Y 
is f-minimal subset of X. A compact invariant set Y is 

minimal iff ( ) ,n if y Y y Y i+
+⊂ ∀ ∈ ∈¢ and ( )n if y+

is dense in Y. Thus, a periodic orbit is a minimal set. 
Topological dynamical system is consistently minimal if 
and only if it does not have any proper subsystem. Thus, 
any non-empty closed invariant subset Y of X is mini-
mal if ( ) Y ,n

i if y y Y nφ∩ ≠ ∀ ∈ ∈¥ . The member x 

of the phase space X termed as minimal point or almost 
periodic point if it is the member of minimal set.

( ),X f
 

is weakly mix-

ing if ( ),X X f f× × is transitive15. The 
dynamical system is transitive and strongly mixing if 

( ) ( )B , open sets ,nf A A B nφ φ∩ ≠ ∀ ≠ ∈¥ 1 6 . 

( ),X f is totally transitive if ( ), nX f  is transitive ∀n ∈ N. 
Thus, the transitive points are the points having dense orbit. 

Hence, ( )( )Trans , set of all transitive pointsX f  is 

a dense G
δ
 subset of X17. Any member ( ),α β of ( ),X f

behaves

•	 Asymptotically if ( ) ( )( )lim , 0n n

n
d f fα β

→∞
=

•	 Proximally if ( ) ( )( )lim inf , 0n n

n
d f fα β

→∞
=

•	 Distally if ( ) ( )( )lim inf , 0n n

n
d f fα β

→∞
>



Indian Journal of Science and TechnologyVol 10 (3) | January 2017 | www.indjst.org 4

A Review on Furstenberg Family in Dynamical Systems

The set of all proximal pairs P exhibit reflexive, sym-
metric, f-invariant relation but generally P is neither 
transitive nor closed18-20. For ( ),x y P∈ , ( )P x repre-
sents proximal cell shows minimality. Also, every subset 
of Orb(x) having minimality coincides with proximal 
cell18. Also system having a weakly mixing property have 
proximal cell as residue21. In addition to this22, explained 
this concept in detailed manner. Now if proximal cell and 
minimal point becomes equal then that point termed as 
distal point and the system containing these points is 
termed as distal system. Also, the system whose distal 
points have dense orbit then that system is recall as point 
distal system. 

If ( ) ( ), open sets , 1, 2&n
i i i if U V U V i n∩ ≠ φ ∀ φ≠ = ∈¥  

then f is weakly mixing23. Again, if
( ) ( ), , & , open setsmf U V m n m n U V X∩ ≠ φ ∀ ≥ ∈ φ≠ ⊂¥

then the mapping :f X X→ termed as topologically mix-

ing24. Further, 1initiate the term topological entropy in ( ),X f
. If where S be the sub-cover of O with minimum cardinality 
denoted by NS, then ( )log H=SN S� represents the entropy 

related with O. Thus, for the mapping :f X X→ open cover 
of X is represented by ( ) ( ){ }1 1 :i if f G G− −= ∈S S . 

If ( ) ( ) ( )( )1 2 1

, lim
n

f n

H f f f
h

n

− − − +

→∞

∨ ∨ ∨ ∨
=



S

S S S S

then topological entropy of ( ),X f is defined by 

( ) ,= sup fh f h S
25. Next section is an overview on cha-

otic dynamical system.

2.3 Chaotic Dynamical System
In recent years study of chaos (disorder) in dynamical systems 
becomes great interest of researchers. Chaos was initially 
coined in 1975 by two researchers25 during the description 
of complex attributes of the trajectories of the orbit. Till now 
so many alternative definitions of chaos had been proposed 
but even after long time of study we still waiting for exact 
precise definition of chaos. Generally the different definition 
of chaos was depends on the following features:

•	 Points whose orbit is complex, having Li-Yorke and 
distributional chaos;

•	 Points having sensitivity dependence, having Devaney 
and Auslander-Yorke chaos also having Li-Yorke sen-
sitivity;

•	 Distinct orbits whose length is n and have fast growth, 
have positive topological entropy;

•	 Points which possess powerful iteration, having 
weakly mixing sets and property. 

The above features exhibit the common features 
exist in the definition of chaos. Some research-
ers had currently tried to associate the sensitivity 
conditions with the new definition of chaos given 
by Li-Yorke. In26 had given a new name to chaos 
known as spatiotemporal chaos. According to them, 
a topological dynamical system ( ),X f  have spa-
tiotemporally chaotic nature if each element a∈X 
is a limiting value of another member b∈X such 
that the ordered duple behaves proximally but not 
asymptotically. In other words ( ),α β is termed as 
Li-Yorke scrambled pair25 if they satisfy the follow-

ing conditions ( ) ( )( )lim inf , 0n n

n
d f fα β

→∞
= and 

( ) ( )( )lim sup , 0n n

n
d f fα β

→∞
> . In27 was the first 

person who had introduced the theory scrambled set. 

The distinct elements of scrambled pair ( ),x y consti-

tute scrambled set S. Chaotic nature of topological 
dynamical system is Li-Yorke if the scrambled set S of 
the given system is uncountable14.

Further2 had introduced the idea of Li-Yorke sensitiv-
ity. A system is Li-Yorke sensitive if for each limiting value 
a of another member b of X ∃ε > 0 such that the ordered 
duple ( ),α β  is proximal but not ε-asymptotic if 

( ) ( )( )lim inf , 0n n

n
d f fα β

→∞
= and ( ) ( )( )lim sup ,n n

n
d f fα β ε

→∞
> . 

