

1

## A correlation study of the ground water quality in the Manali Petroleum Industrial Region in Tamil Nadu, India

S. Arul Antony<sup>1</sup>, M. Balakrishnan<sup>\* 2</sup>, S. Gunasekaran<sup>3</sup> and R.K. Natarajan<sup>4</sup> <sup>1</sup>S. Arul Antony, Department of Chemistry, Presidency College, Chennai - 600 005, India. <sup>2</sup>M. Balakrishnan\*, Department of Physics, Presidency College, Chennai - 600 005. <sup>3</sup>S. Gunasekaran, Department of Physics, Pachaiyappa's College, Chennai - 600 030. <sup>4</sup>R.K. Natarajan, Dept. of Science & Humanities, Dhanalakshmi College of Engg., Chennai -601 301 mbkarunmathi\_ro@yahoo.co.in\*

Abstract: The increased prominence of the petroleum industry in Manali at North Chennai has given rise to a concomitant upsurge of ecological disturbances together with groundwater pollution. Ten representative groundwater samples were collected from various parts of the industrial region in the monsoon, winter and summer seasons during 2006-2007 and those water samples were analysed by standard analytic methods. As many as twenty water quality parameters were taken into account in the correlation analysis. Some parameters were found within and some parameters beyond the permissible limit. Correlation coefficients (r) between different pairs of parameters were computed. Significant positive correlation was found to exist between the pairs of parameters; turbidity-alkalinity, turbidity-iron, EC-Na, TDS-EC, TDS-TH, EC-TH, TH-K and COD-BOD. It is also observed that, some of the parameters were found to have weak correlation and some parameters have negative correlation.

Keywords: petroleum Manali, industry, groundwater guality, correlation coefficients.

# Introduction

Groundwater is one of earth's most vital renewable and widely distributed resources as well as an important source of water supply throughout the world. Its use in irrigation, industries and domestic usage continues to increase where perennial surface water sources are absent. The quality of groundwater is more significant as the case of quantity for all purposes (Mariappan et al., 2005). The pollution of groundwater is of major concern, firstly because of increasing utilization for human needs and secondly because of the ill effects of the increased industrial activity (Jain et *al.*, 2006). Improper waste disposal and unscientific anthropogenic practices over the decades have adversely affected the surface and groundwater quality (Dash et al., 2006).

Industries consume large quantities of water, consequently depleting the available resources and at the same time produce wastewater containing organic chemicals and toxic heavy metals depending upon the various chemicals used in the industries (Vaishnav et al., 2007). Even after aerobic or anaerobic treatment, disposal of

the industrial wastes and effluents contain toxic substances to be leached and seep into the soil and affect groundwater course (Madhusudana et al., 2001; Jain et al., 2004). Storing liquid petroleum products above ground or underground presents a potential threat to public health and the environment. Gasoline, diesel and fuel oil can move rapidly through surface layers and into ground water. A few guarts of gasoline in the ground water may be enough to severely pollute drinking water (Harris et al., 2001). Therefore, regular monitoring of groundwater pollution in an industrial area assumes paramount importance to maintain environmental safety.

http://www.indjst.org

Water quality is dependent on several parameters. There exist strong correlations among different parameters and a combined effect of their inter-relatedness indicates the water quality. In general, groundwater guality in the industrial areas is determined by measuring the concentration of some physico-chemical parameters and comparing them with drinking water standards. The number of such parameters necessary to fully specify the quality of water, however, is quite large. In a developing country like India, it may be too expensive or even unfeasible to determine all of them due to lack of laboratory facilities or trained manpower. On the other hand, the task of monitoring the quality of water is facilitated if one can find some correlations among these numerous parameters. When such correlations do exist, measuring a few important parameters and then predicting others using these correlations would give an indication of the quality of water (Punam et al., 2003).

