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1.  Introduction

Non-Newtonian fluids have the emerging importance in 
current industries and technology, and the mathematical 
modelling of non-Newtonian fluid flows and their 
understanding are of both fundamental and practical 
significance. The constitutive Jeffery fluid model 
explained1–6. Recently, Siva Reddy Sheri et al.,7 considered 
natural convection flow from a vertical plate in the 
absence of MHD with ramped temperature. Ahmad et 
al.,8 have studied mixed convection flow of a Jeffrey’s 
non-Newtonian fluid over an exponentially stretched 
plate. Zin et al.,9 discussed the heat transfer of unsteady 
flow past a vertical plate under the Influence of thermal 
radiation and MHD. Tripathy et al.,10 explained the 
effects of chemical and hydromagnetic viscous flow over 
a vertical plate. Javed et al.,11 discussed the radiation effect 
on MHD flow along a vertical impermeable wavy texture. 
Jayachandra Babu and Sandeep12 have reported on MHD 
flow of Williamson fluid over a stretching sheet. Zeeshan 
and Majeed13 performed of the flow, heat transfer of Jeffery 
fluid past a linearly stretching sheet with the presence of 
a magnetic dipole. Seth14 obtained numerical solutions 
of the model MHD flow over semi-infinite plate through 

porous regime. Most of the studies are related to vertical 
plate, the articles on the heat transfer in Jeffrey’s flow from 
an inclined vertical plate are very limited. Subba Rao et 
al.,15 investigated non-similar solutions for the influence 
of thermal slipy flows of Casson viscoplastic fluid from 
an inclined vertical plate and he has used the Keller Box 
method. 

Motivated by the above said research work, in the 
present paper, we investigate a numerical solution for two 
dimensional incompressible viscoelastic Jeffrey’s non- 
Newtonian fluid flow from an inclined vertical plate. 
Numerical solutions for the velocity and the temperature 
are obtained using a powerful technique namely finite 
difference method (Keller-Box).

2.  Mathematical Model

We examine steady buoyancy-driven convection flow 
of Jeffrey’s non-Newtonian fluid over an inclined 
vertical plate. Figure 1 shows the flow model and 
associated coordinate system. The x - axis taken along 
the cone surface measured from the origin and the 
y - axis is measured normal to the surface.	
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Figure 1.    Non-Newtonian heat transfer over a plate.

For an incompressible Jeffrey’s fluid, the continuity, 
momentum and energy equations are:
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The following spatial and temporal boundary 
conditions: 

At 0,x = ,u u T T∞ ∞= =  

At 0,y = 0, 0, wu v T T= = = 			   (4)

,As y →∞ ,u u T T∞ ∞→ =
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∂  are the velocity 

components in the x  - and y - directions respectively, 
ψ  -stream function, /ν µ ρ=  - the kinematic viscosity 
of the conducting fluid, k - the thermal conductivity,  γ
- inclination of the plate to the vertical, De - Deborah 

number, λ- the ratio of relaxation to retardation times, 
1λ - the retardation time. Pr  - Prandtl number, Gr - 

Grashof number, T∞ - the free stream temperature, Rex
- Local Reynolds number,

 

2/ Re xGrξ = - thermal buoyancy 
force parameter for forced convection. 

In view of Eqs (5) the governing equations (2)-(3) 
and dropping primes yields the following dimensionless 
equations:
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The dimensionless form of the boundary conditions:
At 0, 0, 0, 1f fη θ′= = = =

As , 1, 0fη θ′→∞ = = 			    (8)

The Skin friction coefficient and Nusselt number in 
the non-dimensional form is given by

1
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3.  �Computational Finite 
Difference Solutions

The finite difference method (Keller-Box) is employed to 
solve the transformed, coupled boundary layer problem 
defined by eqns. (6)-(7) under (8). Keller-Box method 
is the most versatile technique available for engineering 
analysis and equally adept at handling ordinary or partial 
differential equations as well as integral equations. 
Keller box method was originally settled for low speed 
aerodynamic problems and this system is established 
by Keller16. These include Casson slip boundary layer 
flows17. This method remains among the most powerful, 
versatile and accurate computational finite difference 
schemes employed in modern viscous fluid dynamics 
simulations. This method has been used extensively and 
effectively for over three decades in a large spectrum of 
nonlinear fluid mechanics problems.  Keller’s method 
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provides unconditional stability and rapid convergence 
for strongly non-linear flows. 