A following remark can be drawn from the given con-
cepts.

Remark: EveryLi-Yorke sensitive system is being spa-
tiotemporal chaotic but converse need not be true.
Some more results proposed25.

Theorem 1. A continuous function mapping between 
two unit closed interval having periodic point of order-3 
haveLi-Yorke chaos25.

In topological dynamical system ( ),X f  the scram-

bled duple ( ),α β  is termed as -scrambled duple if for 

any positive real number , ( ) ( )( )lim inf , 0n n

n
d f fα β

→∞
=

and ( ) ( )( )lim sup ,n n

n
d f f

→∞
α β > δ .
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Again the distinct member of the -scrambled duple 
constitute-scrambled set S¢ÌX. Also, the topological 

dynamical system ( ),X f  is Li-Yorke -chaotic if S¢ 
is uncountable14. For any positive real number  the 
Li-Yorke chaotic system is Auslander-Floyd system19 if it 
have no uncountable scrambled sets. In28 had given evi-
dence that continuous functions defined on unit intervals 
having positive topological entropy will have -scrambled 
set for > 0. In 1986,29 and30 independently proved that 
there are continuous map have Li-Yorke chaos whose 
topological entropy is zero. 

Theorem 2. The topological entropy of a continuous 
function mapping between two unit closed interval hav-
ing Li-Yorke chaos is zero29,30.

Every system having weak mixing property have 
Li-Yorke chaos, this theory was proved by8 with the help 
of Mycielski Theorem.

Theorem 3. For some positive real number the 
non-trivial dynamical systemhaving weak mixing prop-
erty has dense Mycielski -scrambled subset of X31.

Remarks: 

•	 The dynamical system associated with the scrambled 
space is completely scrambled and hence proximal.

•	 It is not necessary that for any > 0, the whole space 
cannot be -scrambled.

Here, we have some characteristics of topological 
dynamical system behaves proximally.

Theorem 4. Topological dynamical system behaves 
proximally if it have unique minimal point8,32.

In 1997,33 proved that non-compact spaces have a few 
wholly scrambled system. 

Theorem 5. If there is a uniform homomor-
phism between a metric space X and open cube

( )0,1 2nnO n= ∀ ≥ . Then there would be homeomor-
phism between the entire spaces X constituting scrambled 
set X.

In 2001,34 proved that there are compact spaces which 
allow few wholly scrambled systems.

Theorem 6. Compact metric space exhibiting com-
pletely scrambled homeomorphisms, have continuous 
countable compact metric space and the Cantor set of 
arbitrary dimension34.

Latterly, In35 revealed that there are two different cat-
egory of entirely homogeneously rigid scrambled system 

shows weak mixing and proximality. Thus, we can say 
that.

Theorem 7. There are entirely homogeneously rigid 
scrambled system which is weak mixing and proximal35.

Theorem 8. A topological dynamical system having 
positive entropy of ergodic invariant measure m. Then for 
this measure there exist a point b other than a of same 
space such that the ordered pair is asymptotic36.

If the orbit of some fixed point is scrambled then the 
space containing this point is compact and the set con-
taining these fixed points are scrambled as well the subset 
of the given space.

Theorem 9. Let f be a continuous function mapping 
between unit closed interval has positive topological 
entropy if it’s iterated functional has an uncountable invari-
ant scrambled set37.

In37 shown that.
Theorem 10. If the proper transitive dynamical system 

has a fixed point, then this system has dense Mycielski 
invariant scrambled subset K37.

In 2010,38 had done research work on invariant 
-scrambled sets and demonstrated that:

Theorem 11. If the properstrongly mixing dynami-
cal system has a fixed point, then for any positive real 
number this system has dense Mycielski invariant 
-scrambled subset S39.

The necessary and sufficient condition for transitive 
dynamical system has invariant -scrambled ( 
subsets that it should not uniformly rigid.

Theorem 12. The necessary and sufficient condi-
tion for a propertransitive dynamical system has a dense 
Mycielski invariant -scrambled (, that this system 
has fixed point as well as this system not uniformly rigid35.

Chaotic dynamical systems having Li-Yorke property 
facing strong limitations due to the absence of Cantor 
scrambled set in them. On the other hand,

Theorem 13. For any positive real number chaotic 
dynamical systems having Li-Yorke property have Cantor 
-scrambled set31.

The notion of equicontinuity behaves totally different 
from sensitivity.

A topological dynamical system is equicontinuous if 
it preserves the distances. All such dynamical systems are 
simple in nature. Here, we have minimal systems exhibit-
ing dichotomy.

Theorem 14. Dynamical systems minimal in nature 
possess either equicontinuity or sensitivity23.
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Any point which preserves the distance is termed as 
equicontinuous point. A transitive topological dynamical 
system having equicontinuous point is almost equicon-
tinuous.

Here, we have transitive topological dynamical system 
exhibiting dichotomy.

Theorem 15. A transitive topological dynamical 
system is-

Almost equicontinuous (set of equicontinuous points 
correspondsto set of transitive points)

Sensitive4,39.
In39 had firstly informed that equicontinuous and uni-

form rigid property are interrelated in Ergodic theory this 
was the parallel proof of topological rigidity.

