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1.  Introduction

In the recent years, the fractional calculus has been 
extensively utilized for the modeling of physical systems. 
During the past three decades, the topic of fractional 
calculus has attained the considerable attention of many 
researchers because of its wide range of usages in science 
and engineering. For the solution of differential and 
integral equations, it stipulates numerous potentially 
beneficial tools. To solve the time FPDEs is an important 
task. When taking a long-time scaling limit, it has been 
observed that the derivatives of fractional order with 
respect to time has generally arises as imperceptible 
generators of the time evolution. The approximated 
and numerical methods have been employed to tackle 
most of the Fractional Differential Equations (FDEs) 
because many of them do not have the exact solutions. 
Many researchers have been devoted their attentions 
towards the numerical and exact solutions of FDEs and 
FPDEs due to a wide range of applications. The analytical 
solutions of FDEs are still in an initial stage. To find the 
analytical and numerical solutions of these equations is 
a challenging task except few of them. In this regard, a 
number of endeavors have been taken into account to 

establish the techniques which can be used to obtain the 
analytical as well as numerical solutions of FDEs.

Many efforts have been attempted to develop 
different schemes which are used to solve FPDEs. 
To attain the approximate solutions of FPDEs, many 
numerical methods are well-known. Some of them are 
Homotopy Perturbation Method (HPM)1, Reduced 
Differential Transform Method (RDTM)2, Variational 
Iteration Method (VIM)3, New Iterative Method (NIM)4, 
Generalized Differential Transform Method (GDTM)5, 
Jacobi tau approximation method6 and wavelet method7–10.

To solve the following FPDEs, we have developed a 
new algorithm: 

	     (1)

with respect to the initial conditions:

and
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such that 
 are known, 

 is the given source term,  is a parameter that 
interprets the order of the time-fractional derivative and 

 is the unknown. 
For the solution of FPDEs, a number of methods 

have been employed such as Jacobi tau approximation 
which has been used to tackle space fractional diffusion 
equation11. The two dimensional block pulse functions 
along with the operational matrices of integration 
of fractional order have been investigated to get the 
solution of FPDES12. Likewise, in13, the authors applied 
the homotopy perturbation method combined with 
the Laplace transform method to obtain the numerical 
solution of the fractional partial differential equations. 
Recently, many authors put their efforts to solve FPDEs 
by using the operational matrix approach14–16. These 
operational matrices are based on various orthogonal 
polynomials and wavelets. The results show that this 
method is really very simple and accurate. 

In the presented article, the generalize form of 
the operational matrix technique for the solution of 
FPDEs with variable coefficients along with some initial 
conditions is discussed. The shifted Legendre polynomials 
are the base of this scheme. A new operational matrix 
has been established by using the properties of shifted 
Legendre polynomials. We analyzed from the numerical 
test that the method is eminently capable for solving such 
problems. The rest of the paper is organized as follows: In 
Section 2 some basic definitions of fractional calculus are 
given. In Section 3, a new idea is presented for the solution 
of a generalized class of FPDEs with variable coefficients. 
In Section 4, some numerical tests are performed to show 
the efficiency of the new technique. In Section 5, the 
conclusion of the paper is presented.

2.  Preliminaries 

Few of the basics definitions are given below:

Definition I17,18

The Riemann-Liouville (R-L) fractional derivative is 
defined as:

						            (2)

Definition II17,18 
The Riemann- Liouville (R-L) fractional integral operator 
of order , of a function , is 
defined as

	      (3)

Some Properties:
Some properties of Riemann-Liouville fractional integral 
are:

					           (4)

			         (5)

			         (6)

			         (7)

Definition III17,18

The fractional derivative in Caputo sense is defined as:  
	

						            
(8)

2.1 Some Properties
Some properties of fractional derivative in Caputo sense 
are:

			         (9)

  (10)

	    (11)

		    (12)

2.2 Shifted Legendre Polynomials
	

						         (13)
where
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To transforms the interval  to , one can use 
the transformation  and the shifted Legendre 
polynomials are listed as

  (14)

where . The condition 
for orthogonality is defined as:

	    (15)

Which implies that any  can be 
approximate by Legendre polynomials as follows:

			      
(16)

where
1

0

=< ( ), ( ) >= ( +1) ( ) ( )n n nC f x P x 2n f x P x dx.ò

				       (17)

Where  depicts the coefficient 
vector and  is  terms vector function. The notion 
can be extended to two dimensional space and the two 
dimensional Legendre polynomials of order  as a 
product function of two

Legendre polynomials can be defined as:

The orthogonality condition of  is given by:

1
( )( )

0

( ) ( ) ( ) ( )1 1
0 0 n s c d 2n+1 2s+1P x  P y  P x  P y dxdy  =       if  n = c,s = d     

                                                                                       otherwise.

