
Indian Journal of Science and Technology, Vol 10(29), DOI: 10.17485/ijst/2017/v10i29/106374, August 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

Abstract
Objectives: Development of an efficient test suite minimization approach in order to reduce the size of a previously acquired
test suite and produce a new representative suite which will guarantee the same requirement coverage that was achieved
before minimization for an effective and efficient regression testing. Method: Test suite minimizations techniques try to
reduce the size and redundancy of test suite by removing certain test cases since requirement covered by them are already
covered by other test cases. But, it has been found that the acquired test cases after minimization severely lacks ability to
achieve the desirable code coverage because the minimization was done based on a single test adequacy criteria. In this
paper, we propose an efficient heuristic based test suite minimization algorithm which will reduce the size of the test
suites with respective to multiple test adequacy criterions in order to preserve the fault detection effectiveness and code
coverage characteristics of the final test suite. Findings: Our experimental results indicate that a significant percentage
of reduction in the test suite size is achieved when the minimization is performed with respect to multiple test adequacy
criterions. Our approach is unique compared to the existing approaches in the sense that, we carried out minimization
based on multiple test adequacy criterions while most of the existing approaches usually take one or two criterions into
consideration. The proposed approach is evaluated based on two well known software testing metrics; one indicate the
percentage of reduction in test suite size and the second one indicate the percentage of code coverage achieved by the
minimized test suite. Our experimental results indicate that a significant percentage of reduction in the size as well as
significant code coverage characteristics is achieved when the minimization is done according to the proposed approach.
Improvements: The important contribution of this study is that, it presents a novel and efficient test suite minimization
technique that optimizes the test suite size based on multiple adequacy criterions.

Keywords: Regression Testing, Software Testing, Test Data Generation, Test Suite Minimization,
Test Suite Selection and Data Clustering

An Efficient Heuristic Based Test
Suite Minimization Approach

Fayaz Ahmad Khan*, Dibya Jyoti Bora and Anil Kumar Gupta

Department of Computer Science and Applications, Barkatullah University, Bhopal – 462026, Madhya Pradesh,
India; kfayaz1012@gmail.com, research4dibya@gmail.com, akgupta_bu@yahoo.co.in

1. Introduction

Software engineering is a well-defined approach to the
analysis, design, implementation, testing, maintenance
and re-engineering of a product. In software engineering,
testing is an important activity used to identify the
defects and problems associated with the product being
developed. The testing process is usually expensive and
may represent 50% of the software development budget.
The key factor responsible is the size of test suite as it
takes a very long time to execute the whole generated
test suite. The test suite size goes on increasing when
software undergoes maintenance, because new test cases

are needed to test the exiting code and the code that is
newly added. Thus changes to existing program lead to
the expansion in size of the test suite. Therefore test suite
management becomes an important research issue and
in literature1–7 it is termed as test suite minimization or
test suite reduction. The aim of test suite minimization is
to reduce the size of a previously acquired test suite and
produce a new representative suite which will guarantee
the same requirement coverage that was achieved before
minimization.

The other related issue during software maintenance
is regression test case selection. Regression testing is
used to validate the modified software to detect whether

Vol 10 (29) | August 2017 | www.indjst.org Indian Journal of Science and Technology2

An Efficient Heuristic Based Test Suite Minimization Approach

new faults are introduced into a previously tested code.
Regression selection techniques are also used to reduce
the cost by selecting and running a subset of test cases
from the previous test suite. Test suite minimization
and test case selection techniques are similar because
both of them try to acquire a subset from the previously
existing test suite, but can be differentiated based on the
criteria imposed. For the test suite minimization, the
criteria are whether the minimized test set cover all the
test requirements whereas as selection process focus on
the modified parts of the system under test. A test case is
called redundant when it covers the requirement that has
already been covered by another test case.