Karthikeyan et al., (2003) and Jain et al., (2006) have reported the correlation between alkalinity and fluoride in groundwater. Similar type of correlation studies among groundwater quality parameters have also been reported (Nagarajan et al., 1993; Kalvin et al., 1996; Rajasekaran et al., 2004). There exist strong correlations among different parameters and a combined effect of their inter-relatedness indicates the water quality. Therefore, a systematic statistical study of correlation coefficients of the quality parameters not only helps to assess the overall water quality



Table 1. List of groundwater sample sites

| Sample | Site                                                                       | Source       |
|--------|----------------------------------------------------------------------------|--------------|
| S1     | No. 3, Wikad village<br>Manali (Near Indian Oil<br>Tanking), Chennai -103  | Bore<br>well |
| S2     | No. 62, Wikad village<br>Manali (Near Indian Oil<br>Tanking), Chennai -103 | Bore<br>well |
| S3     | Indian Oil Tanking, Manali ,<br>Chennai - 103                              | Bore<br>well |
| S4     | No. 35/2, New Manali ,<br>Chennai - 103                                    | Open<br>well |
| S5     | 10, First Cross Road, Manali,<br>Chennai-103                               | Bore<br>well |
| S6     | Chennai Petroleum<br>Corporation Ltd.,Manali,<br>Chennai - 103             | Open<br>well |
| S7     | Chennai Petroleum<br>Corporation Ltd., Manali,<br>Chennai - 103            | Bore<br>well |
| S8     | Madras Oil Corporation Ltd.,<br>Manali, Chennai - 103                      | Bore<br>well |
| S9     | Indian Oil Corporation Ltd.,<br>Manali, Chennai - 103                      | Open<br>well |
| S10    | Indian Oil Corporation Ltd.,<br>Manali, Chennai - 103                      | Bore<br>well |

also provide necessary but cue for implementation of rapid water quality management programmes (Dash et al., 2006). Hence, the present investigation makes an attempt to evaluate the groundwater quality in the study area considering twenty one important water quality parameters in the correlation analysis.

### Study area

The study area Manali is a part of North Chennai in Tamil Nadu, India. The location of the study area is shown in the Fig. 1. Groundwater is the main source of potable water and used for drinking and other domestic purposes in the study area. Many petroleum oil industries and fertilizer

Fig. 1 Study area location





http://www.indist.org Vol.1 No 6 (Nov. 2008) manufacturing industries are situated in this region.

The Manali Refinery has a capacity of 9.5 MMTPA and is one of the most complex refineries in India with Fuel, Lube, Wax and Petrochemical feed stocks production facilities. Contamination of air, soils and groundwater by the release of fuels, oils and halogenated solvents has posed serious environmental problems in this region.

## **Materials and Methods**

#### Sample collection and analysis

Representative groundwater samples were collected in the study area to assess its quality for drinking purpose. Ten groundwater samples were collected following standard procedures from open wells and bore wells in various parts of the industrial region in the monsoon (September-2006), winter (December-2006) and summer (March-2007) seasons during 2006- 2007. The location of the sample sites were given in Table 1. The samples were analysed for physico-chemical characteristics by standard analytic methods (APHA, 1995). All the groundwater samples were found to be colourless and odourless. The temperature of the groundwater samples ranged between 28 °C and 30 °C during the sampling periods. The tolerance (permissible) and excessive limits of drinking water quality parameters are given in Table 2. The various analytical results are listed in Tables 3-5.

#### Statistical analysis

Average values of all the water quality parameters were obtained with 95% confidence level (CL). The statistical evaluation from physicochemical data of the groundwater samples in the winter and summer seasons rainy. were summarized in Tables 6-8 respectively. Correlation indicates the relationship between two variables such that a change in one variable causes a corresponding change in the other variable. It gives a rough but fairly useful indication of water quality and also facilitates a rapid monitoring of the status of water pollution. A pair of parameters having

correlation coefficient r up to 0.5 do not have any significant correlation between them,  $r \geq \pm$ 0.5 bears significant linear correlation between them and  $r \ge \pm 0.8$  indicates very strong linear correlation between them (Jeyaraj et al., 2002). correlation coefficient for different The environmentally important water quality parameters are calculated using equation (1)