Theorem 16. Every topological dynamical system 
holds the property of uniformly rigidity if this system 
gave rise to an almost equicontinuous system39. 

Generally almost all equicontinuous topological 
dynamical system possess the property of uniformly 
rigidity.

Theorem 17. Every proper weak mixing topological 
dynamical system is Li-Yorke sensitive2.

In40 were the two mathematicians who had imple-
mented the thoughts of probability theory for the 
development of a new definition of chaos termed as dis-
tributional chaos. An ordered doublet of the dynamical 
system is distributionally scrambled if

∀a >0, Φ∗xy(a)= 1, and
∃such that Φxy()= 0.
Collection of ordered doublet of distinct elements 

constitutes distributional scrambled set D, the subset of 
dynamical system. If the given set is uncountable subse-
quently the topological dynamical system is distributional 
chaotic. This infers that distributional chaotic topological 
dynamical system is stronger than the Li-Yorke chaotic 
topological dynamical system. Further, distributional 
-scrambled sets and distributional -chaos can be 
defined. It is observed that any distributional scrambled 
pair is scrambled, and therefore chaos. In40 demonstrated-

Theorem 18. Every continuous function f having pos-
itive topological entropy, mapping between unit closed 
interval have distributional chaos40. In41 had explored that 
every successive distributional chaotic dynamical systems 
are necessarily distinct.

Theorem 19. There are transitive topological dynami-
cal system, “n ≥2 have successive distinct distributional 
chaos41.

In 2013, Li and Oprocha demonstrated-

Theorem 20. There are topological dynamical systems 
which have the presence of n-distributional chaos and 
have the absence of (n + 1)-Li-Yorke chaos “n ≥242.

Recently, Dolezelova showed some results that are.
Theorem 21. There are topological dynamical systems 

containing countless external distributional scrambled 
collection having no scrambled triplet43.

Theorem 22. There are unvarying Mycielski open set 
X in the complete transformation having extreme points 
which are disperse that constitute the set of scrambled 
doublet having no scrambled triplet43.

In7 had isolated the 3 important essential charac-
teristics of system havening chaotic nature. For their 
study topological dynamics employed as important tool. 
Topological dynamical systems have chaos nature if the 
continuous function f defined over the systems possess 
given characteristic:

•	 f is topologically transitive, i.e., 
( ) ( ), open sets , & mA B X m f A B∀ φ ≠ ⊂ ∃ ∈ ∩ ≠ φ¥

•	 There are cases in which transitivity is an irreducibility 
condition.

•	 f is periodically dense. This state is also termed as an 
“element of regularity”.

•	 f holds sensitivity based on preliminary situation.

When X = R, every topological dynamical system 
with sensitivity having chaos nature reckons on prelimi-
nary situation. These are the equivalent conditions for a 
dynamical system to be sensitive. Many natural systems 
such as earth’s weather system having chaotic behavior 
can be studied through recurrence plots  and  Poincare 
maps the main platform of chaotic theory which can be 
applied in  meteorology,  physics,  computer science etc. 
Due to the advancement of technology people in this 
world are connected via internet. Through which people 
can share their valuable information. But this informa-
tion must be secured and this can be make possible using 
encryption and decryption method. The theory behind 
this method is chaos which plays an important role for 
this security44. There is another method known as cryp-
tography, in which the safety of any process is based on 
the potency of the clue used. In this method the coordi-
nation is maintained by chaotic functions which are one 
more tool of chaos theory45. Also, data can be secured 
using fractal image generation method using chaos the-
ory. Chaos is an impulsive behaviour that arises in the 
dynamical system46.
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The next section deals with the overview on 
Furstenberg families.

3. Furstenberg Family 

In 196717, further extend the idea of families of sub-
sets of non-negative integers (Z+) initially proposed 
by two researchers Gottschalk and Hedlund17 and 
gave new name to this as Furstenberg family denoted 
by F. Let C be the collection of all subsets of Z+, then 

( ) { }:F F+ += = ⊂  Z Z . A subset Fof given col-
lection of non-negative integersis recall as Furstenberg 
family, iff the family F holds the property of hereditary 
upward. Mathematically, if &A B A B⊂ ∈ ⇒ ∈F F
. Empty set and the whole dynamical space also represent 
this kind of family. In addition to this for the Furstenberg 
familyF, if f FÞF= C; and if Z+ ÏF, then F= f. It had been 
observed that the family comprising of all subsets of non-
negative integers of infinite cardinality also represent the 
familyF, referred by B47. Fis proper subset of C, if neither  
F¹f nor F¹C. Also, Fis said to be proper if the set of natural 
number is also the member of F, i.e., NÌF and fÏF. Several 
non-empty groups Cof subsets of non-negative integers 

create a family ( ) { }: ,A A A+= ⊂ ∈F  Z  48. 
The dual family of F which is also 

refers as Furstenberg family is given by 
{ } { }: , : ,A A A A A A A A+ ′ ′= ∈ − ∈ = ∈ ∩ ≠ φ∀ ∈F  Z F  F

. Obviously, dual of given collection of non-negative inte-
gers is non-empty also the dual of an empty set represents 
the same collectionC. The dual of any proper Furstenberg 

family is also proper. Also, ( ) = F F and
( ), Furstenberg families such that A B A B B A∈ ⊂ ⇒ ⊂F  