2. Test Suite Minimization and
the Intuition Behind our
Approach

Test suite minimization is an optimization problem
and its goal is to, select a minimized subset of test cases
from an existing test suite that exercises the same set of
requirements as exercised by the initial test suite. The
definition according to 3 is:

2.1 Definition
Given T (a test suite), R (a set of test requirements r1, r2,
r3 …, r i) that must be satisfied to get the desired coverage
of the program.

2.2 Problem
Find a subset T/ of T that satisfies all ri

s.
Trying to find a representative set T/

 that will cover
the same requirements as covered by the initial test suite
is the NP complete problem8. Due to NP completeness,
test suite minimization encourages the use of heuristic
approaches and in literature, many such approaches have
been developed to produce a minimum hitting set3,9,10. In9,
proposes the usage of simple greedy heuristic in which
each candidate set has a cost associated with it and chooses
test cases which cover almost all requirements about
to be covered, until are accomplished. But, a potential
weakness of the approach is that the early selection
made can eventually be rendered redundant by the test
cases subsequently selected. Another greedy heuristic
approach developed by authors in3 chooses a minimal
subset which covers the same set of requirements as

covered by un-minimized test suite. The optimal test suite
generated using the proposal of3 is equally good or better
than computed by9. The ping pong procedure developed
by10, declared that the technique presented in3 is more
expensive than their proposed approach. Another study
proposed by11 which is also known as double delayed
greedy heuristic tried to overtake the weakness of the
previous heuristic approaches by developing a concept
lattice. The approach by11 works in three phases: (1) apply
reduction by removing test cases test cases whose test
requirement are subsumed by other test cases; (2) remove
test requirements that are not present in the minimal
requirement set; (3) generate test suite using greedy
method12 from the remaining test cases. The empirical
results showed that the minimized test suite minimized
using double delayed greedy approach11 were smaller
or even smaller than minimized by traditional greedy
approaches13.

The previous studies3,9–11 at one end focus alone
on single standard minimization problems and have
achieved high test suite reduction, but, at the other end
have neglected the other important dimensions like fault
detection effectiveness and code coverage characteristics
of the minimized test suite. In a study reported in16, it
was observed that test suites achieving over 80% size
reduction during minimization by different techniques
suffer with less fault detection loss (around 50% loss on
average). In another study proposed in 15 in which it was
observed that only 7% to 16% fault detection effectiveness
loss happened to a test suite which undergoes 82% to
94% size reduction on average. Authors in14 carried an
empirical investigation to deal with the limitations of
single criterion minimization approaches by taking two
testing demands (requirements) into account instead of
one. The results reported in 14 showed that fault detection
effectiveness was better preserved by returning the larger
test suite compared to the test suite returned by single
criteria version of the HGS heuristic13.

Despite encouraging results by many studies like14–16
however, there is still definitely much room for improving
the existing techniques and developing new techniques
for an effective and efficient testing.

3. The Proposed Test Suite
Minimization Approach

To find a representative set that satisfies all the

Fayaz Ahmad Khan, Dibya Jyoti Bora and Anil Kumar Gupta

Vol 10 (29) | August 2017 | www.indjst.org Indian Journal of Science and Technology 3

requirements initially satisfied before reduction or
minimization is a NP complete problem. Therefore,
we are unaware of any approximate solution, hence a
heuristic based approach is proposed as shown in Figure
1, which will find a representative set of test cases with
minimum cardinality from the initial test suite based on
different code coverage matrices. The different steps of the
proposed test suite minimization approach are shown in
Figure 1. The important characteristics of our proposed
approach is that we have used a filter in the form of an
array (step 2 to step 4) to throw away redundant test cases
from the test suite according to different code coverage
criteria’s. A test case is redundant if the requirements

satisfied by it have been previously satisfied by any other
test case present in the test suite.