Where, x and y are any two variables and n is the number of samples. In the present

iSee<sup>©</sup> category: Research article Indian Society for Education and Environment



Table 2. Tolerance and excess limits of drinking water quality parameters

| Parameter              | Tolerance<br>limit | Excessive limit                    |  |  |
|------------------------|--------------------|------------------------------------|--|--|
| Colour (Pt-Scale)      | 5                  | 25                                 |  |  |
| Turbidity (NTU)        | 5                  | 25                                 |  |  |
| рН                     | 7.5                | 6.5 if pH < 7.5<br>8.5 if pH > 7.5 |  |  |
| DO @ 30 °C<br>(mg/L)   | 10                 | 3                                  |  |  |
| Chloride (mg/L)        | 250                | 1000                               |  |  |
| Nitrate (mg/L)         | 45                 | 100                                |  |  |
| Sulphate (mg/L)        | 200                | 400                                |  |  |
| TH (mg/L)              | 200                | 600                                |  |  |
| TDS (mg/L)             | 500                | 1500                               |  |  |
| F.Coli.<br>(MPN/100ml) | 1                  | 100                                |  |  |
| BOD₅ (mg/L)            | 0                  | 30                                 |  |  |
| Iron (mg/L)            | 0.3                | 1.0                                |  |  |
| Zinc (mg/L)            | 5.0                | 15.0                               |  |  |
| Fluoride (mg/L)        | 1.0                | 2.0                                |  |  |
| Copper (mg/L)          | 0.05               | 1.5                                |  |  |
| Arsenic (mg/L)         | 0.05               | 0.05                               |  |  |
| Cadmium (mg/L)         | 0.05               | 0.05                               |  |  |
| Chromium (mg/L)        | 0.05               | 0.05                               |  |  |
| Mercury (mg/L)         | 0.001              | 0.001                              |  |  |
| Lead (mg/L)            | 0.10               | 0.10                               |  |  |

investigation n = 10. The numerical values of correlation coefficient (r) of the physico-chemical parameters of all the groundwater samples for the three seasons were listed in Tables 9a -11b.

# **Results and discussion**

The analytical results from the Tables 3-5 show that most of the samples have low pH (less than 7) and are found to be acidic in nature. The descriptive statistics obtained for various physico-chemical parameters of groundwater revealed that the pH values of the samples were in the range of 6.07 to 7.27 (Tables 6-8). The TDS value varied between 1236 mg/L and 6908 mg/L and most of the samples exceed the tolerance as well as the excessive limits of WHO and BIS standards (WHO, 2003; BIS, 1991). The values of the EC, chloride, total hardness and sulphate were found to be higher than the permissible limits and varied in the range of 2331-10990  $\mu$ S/cm, 427-2871 mg/L, 529-1801 mg/L and 82-912 mg/L respectively. Alkalinity

http://www.indjst.org Vol.1 No 6 (Nov. 2008) was found to be in the range of 191-1360 mg/L. The samples S1-S3 were found to have nitrate values more than 45 mg/L. Higher concentration of nitrate in water causes Methaemoglobinaemia, an infant disease up to 6 months of child (Agarwal *et al.*, 1991).

The concentrations of iron and chromium were found in the range of 0.37-15.69 mg/L and 0.14-2.15 mg/L respectively. Lead had concentrations up to 0.361 mg/L. These elements were found in excess higher than the permissible limits of BIS The concentrations of and WHO standards. dissolved oxygen were well below the desirable limit, which is an indication of organic pollution (Vaishnav et al., 2007). The concentrations of turbidity, fluoride, COD and BOD were well within the permissible limits in all the samples. The values of Ca, Na, K and Mg were also found to be higher than the tolerance limits in most of the samples. The presence of elevated amounts of chemical contaminants and toxic trace elements discussed above render the groundwater chemically unpotable.