. Also, dual family dual(B) of B refers a group comprises 
of members of Z+ with finite elements. Furstenberg family 
[G] = {F ÌC: F Ì G, for some G ÎG} is the family gener-
ated by the subset G belonging to C. It refers minimal 
Furstenberg family containing G. It had been observed 
that, G= fÛ[G] = f, similarly fÌGÛ[G] = C. Therefore, [G] 
is proper iff G is non-empty as well as it does not contain 
empty set. If there is a denumerable member G of given 
collection C such that [G] = F, then the family generated 
by the given member is also denumerable. The dual of the 
Furstenberg family B is also countably generated48. Let 
consider F1 and F2 be any two Furstenberg families, then 
their product can be defined as F1 ·F2 = {F1 ∩ F2: F1 ⊂F1, 

F2 ⊂F2}. A proper Furstenberg family F indicate complete, 
if κFÇFÌB. Thus, if κB∩F⊂F, then every F is said to be 
complete. Hence both the families B and κB are complete 
as well as Furstenberg family. Similarly, a Furstenberg 
family F is complete iff κF is complete. Also, if the family 
F is complete, then κBÌF. If F is proper family such that 
κF∩F⊂F, then F is known as filter41. 

Lemma 1. Fis complete ⇒ dual(B) ÌFÌB. If the 
given family refers to a filter, then dual(B) ÌF¢Fis com-
plete3.

The family having infinite subsets of non-nega-
tive integers Z+ is denoted by Finf and its dual κFinf 
denoted by Fcf is the aggregation of co-finite member 
of Z+. F refers to be complete having the attributes of 
proper set and holds the condition FÇFÌFinf 

14. The 
finite sum S of any infinite sequence {xn} is referred as 

lim :n in i
S x x

→∞ ∈

 = = ≠ ⊂ 
 

∑ ∑
α

φ α ¥ . If F ÌZ+, then 

F is termed as IP- set if $ {xn} ÎN¢FS{xn} Ì F and family 
of all IP-set is represented by Fip. Suppose F ÌZ+, then 
F is termed as thick set if ¢n ∈ N¢ some un ∈ Z+ such 

{ }, 1, 2,...,n n n nu u u u n F+ + + ⊂ , i.e., it collection 
of randomly elongated positive integers. Again F ÌZ+ 

is syndetic set if [ ], ,m m F m ++ ∩ ≠ ∈φN Z . Now, 
if FtandFs referring the families of randomly elongated 
positive integers and syndetic sets respectively, then Fs 
= Ft. 

The next section deals with the review on Furstenberg 
family compatible with the dynamical System.

3.1  Furstenberg Family Compatible with 
Dynamical System

Let X be a complete space equipped with the dis-
tance function d and f be continuous functions defined 
over X holds the property of isomorphism, then the 

system ( ),X f is a topological dynamical system 
(TDS)13. Let F be a Furstenberg family defined on 
the set of positive integers Z+ which the subset is of 
space X on which the metric d is defined. The distance 
between two non-empty subsets A, B the member 
of X is ( ) ( ) ( ){ }, inf , : ,d A B d a b a b A B= ∈ ×

. If ( ), 0d A B > , then A and Bare positively dis-

joint. For any dynamical system ( ),X f  the 
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entering time set of an element a into A is defined  

by ( ) ( ){ }, : , &ka A k f a A a X A X+= ∈ ∈ ∈ ≠ ⊂φN Z 39. 
For G1, G2 Ì X, 

( ) ( ){ } ( ){ }1 2 1 2 2 1, : :k k
f G G k G f G k G f G− −

+ += ∈ ∩ ≠ = ∈ ∩ ≠φ φN Z Z  
referred as meeting time set or collection of common 
points of the sets G1 and G2. In particular, if G1 = {a}, 

then { }( )2,f a GN is merely expressed by ( )2,f a GN  

which is recall as return time set from a to G2. Suppose G1 is 
the member of the space X then any element a of the space 
X is termed as F-binding element of the collection G1, this 
is possible only if the return time set from a to the collec-

tion G1 belongs to F. Here ( ) ( )
1 1, k

F k

G f f G−

∈ ∈

=
 

F F

F

refer to F-binding group of the collection G1.
Lemma 2. For any member G1 of X and family F , 

( ) ( )1 1, k

F k

G f f G−

∈ ∈

=
 

F F

F 48.

Any point is said to be an iterated point if its return 
time set contains innumerable elements. Let us now define 
the recurrence of Furstenberg familyF. Any element x of 
X is termed as F-recurrent if for any neighbourhood G 
of x, N(x, G) ÎF. Thus, using the above result following 
lemma2,22,49.

Lemma 3. Let X be TDSand x be any its member such 
that which satisfy the following conditions

•	 The given point will be minimal point iff it coincides 
with Fs-recurrent point;

•	 The given point will be iterated point iff it coincides 
with Fip-recurrent point2,22.

Similarly, if ¢¢G1, G2 Ì X, of the dynamical system 

( ),X f , the hitting time set of G1andG2 is given by

( ) ( ){ }1 2 1 2 1 2, : , ,kG G k f G G G G X+= ∈ ∩ ≠ ≠ ⊂φ φN Z
. If ¢¢G1ÌX, then N(G1,G1) is termed as the return time 
set of U. 
The next section deals with the short review on 

Transitive Points via Furstenberg Family.