4. �The Application of the
Proposed Approach

The proposed approach is initially implemented on a
test suite of a single sample program shown in Figure 2
and then extended to a large suite of sample programs.
To test the program, a suite of test cases are generated
and with an automated test data generation tool known
as genratedata.com19. The Initially generated test suite is

input:
TS[i][j]…. all test cases present in the test suite
CM1.txt, CM2.txt and CM3.txt, Comma Separated Coverage Information in text format representing statement, branch and
independent path coverage of each test case. 1 for covered and 0 for uncovered
output: RS: a reduced set of test cases from the test Initial Test Suite.
declare:
CM1 [m][s], CM2 [m][b] and CM3 [m][ip]: Matrices used to hold the data from CM1.txt, CM2.txt and CM3.txt files.
m[],m1[],m2[]: Index of test cases returned after Minimization Process.
r[],r1[],r2[]:array[1..n], Initially Empty, representing the requirements Covered by minimized test cases in m[],m1[],m2[].

algorithm TestSuiteMinimization

begin

STEP 1: Initialize each CM1 [m][s], CM2 [m][b] and CM3 [m][ip] Matrices by reading each text files using

Java.io.BufferedReader Class.

STEP 2: for-each CM1[i][j] do Minimization with Respect to Statement Coverage Perspective

if r(j) == 0 and CM1[i][j] equals to “1” then
r[j]= CM1[i][j]; Requirement Satisfied by Test cases
m[i]=i+1; Index of the Test Cases that have satisfied the Above Requirements
endfor

STEP 3: for-each CM2[i][j] do Minimization with Respect to Branch Coverage Perspective
if r1(j) == 0 and CM2[i][j] equals to “1” then
r1[j]= CM2[i][j];
m1[i]=i+1;
endfor

STEP 4: for-each CM3[i][j] do Minimization from Independent Path Coverage Perspective
if r2(j) == 0 and CM3[i][j] equals to “1” then
r2[j]= CM3[i][j];
m2[i]=i+1;
endfor

STEP 5: RS := {{m}Union {m1} Union {m2}}; To further Remove the Redundant Test Cases
return RS;

end TestSuiteMinimization

Figure 1. The proposed approach.

Vol 10 (29) | August 2017 | www.indjst.org Indian Journal of Science and Technology4

An Efficient Heuristic Based Test Suite Minimization Approach

presented in Figure 3. To remove the inconsistency of not
generating fault revealing test cases, an efficient approach
to test data generation is followed using our previous
study17. Through the previous study reported in17, few
combination of test cases that are added to the initially
generated test suite are (10,10,10), (0,0,0), (1,2,2), (2,2,1),
(1,2,1), (-1,-2,-3) and many others. The tool generates a
large volume of test cases and is not an effective choice for
an initial and regression testing due to many reasons like,
its size is huge, and it is redundant and hence will take
time to execute.

To determine the adequacy or efficiency of a test suite,
test case requirements play an important role. Test case
requirements in case of black box testing are derived
from program specifications while in case of white box
testing; they are derived from program components. For
the present study, we are employing program component
based test adequacy criterion like statements, branches,
and path coverage to determine the adequacy of the
reduced test data set18. A test data set is adequate when
all the test requirements are covered otherwise more test
cases are added to achieve the desired coverage18. The
experiments are carried in Eclipse with control flow graph
factory, JUnit and EclEmma as plug-ins for knowing the
structural components, test case execution and code
coverage measurements.

4.1 Minimization with Respect to a Single
Adequacy Criterion

The initial test suite when minimized using the proposed
approach based on single test adequacy criteria (Statement
coverage criteria) will result in formation of a sub-optimal
representative subset RS1 shown in Table 1.