In the rainy season, the average values of pH, TDS, turbidity and TH with 95% CL were found in the range of  $6.503 \pm 0.1601$ ,  $2811.5 \pm 1136.5$ mg/L, 2.489 ± 3.80 NTU and 1122.2 ± 246.05 mg/L respectively. The average values of DO, calcium and magnesium were in the range 2.66 ± 1.35 mg/L, 243.9 ± 76.94mg/L and 124.6 ± 23.58 mg/L respectively. Fluoride and lead had the average values in the range 0.9 ± 0.26 and 0.1008 ± 0.079 respectively. In the winter season, the average values of alkalinity and sulphate were found in the of 504.5±272.9 and 434.8±196.68 range respectively. In the summer season, the average values of chloride and nitrate were found in the range of 1219.9±460.15 and 23.8±8.66 respectively.

From the correlation coefficients (r) of the physico-chemical parameters, it is observed that strong positive correlations exist between the pairs, turbidity-iron (0.923), EC-Na (0.909), TDS-EC (0.99) and COD-BOD (0.969) (Tables 9a-11b). There exist very strong correlations between EC and the parameters TDS (0.999), alkalinity (0.95), sulphate (0.859), chloride (0.970), nitrate (0.857), TH (0.8180), Na (0.909) and K (0.875). This result is in confirmation with the previous studies (Mahajan et al., 2005; Sunitha et al., 2005). Since EC correlates with most of the parameters, the quality of groundwater can be predicted with sufficient accuracy just by the measurement of EC alone. This provides a means for easier and faster monitoring of water quality in a location (Kalyanaraman et al., 2005).



//www.indjst.org Vol.1

Vol.1 No 6 (Nov. 2008)

| Table 3. Analytical results of groundwater samples (September - 200 | 6) |  |
|---------------------------------------------------------------------|----|--|
|---------------------------------------------------------------------|----|--|