3.2  Study of Transitivity via Furstenberg 
Family 

Suppose the Furstenberg family F consists of set of posi-
tive integers Z+ contained in the space X such that FÌB. 
Any member x of TDS ( ),X f is termed as F-transitive 

if ( ) ( ){ }: , openn
i in f x G G X+∈ ∈ ∀ ≠ ⊂ ∈φZ F

. In this case the system referred as F - point transitive 
system. Study of such systems helps us in understanding 
the TDS. Transitive systems can be classified in different 
manner. Furstenberg had given the one of the renowned 
method using the concept of hitting time collection of 
two open members of the phase space X. This method 
reveals that the Furstenberg family F is, F-transitive if

( ) ( )1 2 1 2, , openG G G G X∈ ∀ ≠ ⊂φN F . Also TDS 
is weakly mixing iff the collection of thick sets of the given 
space X is of transitive nature. Weak disjointness prop-
erty is the second method employed for testing transitive 

character of a system. Two TDS ( ) ( )1 1 2 2, & ,X f X f  are 

weakly disjoint if ( )1 2 1 2,X X f f× ×  holds transitivity21. 
Applying this property a unique result can be derived as

( ),X f exhibit the characteristics of weak combination 
this is possible only in case the given space X behave dif-
ferently from its weak mixing nature. Applying complexity 
of open covers of a system its transitive property can also 

be checked and this is the third method50. Let ( ),X f  be 
a TDS with exhaustible open-coverO, suppose N(O)is the 
small quantity of sub-cover of given open cover O. The con-
cept of embarking time collection of an element of a subset 
of the system is also used for showing transitive nature 
of a Furstenberg family. Thus for the family F, ( ),X f
is F -transitive, if ( ) ( ), openx G G X∈ ∀ ≠ ⊂φN F

, i.e., ( ),X f is transitive Û

( ) ( ){ }1 2 1 2 1 2, : , ,kG G k f G G G G X+= ∈ ∩ ≠ ≠ ⊂ →∞φ φN Z

. Thus, for any space X and Furstenberg family F

•	 F holds transitivity if N(G1, G2) F
•	 F holds weak mixing property if ( ),X X f f× × is 

F-transitive.

Now using the above results following theorem holds22,2.
Theorem 23. Every TDS system having weak mixing 

property is Ft –transitive50.
For any TDS, X and Furstenberg familyF, the enter-

ing time set of any member of the given space X must 
belongs to the given familyF. This member is termed as 
F-transitive point. Collection of these members of the 
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space X is represented as ( )Trans ,X fF  and if the col-
lection is finite to some extent then the system is known 
as F-point transitive. Similarly, the given TDS is termed as 
F-point centre if every member of the space have entering 
time set which belongs to the given Furstenberg familyF. A 
following result can be derived from above concepts.

Lemma 4. Every TDS X with the Furstenberg family 
F exhibiting transitivity and having F-point centre holds 

the condition ( ) ( )Trans , Trans ,X f X f=F
50.

The next section deals with the short review on 
mixing property via Furstenberg family.

3.3  Study of Mixing Property via 
Furstenberg Family 

All of us familiar with the weak mixing property of TDS 

( ),X f  which infers that the system it holds the said prop-

erty iff ( ),X X f f× × is transitive. Suppose ( ),X f  is 

a TDS with the Furstenberg family F be a defined over the 
set of non-negative integers having hereditary property. 
Now, for F = B, B-transitivity (respectively. B-mixing, 
B-iteration) is the common transitivity (respectively weak 
combination, iteration). 

Lemma 5. For any member x of the TDS ( ),X f

•	 x is a minimal point in case the entering set of the 
given member is of syndetic nature.

•	 x is an iterated point in case the entering set of the 
given member have an IP-set.

•	 ( ),X f is weak combination in case N(A,B) is thick 
set.

•	 ( ),X f is strongly mixing in case N(A,B) is co-finite   

•	 ( ),X f is F-mixing in casethe Furstenberg family F 
holds transitivity and of weakly mixing nature41.

Suppose ( ),X f  is TDS with some distance func-
tion defined over it. For any set of non-negative integers 
G contained in some open ball B, the ordered duple 
( ),a b  belonging to the space X is     G-proximal 

in case ( ) ( )( )lim inf , 0k k
k Gn

d f a f b∈→∞
= . Here, 

( ) ( ){ }, : ,GP a b a b X X= ∈ × is a        G-proximal rela-

tion and ( )GP x  the G –proximal cell at x.

Lemma 6. Suppose ( ),X f  is a TDS, where X is 

entirely steadyT2 -space; so.

•	 System will have weak amalgamating property in case 
the return time set is thick and generates a filter.

•	 TDS ( ),X f  for any Furstenberg family F will have 
F-mixing in case the given system holds the property 
of weak mixing and F-transitivity41. 

Also the family F creates filter in case its 
dual have the Ramsey attribute, means that i.e. if 

( )dualofiG ∈


F F iG⇒ ∈F  for atleast one value 

of i. From the given concepts following result can be 
explored.

Theorem 24. For any TDS ( ),X f and complete 
Furstenberg family F , the system having F-mixing indi-
cates that ∀A ∈F the proximal cell of every element of 
the space have neighbourhood will be contained in the 
space X41.