Test Case X Y Z
t1 0 74 1
t2 99 110 73
t3 0 65 53
t4 26 106 -10
t5 56 101 2
t6 41 62 -2
t7 46 45 46
t8 14 103 39
t9 -9 55 1
t10 24 17 90
t11 78 67 47
t12 68 9 26
t13 71 -2 91
t14 16 85 1
t15 19 -5 87
t16 107 -2 14
t17 11 19 84
t18 23 49 44
t19 83 28 39
t20 27 47 35
t21 19 2 45
t22 -4 109 106
t23 105 -10 109
t24 74 51 59
t25 28 75 94
t26 91 21 73
t27 27 62 60
t28 62 18 26
t29 91 107 106
t30 77 -5 73
t31 76 46 20
t32 24 0 93
t33 63 30 104
t34 65 77 7
t35 104 106 51
t36 19 85 22
t37 77 60 96
t38 25 31 91
t39 -7 107 49
t40 38 33 73
t41 29 97 70
t42 65 94 93
t43 108 73 41
t44 46 82 100
t45 1 91 2
t46 14 63 61
t47 10 22 75
t48 93 60 74
t49 50 89 16
t50 -1 102 88

Test Case Side A Side B Side C
t1 0 74 1
t2 99 110 73
t3 0 65 53
t4 26 106 -10
t5 56 101 2
t6 41 62 -2
t7 46 45 46
t8 14 103 39
t9 -9 55 1
t10 24 17 90
t11 78 67 47
t12 68 9 26
t13 71 -2 91
t14 16 85 1
t15 19 -5 87
t16 107 -2 14
t17 11 19 84
t18 23 49 44
t19 83 28 39
t20 27 47 35
t21 19 2 45
t22 -4 109 106
t23 105 -10 109
t24 74 51 59
t25 28 75 94
t26 91 21 73
t27 27 62 60
t28 62 18 26
t29 91 107 106
t30 77 -5 73
t31 76 46 20
t32 24 0 93
t33 63 30 104
t34 65 77 7
t35 104 106 51
t36 19 85 22
t37 77 60 96
t38 25 31 91
t39 -7 107 49
t40 38 33 73
t41 29 97 70
t42 65 94 93
t43 108 73 41
t44 46 82 100
t45 1 91 2
t46 14 63 61
t47 10 22 75
t48 93 60 74
t49 50 89 16
t50 -1 102 88
t51 35 110 53
t52 67 11 0
t53 104 23 98
t54 65 40 106
t55 1 70 -6
t56 16 42 106
t57 -4 71 43
t58 44 96 102
t59 49 90 100
t60 39 2 84
t61 27 12 50
t62 75 2 78
t63 11 108 16
t64 84 108 3
t65 55 11 85
t66 103 55 55
t67 89 -3 -5
t68 54 23 52
t69 92 78 94
t70 77 79 107
t71 81 47 27
t72 45 14 20
t73 78 47 94
t74 63 15 27
t75 57 73 87
t76 26 33 53
t77 105 54 64
t78 109 27 79
t79 -1 108 24
t80 28 14 72
t81 14 58 4
t82 36 9 67
t83 23 90 10
t84 32 103 101
t85 32 -5 66
t86 109 58 79
t87 -6 71 43
t88 53 63 52
t89 12 35 41
t90 103 -3 50
t91 16 -10 26
t92 9 -2 91
t93 91 71 61
t94 87 20 88
t95 45 48 76
t96 86 90 48
t97 110 27 84
t98 93 91 0
t99 48 49 -8
t100 46 -6 46

Figure 3. Automated test generated test suite.

Figure 2. Statement coverage of RS1 (RS1 is statement adequate but not branch and
independent path adequate).

Fayaz Ahmad Khan, Dibya Jyoti Bora and Anil Kumar Gupta

Vol 10 (29) | August 2017 | www.indjst.org Indian Journal of Science and Technology 5

Table 1. Sub-optimal test suite (only Statement
Adequate)
Test Case ID X Y Z
t11 78 67 47
t2 99 110 73
t10 24 17 90
ts1 10 10 10
ts2 0 0 0

The minimized test suite or representative suite RS1=
{t11, t2, t10, ts1, ts2} when executed achieves around
94.1% statement code coverage and is shown in Figure 3.

The code coverage characteristic of other components
of the subject program achieved by the RS1 is shown in
Figure 4.

Figure 4. Requirement coverage of the reduced test suite RS1
(minimized with respect to a single objective test criteria).