| Parameters | Units | S1        | S2             | S3        | S4      | S5         | S6        | S7       | S8      | S9             | S10   |
|------------|-------|-----------|----------------|-----------|---------|------------|-----------|----------|---------|----------------|-------|
| Turbidity  | NTU   | 17.31     | 2.554          | 0.2       | 3.095   | 0.3        | 0.122     | 0.12     | 0.44    | 0.196          | 0.56  |
| EC         | µS/cm | 10990     | 10250          | 5990      | 4570    | 3304       | 3480      | 4326     | 4868    | 3128           | 2429  |
| TDS        | mg/L  | 5875      | 5437           | 3183      | 2366    | 1759       | 1846      | 2298     | 2421    | 1642           | 1288  |
| pН         |       | 6.25      | 6.82           | 6.81      | 6.47    | 6.55       | 6.63      | 6.35     | 6.64    | 6.19           | 6.32  |
| Alkalinity | mg/L  | 1015      | 872            | 321       | 286     | 237        | 225       | 240      | 281     | 315            | 266   |
| Sulphate   | mg/L  | 548       | 621            | 296       | 428     | 361        | 247       | 285      | 379     | 166            | 86    |
| Chloride   | mg/L  | 2372      | 1948           | 993       | 1061    | 836        | 692       | 1038     | 982     | 427            | 524   |
| Nitrate    | mg/L  | 51        | 42             | 23        | 16      | 13         | 27        | 31       | 36      | 17             | 11    |
| TH         | mg/L  | 1801      | 1568           | 1022      | 602     | 1072       | 1193      | 1105     | 1022    | 1032           | 805   |
| DO         | mg/L  | 1.0       | 0.9            | 3.7       | 0.1     | 4.2        | 6.1       | 2.3      | 1.6     | 4.4            | 2.3   |
| COD        | mg/L  | 4.62      | 5.17           | 4.95      | 6.70    | 3.34       | 8.02      | 4.10     | 3.22    | 7.65           | 3.89  |
| BOD        | mg/L  | 1.34      | 1.82           | 1.61      | 2.52    | 1.21       | 3.12      | 1.48     | 1.10    | 2.83           | 1.71  |
| Ca         | mg/L  | 451       | 384            | 205       | 129     | 253        | 318       | 174      | 149     | 214            | 162   |
| Mg         | mg/L  | 164       | 148            | 124       | 68      | 107        | 97        | 163      | 158     | 121            | 96    |
| Na         | mg/L  | 1511      | 1776           | 795       | 594     | 943        | 273       | 787      | 710     | 408            | 262   |
| К          | mg/L  | 216       | 162            | 38        | 32      | 50         | 26        | 89       | 40      | 79             | 28    |
| F          | mg/L  | 1.48      | 1.21           | 0.74      | 0.23    | 0.82       | 1.08      | 1.05     | 0.42    | 0.86           | 1.11  |
| Fe         | mg/L  | 4.31      | 0.84           | 1.26      | 0.58    | 0.72       | 1.13      | 0.86     | 1.47    | 0.51           | 0.63  |
| Cr         | mg/L  | 1.03      | 0.95           | 0.52      | 0.46    | 0.28       | 0.39      | 0.15     | 0.16    | 1.64           | 0.48  |
| Pb         | mg/L  | 0.050     | 0.021          | 0.048     | 0.140   | 0.070      | 0.018     | 0.361    | 0.174   | <sup>#</sup> 0 | 0.025 |
| Hg         | mg/L  | 0.012     | 0.14           | 0.037     | 0.097   | 0.080      | 0.060     | 0.046    | 0       | 0.013          | 0.160 |
|            | (#0   | - the con | ncentratic     | on of the | element | t is belov | v the dea | tectable | limit)  |                |       |
|            | Table | 4. Anal   | ytical res     | ults of g | roundwa | nter sam   | oles (De  | cember   | - 2006) |                |       |
| Turbidity  | NTU   | 16.5      | 10.7           | 0.7       | 9.1     | 8.4        | 0.6       | 1.1      | 0.4     | 0.2            | 0.5   |
| EC         | μS/cm | 9797      | 9459           | 5555      | 4326    | 8779       | 3306      | 4196     | 4478    | 3253           | 2331  |
| TDS        | mg/L  | 6908      | 6736           | 3988      | 3192    | 6370       | 1753      | 2229     | 2237    | 1707           | 1236  |
| Alkalinity | mg/L  | 592       | 1360           | 472       | 348     | 988        | 213       | 232      | 258     | 327            | 255   |
| Sulphate   | mg/L  | 541       | 529            | 411       | 912     | 843        | 234       | 276      | 348     | 172            | 82    |
| Chloride   | mg/L  | 2871      | 1931           | 1307      | 574     | 622        | 657       | 1006     | 903     | 444            | 503   |
| Nitrate    | mg/L  | 18        | 46             | 61        | 28      | 25         | 25        | 30       | 33      | 17             | 10    |
| TH         | mg/L  | 1760      | 780            | 1040      | 800     | 1331       | 1133      | 1071     | 940     | 1073           | 772   |
| DO         | mg/L  | 5.6       | 6.8            | 2.7       | 2.3     | 3.2        | 5.8       | 2.2      | 1.4     | 4.6            | 2.2   |
| COD        | mg/L  | 3.84      | 5.61           | 4.25      | 7.05    | 2.35       | 8.17      | 3.66     | 3.28    | 7.18           | 4.52  |
| BOD        | mg/L  | 1.27      | 1.68           | 1.41      | 2.80    | 1.10       | 3.26      | 1.17     | 1.05    | 2.69           | 1.86  |
| Са         | mg/L  | 416       | 176            | 248       | 196     | 276        | 302       | 168      | 137     | 222            | 155   |
| Mg         | mg/L  | 173       | 82             | 101       | 74      | 156        | 92        | 158      | 145     | 125            | 92    |
| Na         | mg/L  | 1425      | 1675           | 750       | 560     | 890        | 258       | 742      | 670     | 385            | 247   |
| К          | mg/L  | 200       | 150            | 40        | 30      | 46         | 24        | 82       | 37      | 73             | 26    |
| F          | mg/L  | 1.16      | 1.09           | 0.98      | 0.89    | 1.36       | 1.02      | 1.01     | 0.38    | 0.89           | 1.06  |
| Fe         | mg/L  | 15.69     | 1.31           | 0.37      | 0.78    | 6.47       | 1.07      | 0.83     | 1.35    | 0.53           | 0.60  |
| Cr         | mg/L  | 1.3       | 2.15           | 0.57      | 1.16    | 0.22       | 0.37      | 0.14     | 0.14    | 1.70           | 0.46  |
| Pb         | mg/L  | 0.115     | <sup>#</sup> 0 | 0.048     | 0.24    | 0.13       | 0.017     | 0.350    | 0.160   | 0.013          | 0.024 |
| Hg         | mg/L  | 0         | 0.017          | 0.003     | 0.117   | 0.081      | 0.057     | 0.046    | 0       | 0.013          | 0.153 |