4.  Results and Interpretation

The nonlinear boundary value problem solved in the 
previous section is dictated by an extensive number 
of thermal and hydrodynamic parameters. In order 
to gain a clear insight into the physical problem, 
numerical calculations for distribution of the velocity and 
temperature for different values of these parameters is 
conducted with graphical illustrations (Figure 2–4). For 
the purpose of our computation, we adopted the following 
default parameters: 0Pr 0.71, 0.1, 0.2, 1.0, 70De λ ξ γ= = = = =  
are initial values (unless otherwise stated). Table 1 
shows that the effects of Deborah number De and λ on 
skin friction, Nusselt number, along with a difference in 
oblique coordinate, ξ . With increasing De, the Nusselt 
number (heat transfer rate) increases significantly and 

skin friction is reduced. A rising effect in λ is observed 
that enhance skin friction and Nusselt number.

In Figures 2(a)-2(b), present the evolution in the 
effect of the ratio of relaxation to retardation times i.e. 
λ on the velocity ( )f ′  and temperature ( )θ . Fluid flow 
is significantly increased with increasingλ . Conversely 
temperature is depressed slightly with increasing values 
of λ. In Figures 3(a)-3(b), illustrate the velocity ( )f ′ and 
temperature ( )θ with a difference in Deborah number 
(De). Velocity component of the fluid flow (Figure 3a) is 
considerably reduced with increasing De. In Figure 2b, an 
increase Deborah number is seen to considerably enhance 
temperature all the way through the surface of plate. Figure 
4(a)-4(b) presents the influence of the plate inclination on 
the dimensionless velocity and temperature. Taking angle 
of the plate ( 0γ < ) i.e. negative inclination, in Figure 4a, 
the velocity is reduced. Conversely in Figure 4b, with 0γ <
negative inclination the temperature decreases slightly. 
Further, more temperatures are improved marginally 
with positive inclination of the plate.

Figure 2.    (a) Influence of λ on velocity profiles. (b) Influence of λ on temparature profiles.
(b)(a)

Table 1.    Values of f"(ξ, 0)  and -θʹ(ξ, 0) for different ξ, De, and λ
De λ ξ = 1.0 ξ = 2.0 ξ = 3.0

f "(ξ, 0) -θʹ(ξ, 0) f "(ξ, 0) -θʹ(ξ, 0) f "(ξ, 0) -θʹ(ξ, 0)
0.5 0.2 0.4040 0.3133 0.8956 0.3205 1.4699 0.3270
1.0 0.3977 0.3164 0.8844 0.3234 1.4546 0.3298
2.0 0.3864 0.3232 0.8645 0.3298 1.4241 0.3357
1.0 0.0 0.3725 0.3029 0.8223 0.3100 1.3446 0.3165

1.0 0.5337 0.3332 1.1887 0.3413 1.9573 0.3485
2.0 0.6583 0.3505 1.4732 0.3589 2.4348 0.3664
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5.  Conclusion

In this work, motivated by applications in non-Newtonian 
fluid model has been developed for heat transfer of 
Jeffery’s fluid from an inclined vertical plate. The governing 
equations are solved numerically the finite difference 
method. Numerical results are reported for various values 
selected parameters interest. When De  takes the values 
larger than 0.5, the flow near plate decreases, skin friction-

( ,0)f ξ′′ and heat transfer rate ( ( ,0)θ ξ′−  while enhances 
temperature. Raising the parameter ratio of relaxation 
and retardation times (λ ), hike the velocity, skin friction 
coefficient ( ,0)f ξ′′ , heat transfer rate  ( ( ,0)θ ξ′−  it reduces 
whereas temperature for all values of  radial coordinate.
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