Theorem 25. For any minimal TDS ( ),X f  and 
complete Furstenberg familyF , the given system holds 
F-mixing indicates that ∀A ∈F the proximal cell of every 
element of the space have neighbourhood will be con-
tained in the space X41.

Using given result the following corollary can be 
checked.

Corollary 1. For every set belonging to the open ball 
B and the proximal cell of every element of the space have 
neighbourhood contained in the space X, then the mini-
mal TDS ( ),X f is strongly mixing41.

The non-trivial Furstenberg family exhibiting 
F-transitivity andF-mixing is same as transitive and 
weakly mixing. Thus, we can conclude that the given axi-
oms holds22,2. 

The next section deals with the short review on 
Sensitivity via Furstenberg Family.

3.4  Study of Sensitive Nature of Furstenberg 
Family 

A TDS ( ),X f have sensitivity if for any positive inte-
gers δ there exist two distinct points a and b in the open 

subsets of X such that ( ) ( )( ),k kd f a f b >δ for some 

κ ∈¥0. In other words there would be one moment arises 
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when ∃a¹ bÎBÌX whose trajectories are apart from a 
reference point51.

Proposition 1. For anyTDS ( ),X f .

•	 The given system has sensitivity.
•	 For δ> 0∃a¹ bÎBÌX such that 

( ) ( )( )lim ,k k

n
d f a f b

→∞
>δ for some κ ∈¥0. 

•	 For ε> 0∃a¹ bÎG (open) ÌX such that

( ) ( )( ),k kd f a f b >ε  for some n∈¢+.

•	 For δ> 0∃a¹ bÎG (open) ÌX such that 

( ) ( )( )lim ,n n

n
d f a f b

→∞
>δ 51. 

Thus, a TDS ( ),X f  have sensitivity iff $ε > 0 and in 
any open subset G of X have two different points whose 
curves are much separated with the minimum distance 
ε. For any TDS ( ),X f and Furstenberg family Fthe 
system exhibits F-sensitivity in case for any ε > 0 there 
exist two distinct points a and b in the open subsets of 

X such that ( ) ( )( ){ }: ,k kk d f a f b+∈ < ∈δZ F

for some κ ∈¥0. Such that for every x ∈X and every 
open neighbourhood N of x there exists y ∈N such that 

( ) ( )( ){ }: ,n nn d f x f y+∈ < ∈δ F¢ .

Also for two different Furstenberg families F1 and F2 

the topological dynamical system ( ),X f  is (F1, F2)-
sensitive if $δ> 0 such that for every a ∈X is a limit of 

points for b ∈X ( ) ( )( ){ } 1: ,k kk d f a f b+∈ < ∈δ¢ F

while for ε > 0 ( ) ( )( ){ } 2: ,k kk d f a f b+∈ > ∈ε¢ F .

Also, TDS is weakly F-sensitive if for any F-sensitive 
constant ε∈Z+ and the distinct pair (a, b) is not F-ε-
asymptotic where a, b ∈N (open neighbourhood) ÌX. 
Thus, TDS is weakly F-sensitive if for any F-sensitive 
constant ε∈Z+ and the distinct pair (a, b) is not F-ε-
asymptotic where a, b ∈N (open neighbourhood) ÌX. 
Here are some results based on the learnt concept.

Theorem 26. For Furstenberg familiesF1 and F2 such 
the dual of one family is contained in the other, then the 
system sensitivity of the system w.r.t. one family implies 
its sensitivity w.r.t. other family also51.

Corollary 2. Every TDS is weakly F-sensitive iff it is 
F-sensitive for any filter-dualF51.

Theorem 27. Every TDS is weakly F-sensitive for any 

filter-dualFcompatible with ( ),X X f f× × 51.

A TDSis said to be accessible if ( ) ( )( ),k kd f a f b <ε
for every ε>0, ( ) ( )1 2open , opena G X b G X∈ ⊂ ∈ ⊂
and k ∈¥.

The next section deals with the short review on 
Proximities and Distality via Furstenberg Family.

3.5  Study of Proximities and Distality via 
Furstenberg Family

Study of asymptotic attributes of an ordered tuples is an 
important tool for exploring TDS. The ordered tuples 

( ),a b  the member of the space X is said to be proximal 

if ( ) ( )( )lim , 0n n

n
d f a f b

→∞
= . Collection of these tuples 

is represented by ( ),P X f . The given pair of points 

behaves asymptotically if ( ) ( )( )lim , 0k k

k
d f a f b

→∞
= . 

Collection of these tuples is represented by ( ),Asym X f
. If elements of the ordered pair are distinct then the tuples 
refer to a non-trivial pair. The set of proximal tuples obey 
reflexive, symmetric, f-invariant relation while disobey 
transitive relation. The ordered tuples are distal if they 
are not proximal. Any pair of points is said to a Li–Yorke 
if it obey proximality while disobey asymptotic behav-
iour. Any point of the system referred as returning point 
if there is an increasing sequence converges to the same 
point. Any ordered tuples of returning point is of strong 
Li–Yorke nature which infers Li–Yorke pair. A system 
whose ordered tuples have the lack of proximality pairs 
indicate a distal pairs that may be almost or semi-distal 
respectively. Also almost distal system infers semi-distal52.

Suppose a and b be any two distinct points of the TDS 

( ),X f .