The pairs of parameters like turbidityalkalinity(0.808), TDS - TH (0.825), EC-TH (0.818) and TH-K (0.883) show significant positive correlations among them. Some of the pairs of parameters like pH-sulphate, TDS-pH, Cl-Mg, nitrate-sulphate etc., have weak positive correlation and some other pairs of parameters like TDS-DO, pH-Cr, BOD-Na, Pb-Ca etc. have



http://www.indjst.org

Vol.1 No 6 (Nov. 2008)

| Table 5. Analytical results of groundwater samples (March - 200 | 17) |
|-----------------------------------------------------------------|-----|
|-----------------------------------------------------------------|-----|

|            |       |       |       |        |       |       |       | - [   |       | /              |       |
|------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|----------------|-------|
| Parameters | Units | S1    | S2    | S3     | S4    | S5    | S6    | S7    | S8    | S9             | S10   |
| Turbidity  | NTU   | 11.3  | 1.9   | 0.1    | 2.4   | 0.2   | 0.3   | 0.1   | 0.3   | 0.6            | 0.4   |
| EC         | μS/cm | 10620 | 9942  | 5810   | 4432  | 3204  | 3375  | 4196  | 4721  | 3034           | 2356  |
| TDS        | mg/L  | 5728  | 5301  | 3103   | 2306  | 1715  | 1799  | 2240  | 2360  | 1600           | 1255  |
| pН         |       | 6.43  | 7.02  | 7.05   | 6.67  | 6.75  | 6.84  | 6.55  | 6.87  | 6.37           | 6.51  |
| Alkalinity | mg/L  | 862   | 741   | 272    | 243   | 201   | 191   | 204   | 238   | 267            | 226   |
| Sulphate   | mg/L  | 695   | 788   | 375    | 543   | 458   | 313   | 361   | 481   | 210            | 109   |
| Chloride   | mg/L  | 2527  | 2140  | 1141   | 1220  | 961   | 795   | 1193  | 1129  | 491            | 602   |
| Nitrate    | mg/L  | 46    | 38    | 20     | 14    | 11    | 24    | 28    | 32    | 15             | 10    |
| TH         | mg/L  | 1584  | 1379  | 899.36 | 529   | 943   | 1049  | 972   | 899   | 908            | 708   |
| DO         | mg/L  | 0.9   | 0.8   | 3.5    | 0.3   | 4.3   | 5.8   | 2.2   | 1.5   | 4.2            | 2.2   |
| COD        | mg/L  | 4.85  | 5.42  | 5.19   | 7.03  | 3.50  | 8.42  | 4.30  | 3.38  | 8.032          | 4.08  |
| BOD        | mg/L  | 1.43  | 1.94  | 1.72   | 2.64  | 1.29  | 3.33  | 1.58  | 1.17  | 3.02           | 1.82  |
| Са         | mg/L  | 392   | 334   | 178    | 112   | 220   | 276   | 151   | 129   | 186            | 140   |
| Mg         | mg/L  | 144   | 130   | 109    | 59    | 94    | 85    | 143   | 139   | 106            | 84    |
| Na         | mg/L  | 1692  | 1989  | 890    | 665   | 1056  | 305   | 881   | 795   | 456            | 293   |
| К          | mg/L  | 252   | 189   | 44     | 37    | 58    | 30    | 104   | 46    | 92             | 32    |
| F          | mg/L  | 1.56  | 1.28  | 0.78   | 0.24  | 0.86  | 1.14  | 1.11  | 0.44  | 0.91           | 1.17  |
| Fe         | mg/L  | 4.05  | 0.79  | 1.18   | 0.55  | 0.68  | 1.06  | 0.88  | 1.38  | 0.49           | 0.59  |
| Cr         | mg/L  | 1.06  | 0.97  | 0.53   | 0.47  | 0.29  | 0.47  | 0.15  | 0.16  | 1.69           | 0.49  |
| Pb         | mg/L  | 0.048 | 0.020 | 0.046  | 0.134 | 0.067 | 0.017 | 0.346 | 0.167 | <sup>#</sup> 0 | 0.024 |
| Hg         | mg/L  | .0123 | 0.144 | 0.038  | 0.099 | 0.082 | 0.061 | 0.047 | 0     | 0.013          | 0.170 |