The results in Figure 2 and in Figure 4 clearly indicate
that when minimization is done with respect to single
test adequacy criteria, a significant reduction in the size
of test suite (from 110 to 5 test cases) is achieved. The
code coverage (statement) coverage is also significant
and is found to be (94.1%). But it also evident from the
results that the minimized sub-optimal test suite RS1
does not achieve an efficient coverage in terms of the
other components of the code and will also have less fault
detection effectiveness.

4.2 �Minimization with Respect to Multiple
Test Criterions

In order to enhance the code coverage efficiency and fault
detection effectiveness of a test suite, minimization should
always be carried out using multiple adequacy criterions.

With the proposed test suite minimization, the initial test
suite is further minimized with respect to branch and
path coverage perspective in order to improve the code
coverage and fault detection effectiveness. The minimized
branch coverage and independent path coverage test suite
are depicted in Table 2 and Table 3.

Table 2. Branch Adequate Test suite (RS2)
Test Case ID X Y Z
t11 78 67 47
t2 99 110 73
t10 24 17 90
ts1 10 10 10
ts2 0 0 0
t32 24 0 93
t52 67 11 0
ts4 1 2 2
ts5 2 2 1
Ts7 -1 -2 -3
Ts6 2 1 2

Table 3. Independent Path Adequate Test Suite (RS3)
Test Case ID X Y Z
t11 78 67 47
t2 99 110 73
t10 24 17 90
ts1 10 10 10
ts2 0 0 0
t32 24 0 93
t52 67 11 0
Ts3 1 1 1
ts4 1 2 2
ts5 2 2 1
Ts7 -1 -2 -3

The final outcome of the proposed technique is the
RS, a representative subset of TS formed by the union of
RS1, RS2 and RS3. The purpose of taking union between
RS1, RS2 and RS3 is to further minimize the size and
redundancy among test cases.
 RS = [(RS1) U (RS2) U (RS3)]
 RS= {t11, t2, t10, ts1, t32, t52, ts1, ts2, ts3, ts4,
ts5, ts6, ts7}

With the implementing of the proposed approach, a
considerable amount of reduction in the number of test
cases (from 110 to 11) is also achieved and is given as:

Vol 10 (29) | August 2017 | www.indjst.org Indian Journal of Science and Technology6

An Efficient Heuristic Based Test Suite Minimization Approach

 % Reduction = =

= 88 %.

The final representative suite RS after execution as
shown in Figure 5 and Figure 6 has achieved above 95%
statement coverage, 100% branch coverage and around
90.90% path coverage.

Figure 5. Code Coverage of the Reduced Test Suite (RS).

5. Application on Large Study

The proposed approach after its successful implementation
on a single subject program is now carried on a suite of
well known programs. The suite of programs and their
corresponding test cases are listed in Table 4. The present
study will evaluate the proposed approach with respect
to the size and code coverage perspective. The other
important parameter is the fault detection effectiveness
measure. Fault detection effectiveness determines the

fault detection ability of the reduced or minimized test
suite. It is observed from some studies, one reported in16
that test suite reduction can reduce the fault detection
ability of the resulted minimized test suite significantly.
But, on the other end, it is also reported in some studies
like20, that test reduction approaches achieve a substantial
savings with little cost to fault detection effectiveness. In
case of present study we assume that the fault detection
ability of the minimized test suite is preserved due to
the fact that the minimization is done with respect to
multiple coverage criterions. In our previous studies21,
we have employed data clustering techniques for test
suite minimization and have minimized test suite with
respect single adequacy criteria, but this study presents
an efficient heuristic based approach for the same reason
with multiple test adequacy criterions.

Table 4. Suite of Test Programs and test data
S. No. Subject Programs for

Experimentations.
Total Number of

Test Cases
P1 Triangle Classification 110 rows
P2 Roots of Quadratic Eq. 100 rows
P3 Largest of Three Numbers 110 rows
P4 Bubble Sort 100 rows

5.1 Evaluation with Respect to Size
The proposed approach is validated with respective to
the size of the test suite and coverage of the structural
components achieved for all programs. So, for an efficient
testing and also for regression testing only a subset of
test cases is required and this acquired subset should
possess less number of test cases and should satisfy all the
specified test requirements criterions.