•	 Suppose BÌ¢+⇒ ordered tuples ( ),a b , said to 

beB-proximali f ( ) ( )( )lim inf , 0n n

n
Bd f a f b

→∞
=

Also, ( ),a b is said to be B-asymptotic in case 

( ) ( )( )lim , 0n n

n
Bd f a f b

→∞
= . The same ordered 

tuples ( ),a b referred as B-distal in case it is not 
B-proximal. Collection of all ordered tuples of 
B-proximal, B-asymptotic, A-distal are mainly denoted 
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by ( ),PB X f , ( ),AB X f  and ( ),DB X f respec-
tively.

•	 The ordered tuples ( ),a b  referred as F-proximal in case 

( )( ), ,N a b ∆ ⊂ε F ∀ε >0 where ( ),a b B N⊂ ⊂

and ( ) ( ){ }, : ,a b X d a b∆ = ∈ <ε ε .

The collection of all F-proximal tuples are being rep-
resented as ( )( ) ( ), , ,N a b P X f∆ ⊂ε F or PF.

The following result can be drawn from the above 
concepts:

Corollary 3. 

•	 The ordered tuples ( ),a b  referred as F -proxi-

mal under the condition that F is contained in 

its dual, ( ) ( ),F
xf f a b× ∩ ∆ ≠ φ in case the 

ordered tuples belongs to the proximal pairs. Also 

( ) ( )
0

, F

F n F

P X f P f f −

> ∈ ∈

= = × ∆
   ε
ε

F F
F

•	 For every Furstenberg family F which is a filter its 
every ordered pair is kF-proximal such that for any 
point p ∈H(F), pa = pb. The same ordered pair is 
F-proximal in case for every point p ∈H(F), pa = pb. 

For F= kB, the ordered pair ( ),a b is proximal in case 
the ordered pair is B-proximal for every point p ∈H 
(kB) such that pa = pb. For every point p ∈H (kB), 

where pa = pb the ordered pair ( ),a b  shows asymp-
totic behaviour if it is kBproximal54.

Two different Furstenberg family each defining on the 
set of positive integers showing upper hereditary prop-
erty constitute a couple known as Furstenberg Family 
Couple54, which helps us in exploring the concept of 
chaos in Furstenberg family.

Next we have discussion on chaotic nature of dynami-
cal system will be explored with respect to Furstenberg 
family.

4. Chaos in Furstenberg Families

TDS and Furstenberg families are much interrelated with 
each other. In2009, Xiong, Lu and Tan54 had described 
the chaotic theory via Furstenberg families. Further chaos 

such as Li-Yorke and various category of distributional-
chaos becomes a tool for the study of chaotic nature of 
Furstenberg families’ sense.

G ÌX referred as F-scrambled set of TDS ( ),X f
in case the ordered pair of distinct elements that are the 
members of G constituting F-scrambled pair. For any 
positive real number δ >0, the same set G ÌX with same 
attributes is referred as strongly F-scrambled provide 
F-δ-scrambled pair. 

( ),X f referred as F-chaotic, if collection of all 
F-scrambled pairs provide Gδ set that are dense in the 
Cartesian space composed of X. For any δ >0, ( ),X f
have strong F-chaotic, if collection of all F-δ-scrambled 
pairs are Gδ set which are again dense in the Cartesian 
space composed of X.

Result: ( ),X f
 
is commonly F-chaotic (or, strongly 

F-chaotic) where X possess completeness and separablity 
having no isolated points, which infers F-scrambled col-
lection X (or strongly F-scrambled set, respectively) is a 
Mycielski set54,55.

Suppose be a dynamical system. For any two 

Furstenberg families F1, F2 and ( ),X f the ordered dou-

blet ( ),a b  of the space X is (F1,F2)-scrambled if 

•	
( ) ( )( ){ } 1: ,n nn d f a f b ε+∈ < ∈Z F

”ε>0 and
•	 $ some d> 0 such that 

( ) ( )( ){ } 2: ,n nn d f a f b δ+∈ < ∈Z F
.

Any subset S of the space X is (F1, F2)-scrambled 
if it have distinct elements that create (F1, F2)-

scrambled pair. In case S is uncountable, ( ),X f
will be (F1, F2)-chaotic. Also, for uniformly detached 
unvaryingδ, all non-diagonal pairs of the subset S, form 
(F1, F2)-δ-scrambled sets and (F1, F2)-δ-chaos. Let F 

Ì¢+, then ( )FD (upper density of F) expressed as 

( ) { }( )1lim sup 0,1,2,..., 1
n

F F n
n→∞

= ∩ −D . 
Furstenberg family ( )aF [ ]0,1a∀ ∈ is given by 

( ) ( ){ }: and a F F F a+= ⊂ → ∞ ≥F Z D . The 

chaotic behaviour of Li-Yorke and distributional chaos 
via Furstenberg families is characterized using the axiom.
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Proposition 2. For any ordered doublet ( ),a b  of 

( ),X f

•	 ( ),a b -scrambled iff it is ( ) ( )( )0 , 0F F -scrambled.

•	 ( ),a b -distributionally scrambled type 1 iff it is

( ) ( )( )1 , 1F F -scrambled.

•	 ( ),a b -distributionally scrambled type 2 iff it is

( ) ( )( )1 , εF F -scrambled

    for positiveε48.
F is well-matched with ( ),X f if 

{ }{ } ( ): : opennx X n f x O G X O Xδ φ+∈ ∈ ∈ ∈ = ⊂ ∀ ≠ ⊂Z F .