negative correlation. The parameters COD and DO were found to be correlated negatively with most of the other parameters. Negative correlation between a pair of parameters is due to the increase of one parameter while the other decreases. As an example, pure water has higher concentration of DO (10 mg/L) but low TDS (less than 500 mg/L).

It is possible to develop equation of best fit for the data input of electrical conductivity and other parameters by the systematic calculation and interpretation of the correlation coefficients. These equations could be effectively used for the prediction of water quality by making observation on electrical conductivity alone or any one of the other parameters. This enables the monitoring of water quality an easy and quick method (Ibrahim *et al.*, 2006). The correlation study and correlation coefficient values can help in selecting treatments to minimize contaminants in groundwater (Achuthan *et al.*, 2005).

### Conclusion

In the present study, the statistical parameters like minimum, maximum, mean, standard deviation and coefficient of correlation of the groundwater characteristics have been evaluated. The correlation analysis of various physico-chemical parameters of groundwater samples revealed that electrical conductivity has more or less correlated with all other parameters and can be used for the estimation of unknown values. This proves to be a rapid method of water quality monitoring.

The significance of the analysis is that in addition to finding correlation among the parameters, it provides a fairly accurate idea about the quality of the groundwater. The statistical data obtained in the present study indicate that the groundwater quality in the study area is poor as it is polluted with high amount of TDS, TH, chloride, alkalinity, iron, chromium and lead. Most of the parameters were either more than permissible limit or excessive limit. Therefore, the groundwater in the study area is not potable. To maintain quality of groundwater, the continuous monitoring of physicochemical parameters should be done. On the basis of the present study, it is recommended that the groundwater in the study area should be suitably treated before it is used for drinking and other domestic purposes.

#### References

1. Achuthan Nair G, Mohamad AI and Fadiel MM (2005) A on Physico-chemical parameters and correlation coefficients of groundwaters of



http://www.indjst.org Vol.1 No 6 (Nov. 2008) Table 6. Statistical values of the groundwater samples in the rainy season (September-2006)