ìïïïò ò íïïïî

	

						         (18)

By using the polynomial , consider 
any function ) can be 
approximated as follows:

		     (19)

Here,

.

For convenience, use the notation  where 
 and in vector notation (6) can be 

written as:

	    (20)

Where  is the  coefficient row vector 
and  is the  column vector of functions 
defined by where 

for

2.3 Error Estimation
Any function  which is sufficiently smooth on 

 the error of the approximation is given by:

where

           max
( ) [0,1]×[0,1]

1  
16

2M+2

3 x,y M+1 M+1C = f(x, y), .
x yÎ
¶

¶ ¶

Proof: The proof of the above mentioned theorem can 
be found in21.

3.  �Generalized Fractional 
Differential Equation for 
Variable Coefficient

	   (21)

Constrained to the initial conditions:
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and

Where 1 2 3( 0,1,..., ), ( ), ( ), ( )id i n g x g x g x=  are the 
known,  is the given source term,  is a parameter 
that describes the order of the time-fractional derivative 
and  is the unknown. In terms of shifted Legendre 
series, we can write the solution of the above problem as:   

				       (22)

By applying the fractional integral of order  with 
respect to the initial conditions, we have:

			     (23)

Where  represents the operational matrix of 
integration. 

By simplifying the above equation, we get:

	

						         
(24)

Where  is the operational matrix of 
derivative for variable coefficients:

Functional approximation for the source term can be 
written as:  

					        (25)

By putting all the values in Equation (21), we have

After simplifying, we have: 

n n1 1 2 2

n n1 1 2 2

(a , , , , )n,t (a , , , , ) n,t (a , , , , ) n,t

(a , , , , )(a , , , , ) (a , , , , )
1

(K - KP  G - KP G - - KP  G

                     + F(G +G + +G - F  ) = 0

b a b hb a b h b a b h

b a b hb a b h b a b h y





n n1 1 2 2

n n1 1 2 2

(a , , , , )n,t (a , , , , ) n,t (a , , , , ) n,t

(a , , , , )(a , , , , ) (a , , , , )
1

(K - KP  G - KP G - - KP  G +

F(G +G + +G - F  ) = 0.

b a b hb a b h b a b h

b a b hb a b h b a b h





	

						         
(26)

4.  Applications

Example 1
Consider the linear fractional partial differential Equation 
(19)

	

						         
(27)

Constrained to the initial condition, 

The problem has the exact solution which is given as: 
 

Described methodology in Section 3 is used to solve 
the linear fractional partial differential problem by taking 

  Table 1 depicts the numerical results of current 
problem, which highlights the high accuracy of the 
proposed method.

0

0.5

1 0

0.5

1

0

1

2

 

x
t

 

alpha= 0.75
alpha= 0.95
alpha= 1

Figure 1(a).    Approximate solution of example 1, at different  
choices of .

Figure 1(b).    Absolute error of example 1, at different  
choices of .
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Example 2 
Consider the linear time-fractional wave Equation [20]

	    (28)

constrained to the initial conditions, 

.

The exact solution of the problem is given as:

Described methodology in section 3 is used to solve 
the linear fractional partial differential problem by 
taking   Table 2 depicts the numerical results of 

current problem, which highlight the high accuracy of the 
proposed method. 

Figure 2(a).    Approximate solution of example 2, for 
different choices of .

Table 1.    Numerical comparison of example 1
SLOM Sumudu 

Transform 
Method

SLOM Sumudu 
Transform 
Method

SLOM Sumudu 
Transform 
Method

Exact

0.75a=

Exact

1a=

0.75a= 0.95a= 1a=
0.2 
 
 

0.5

 
 
0.8

0.2 0.163320 0.163679 0.090362 0.090389 0.08 0.08 0.16367554 0.08
0.4 0.283320 0.283679 0.210362 0.210389 0.20 0.20 0.28367554 0.20
0.7 0.613320 0.61368 0.540362 0.540389 0.53 0.53 0.61367554 0.53
0.2 0.529410 0.530488 0.327413 0.327369 0.29 0.290003 0.52887053 0.29
0.4 0.649410 0.650675 0.447413 0.447370 0.41 0.410003 0.64887053 0.41
0.7 0.979410 0.981188 0.777413 0.777373 0.74 0.740004 0.97887053 0.74
0.2 1.028680 1.06802 0.741783 0.742455 0.68 0.680197 1.02940439 0.68
0.4 1.148680 1.19247 0.861783 0.862523 0.80 0.80022 1.14940439 0.80
0.7 1.478680 1.53473 1.191783 1.192710 1.13 1.13028 1.47940439 1.13