The condition for given concept can be shown as:

Theorem 28. In ( ),X f , for anyfixed point a X∈ such 

that { }A a φ∩ =  and ( )closed invariant A Xφ ≠ ⊂  

and ( )
1

i

i

f a
∞

−

=


is dense in X. Then for any F1andF2 com-

patible with the system ( ),X X f f× × $dense Mycielski 

(F1, F2)-δ-scrambled set “∀δ> 0.

Generally ( ),X f is ( ) ( )( )1 , 1F F -δ-chaotic “∀δ> 
042, 47.

Any ballB in space X having distinct elements con-
stituting Banach scrambled pair, is said to be Banach 
scrambled set that holds proximality. Also, every proxi-
mal tuples is Banach proximal for functions defined on a 
space having null topological entropy57. 

Theorem 29. Any continuous functions defined over 
unit closed interval having Li-Yorke chaos have Cantor 
Banach scrambled set57.

Theorem 30. Any continuous functions defined over 
unit closed interval have positive topological entropy iff $ 
Banach scrambled set C(Cantor set) subset of unit closed 
intervaland the iterated value of the function over the 
given interval contained in C57.

( ),X f in which X is a scrambled set then in such 
system every pair is syndetically proximal38. In addition 
to X may be Banach scrambled set57.

Theorem 31. ( ),X f  is a transitive with X as Banach 

scrambled set57.

5. Everywhere Chaos and 
Equicontinuity via Furstenberg 
Families

Let F1 and F2 be two Furstenberg families. ( ),X f  is 

( )1, F F –everywhere chaotic in case in Furstenberg 

Family couple ( )1, F F , F1 is sensitive and F2 is acces-

sible. For the better understanding of the concept of (F1, 
F2)-everywhere chaotic let us understand the concept of 
hyperspace. The hyperspace of a topological dynamical 
space X, is defined by 2X = {C: Φ¹C ÌX and C is com-
pact} through the Hausdorff distance function dH, i.e., 

( ) [ ] [ ]{ }1 2 1 2 2 1, inf 0 : ,Hd G G G G G G= > ⊃ ⊃ε εε , 

where G1, G2 Î2X.
In58 had given the evidence of the following result.

Theorem 32. Suppose ( ),X f  have no inaccessible 

point. Then ( ),X f is everywhere chaotic 

if for δ>0 and ∀ε >0, $G Î2X and Cantor set C ÌX 

having distinct elements a, b such that ( ),Hd G C ε<

implies ( ) ( )( )lim inf , 0n n

n
d f a f b

→∞
= and 

( ) ( )( )lim sup ,n n

n
d f a f b δ

→∞
> 58.

Main consequence of everywhere chaos is depends on 
given result.

Theorem 33. Suppose space X of the system ( ),X f
have no inaccessible point.

•	 ( ),X f is weakly (F1, F2)–everywhere chaotic.

•	 ( ),X f is (F1, F2)–everywhere chaotic.
•	 There is δ>0 such that for each ε >0 and each G Î2X 

$ Cantor set C in X having distinct points where 
dH(G,C) <ε, then 

•	 for any ε> 0, {n Î¢+: d(fnx, fny) <ε} ÎF1, and
• ∃ some δ> 0 such that {n Î¢+: d(fnx, fny) >δ} ÎF2

58.

Then (2) ⇒ (1) and (3) ⇒ (1). If F1 and F2are com-
patible with (X × X, f × f), and F1 is a filter dual, then 
all assertions are equivalent. The correlation between 
kF-equicontinuity3 and weakly F-sensitivity is the main 
point of attraction in transitive dynamics. 
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Any member of the space is an F-equicontinuity 
member3 in case ∀ε> 0 ∃δ > 0 and ( ),d a b δ<  this 

implies ( ) ( )( ){ }: ,k kk d f a f b ε+∈ < ∈F¢ , where 

F is a Furstenberg family.
Remark: In case a TDS shows kB-equicontinuous, 

then this TDS behave usually equicontinuous. Similarly, 
if any member of the space shows kB-equicontinuity then 
this member exibhit equicontinuity.

Proposition 3. For any compact metric space in topo-
logical dynamical system having F1 and F2 as Furstenberg 
families and F1・F2 ÌF2. Thus, all the member of the 
system having F1-equicontinuity, then that system is 
F2-equicontinuous23.

Corollary 4. For any compact metric space in a TDS, 
having F as filter. Then TDS is   F-equicontinuous iff 
every member of X shows F-equicontinuity23.

Auslander-Yorke23 had provided the following result:

Proposition 4. For any compact metric space ( )X d

in a transitive TDS ( ),X f , suppose kF is an invariant 

Furstenberg family having translation. Thus,
TDS having no kF-equicontinuity point infers that 

the system is weakly F-sensitive.
TDS having kF-equicontinuity point infers that col-

lection of all kF-equicontinuous points of TDS is a dense 
Gδ set23.

Remark: If TDS have kF-equicontinuity, then it is not 
F-sensitive.

Proposition 5. For any compact metric space in a 

TDS ( ),X f , suppose F is a filter, and FÌB. For any 
0
X∈  ∃F ÎFsuch that ( ) < +∞F  then ( ),X f is 

F-equicontinuous23.
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