Figure 6. Statement and branch coverage.

Fayaz Ahmad Khan, Dibya Jyoti Bora and Anil Kumar Gupta

Vol 10 (29) | August 2017 | www.indjst.org Indian Journal of Science and Technology 7

The proposed approach after implementation achieved
a considerable amount of reduction in the number of
test cases for each program. The comparison of the size
between initial test cases and the test cases acquired after
implementation of proposed minimization approach is
depicted in Figure 7.

Figure 7. Comparison in terms of size between the original
and minimized test cases.

The percentage of reduction in each test suite is also
very effective and is calculated as:

 % of reduction for P1 = = 85%

% of reduction for P2 = = 85%

% of reduction for P3 = = 88%

% of reduction for P4 = = 87%

5.2 �Evaluation with Respect to Multiple
Requirement Coverage Criterions

In this study multiple requirement coverage criteria’s are
used to determine the adequacy of each test suite. The
proposed approach is also evaluated with respect to the
following well known adequacy criteria’s:

(1) The number of Instructions covered,
(2) The number of branches covered,
(3) The number of statements or lines exercised and
(4) The number of independent paths covered.
 The specified requirement coverage resulted by the

minimized test suite minimized using the proposed
approach for each subject programs P1, P2, P3 and P4
are given in Figure 8, Figure 9, Figure 10, and Figure 11.
The Figure 8–11 represents the total number components,
the number of components covered and the number of
components missed by the minimized test cases against
experimental programs P1, P2, P3, and P4.

Figure 8. Requirement coverage of the specified
components of P1.

Figure 9. Requirement coverage of the specified
components of P2.

Figure 10. Requirement coverage of the specified
components of P3.

Figure 11. Requirement coverage of the specified
components of P4.

Vol 10 (29) | August 2017 | www.indjst.org Indian Journal of Science and Technology8

An Efficient Heuristic Based Test Suite Minimization Approach

6. Conclusion

In this study, we propose an efficient test suite
minimization approach for unit testing. The proposed
approach is evaluated with respect to two well known test
metrics such as test suite size and test adequacy criteria.
It has been observed by our experimentation that the size
of the initial test suite is reduced to a great extent without
compromising the test suite code coverage characteristics
and its fault detection effectiveness. Although we have
not measured the fault detection effectiveness of the
minimized test suite but it assumed that it is preserved
because the reduction is performed with respect to
multiple code coverage criteria’s. A test suite which is
statement adequate, branch adequate and path adequate
would also be effective in terms of fault detection
effectiveness. The requirement coverage of the acquired
test suites with our proposed technique is also very good.
The future scope of this study would be to measure the
fault detection effectiveness of each minimized test suite
on a large study and its comparison with other proposed
test suite minimization approaches.

7. References

1. Black J, Melachrinoudis E, Kaeli D. Bi-criteria models for
all uses test suite reduction. Proceedings of the 26th In-
ternational Conference on Software Engineering, 2004. p.
106–15. Crossref

2. Chen TY, Lau MF. A new heuristic for test suite reduction.
Information and Software Technology. 1998 Jul; 40(5-
6):347–54. Crossref

3. Harrold MJ, Gupta R, Soffa ML. A methodology for con-
trolling the size of a test suite. ACM Transactions on Soft-
ware Engineering and Methodology. 1993 Jul; 2(3):270–85.
Crossref

4. Hartmann J, Robson D J. Revalidation during the software
maintenance phase. Proceedings Conference on Software
Maintenance, 1989. p. 70–80. Crossref

5. Horgan JR, London S. A data flow coverage testing tool
for C. Proceedings of Second Symposium on Assessment
of Quality Software Development Tools, 1992. p. 2–10.
Crossref

6. Mansour N, El-Fakih K. Simulated annealing and genetic
algorithms for optimal regression testing. Journal of Soft-
ware: Evolution and Process. 1999 Janl; 11(1):19–34.