Table 2.    Numerical comparison of example 2
   SLOM    ADM     VIM       SLOM    ADM    VIM SLOM Exact

1.5a= 1.75a= 2a=

0.2

 

0.4

 

0.6

0.25 0. 26284107 0.26284061 0.26269693 0. 26267007 0.26266989 0.26248505 0. 26258350 0.26258350
0.50 0. 55136431 0.55136246 0.55078773 0.55068029 0.55067959 0.55059402 0. 55033400 0.55033400
0.75 0. 86556971 0.8655655 0.86427239 0.86403066 0.86402909 0.86383654 0. 86325151 0.86325150
1.0 1. 20545727 1.20544984 1.20315093 1.20272118 1.20271839 1.20237608 1. 20133602 1.20133360
0.25 0. 27697140 0.27697113 0.27642739 0.27615680 0.27615668 0.27607615 0. 27567201 0.27567202
0.50 0. 60788563 0.60788455 0.60570958 0.60462721 0.60462675 0.60430459 0. 60268804 0.60268808
0.75 0. 99274267 0.99274024 0.98784655 0.98541124 0.98541019 0.98468533 0. 98104811 0.98104818
1.0 1. 43154252 1.43153821 1.42283824 1.41850887 1.41850702 1.41721837 1. 41075219 1.41075232
0.25 0. 29309445 0.29309481 0.29198616 0.29108982 0.29109009 0.29092233 0. 28979085 0.28979084
0.50 0. 67237780 0.67237923 0.66794464 0.66435928 0.66436039 0.66368931 0. 65916343 0.65916339
0.75 1.13785005 1.13785532 1.12787544 1.11980839 1.11981088 1.11830097 1. 10811772 1.10811764
1.0 1.68951121 1.68951694 1.67177856 1.65743715 1.65744156 1.65475727 1. 63665373 1.63665358
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Fig 2. Absolute Error when alpha=2 and m=8 for example 2  
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Figure 2(b).    Absolute error of example 2, for different 
choices of .

Example 3
Consider the linear time-fractional wave equation  [20]

	    (29)

constrained to the initial condition,  

The exact solution of the problem is given only for the 
case when , i.e 

Described methodology in Section 3 is used to solve 
the linear fractional partial differential problem by 
taking  Table 3 depicts the numerical results of 
current problem, which highlight the high accuracy of the 
proposed method.

Figure 3(a).    Approximate solution of example 3, for 
different choices of .
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Figure 3(b).    Absolute error of example 3, for different 
choices of .

Table 3.    Numerical comparison of example 3
  SLOM   ADM    VIM   SLOM   ADM   VIM   SLOM   Exact

0.5a= 0.75a= 1a=
0.2

 

0.4

 

0.6

0.25 0. 15478583 0.15539194 0.15580311 0. 18084874 0.18094705 0.17925384 0. 20252818 0.20255723
0.50 0. 30153999 0.30112237 0.30191914 0. 35069902 0.35064369 0.34736255 0. 39249464 0.39252043
0.75 0. 42757427 0.42813046 0.42926330 0. 49844044 0.49853901 0.49387393 0. 55802007 0.55807861
1.0 0. 52393251 0.52851947 0.52991795 0. 61467464 0.61543759 0.60967863 0. 68877368 0.68893817
0.25 0. 12050138 0.12272319 0.11364623 0. 14616004 0.14674143 0.14386345 0. 16548829 0.16583983
0.50 0. 23802151 0.23781605 0.22022640 0. 28441044 0.28435919 0.27878393 0. 32093645 0.32136855
0.75 0. 33515515 0.33122668 0.31311413 0. 40351939 0.40429688 0.39637006 0. 45612228 0.45691612
1.0 0. 40287103 0.41740644 0.38653386 0. 49520709 0.49990973 0.48931183 0. 56241241 0.56405487
0.25 0. 08982510 0.09310943 0.10020628 0. 11844697 0.11963459 0.12470195 0. 13422302 0.13577817
0.50 0. 18236498 0.18042976 0.19418223 0. 23247047 0.23183088 0.24165055 0. 26094739 0.26311431
0.75 0. 25328469 0.25653185 0.27608465 0. 32839806 0.32961305 0.34357448 0. 37039953 0.37409128
1.0 0. 29281629 0.31668403 0.34082188 0. 39821868 0.40690147 0.42413661 0. 45509900 0.45180906
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5.  Conclusion

The applications of shifted Legendre polynomials were 
extended successfully for solving linear fractional 
partial differential equations with variable coefficient. 
The comparison of the presented method with other 
numerical methods illustrated that our method can 
accurately represent properties of fractional calculus. The 
obtained results demonstrate the validity and applicability 
of proposed method for solving the FPDEs.
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