7. Offutt AJ, Pan J, Voas JM. Procedures for reducing the size
of coverage based test sets. Proceedings of 12th Interna-

tional Conference on Testing Computer Software, 1995 Jun.
p. 111–23.

8. Garey MR, Johnson DS. Computers and Intractability. A
Guide to the Theory of NP-Completeness. New York: W. H.
Freeman & Company; 1979. PMCid:PMC1619045

9. Chvatal V. A Greedy Heuristic for the Set-Covering Prob-
lem. Mathematics of Operations Research. 1979 Aug;
4(3):233–5. Crossref

10. Tallam S, Gupta N. A concept analysis inspired greedy algo-
rithm for test suite minimization. ACM SIGSOFT Software
Engineering Notes. 2006 Jan; 31(1):35–42. Crossref

11. Hsu HY, Orso A. MINTS: A general framework and tool for
supporting test-suite minimization. IEEE 31st Internation-
al conference on Software Engineering, 2009. p. 419–29.
Crossref

12. Yoo S, Harman M. Regression testing minimization, selec-
tion and prioritization: A survey. Software Testing, Verifica-
tion and Reliability. 2012 Mar; 22(2):67–120. Crossref

13. Jeffrey D, Gupta N. Test suite reduction with selective re-
dundancy. Proceedings of the 21st IEEE International
Conference on Software Maintenance, 2005. p. 549–58.
Crossref

14. Heimdahl MPE, George D. Test-Suite Reduction for Mod-
el-Based Tests: Effects on Test Quality and Implications
for Testing. Proceedings of the 19th IEEE International
Conference on Automated Software Engineering, 2004. p.
176–85. Crossref

15. Rothermel G, Harrold MJ, Ostrin J, Hong C. An Empirical
Study of the Effects of Minimization on the Fault Detec-
tion Capabilities of Test Suites. International Conference of
Software Maintenance, 1998 Nov. p. 34–43. Crossref

16. Gupta AK, Khan FA. An Efficient Test Data Generation Ap-
proach for Unit Testing. IOSR Journal of Computer Engi-
neering (IOSR-JCE). 2016; 18(4):97–107. Crossref

17. Zhu H, Hall PAV, May JHR. Software unit test coverage and
adequacy. ACM Computing Surveys. 1997 Dec; 29(4):366–
427. Crossref

18. The random test data generation tool. Available from
Crossref Accessed on 25/11/2016.

19. Wong WE, Horgan JR, London S, Mathur AP. Effect of test
set Minimzation on fault detection effectiveness. Proceed-
ings of the 17th international conference on Software engi-
neering, 1995. p. 41–50.

20. Khan FA, Gupta AK, Bora DJ. An Efficient Technique to
Test Suite Minimization using Hierarchical Clustering Ap-
proach. International Journal of Emerging Science and En-
gineering (IJESE). 2015 Sep; 3(11):1–9.

21. Khan FA, Gupta AK, Bora DJ. Profiling of Test Cases with
Clustering Methodology. International Journal of Comput-
er Applications. 2014 Nov; 106(14):32–7.

https://doi.org/10.1109/ICSE.2004.1317433
https://doi.org/10.1016/S0950-5849%2898%2900050-0
https://doi.org/10.1145/152388.152391
https://doi.org/10.1109/ICSM.1989.65195
https://doi.org/10.1109/AQSDT.1992.205829
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1145/1108768.1108802
https://doi.org/10.1109/ICSE.2009.5070541
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/ICSM.2005.88
https://doi.org/10.1109/ASE.2004.1342735
https://doi.org/10.1109/ICSM.1998.738487
https://doi.org/10.9790/0661-18040597107
https://doi.org/10.1145/267580.267590
http://www.generatedata.com/