| Parameters | Units | Min   | Max   | Average | SD      | SE      | 95 % CL        |
|------------|-------|-------|-------|---------|---------|---------|----------------|
| Turbidity  | NTU   | 0.12  | 17.31 | 2.4897  | 5.3172  | 1.6814  | 2.489 ± 3.80   |
| EC         | μS/cm | 2429  | 10990 | 5333.5  | 2967.7  | 938.48  | 5333.5 ± 2120  |
| TDS        | mg/L  | 1288  | 5875  | 2811.5  | 1590.2  | 502.87  | 2811.5 ± 1136  |
| pН         |       | 6.19  | 6.82  | 6.503   | 0.2241  | 0.0708  | 6.503 ± 0.1601 |
| Alkalinity | mg/L  | 225   | 1015  | 405.8   | 287.14  | 90.801  | 405.8 ± 205.21 |
| Sulphate   | mg/L  | 86    | 621   | 341.7   | 163.403 | 51.672  | 341.7 ± 116.78 |
| Chloride   | mg/L  | 427   | 2372  | 1087.3  | 613.467 | 193.99  | 1087.3 ± 438.4 |
| Nitrate    | mg/L  | 11    | 51    | 26.7    | 13.2753 | 4.1980  | 26.7 ± 9.48    |
| TH         | mg/L  | 602   | 1801  | 1122.2  | 344.283 | 108.87  | 1122.2 ± 246.0 |
| DO         | mg/L  | 0.1   | 6.1   | 2.66    | 1.8886  | 0.5973  | 2.66 ± 1.35    |
| COD        | mg/L  | 3.22  | 8.02  | 5.166   | 1.72882 | 0.5467  | 5.166 ± 1.24   |
| BOD        | mg/L  | 1.1   | 3.12  | 1.874   | 0.70424 | 0.2227  | 1.874±0.50331  |
| Са         | mg/L  | 129   | 451   | 243.9   | 107.652 | 34.043  | 243.9 ± 76.94  |
| Mg         | mg/L  | 68    | 164   | 124.6   | 32.9923 | 10.433  | 124.6 ± 23.58  |
| Na         | mg/L  | 262   | 1776  | 805.9   | 499.974 | 158.106 | 805.9 ± 357.32 |
| К          | mg/L  | 26    | 216   | 76      | 64.4032 | 20.366  | 76 ± 46.03     |
| F          | mg/L  | 0.23  | 1.48  | 0.9     | 0.37184 | 0.1176  | 0.9 ± 0.26     |
| Fe         | mg/L  | 0.51  | 4.31  | 1.231   | 1.1257  | 0.3559  | 1.231 ± 0.80   |
| Cr         | mg/L  | 0.15  | 1.64  | 0.606   | 0.46805 | 0.1480  | 0.606 ± 0.33   |
| Pb         | mg/L  | 0.018 | 0.361 | 0.10078 | 0.11174 | 0.0353  | 0.1008 ± 0.079 |
| Hg         | mg/L  | 0     | 0.16  | 0.0645  | 0.05457 | 0.01726 | 0.0645 ± 0.039 |

| Parameters | Units | Min   | Max   | Average | SD      | SE      | 95%CL         |
|------------|-------|-------|-------|---------|---------|---------|---------------|
| Turbidity  | NTU   | 0.20  | 16.50 | 4.82    | 5.872   | 1.857   | 4.82±4.19     |
| EC         | μS/cm | 2331  | 9797  | 5548    | 2766.8  | 874.948 | 5548±1977     |
| TDS        | mg/L  | 1236  | 6908  | 3635.6  | 2237.9  | 707.699 | 3635.6±1599   |
| pН         |       | 6.07  | 7.27  | 6.43    | 0.367   | 0.116   | 6.4292±0.262  |
| Alkalinity | mg/L  | 213   | 1360  | 504.5   | 381.897 | 120.766 | 504.5±272.9   |
| Sulphate   | mg/L  | 82.0  | 912   | 434.8   | 275.211 | 87.029  | 434.8±196.68  |
| Chloride   | mg/L  | 444   | 2871  | 1081.8  | 774.764 | 245.002 | 1081.8±553.70 |
| Nitrate    | mg/L  | 10.0  | 61.0  | 29.30   | 14.863  | 4.700   | 29.3±10.62    |
| TH         | mg/L  | 772   | 1760  | 1070    | 300.334 | 94.974  | 1070±214.64   |
| DO         | mg/L  | 1.40  | 6.80  | 3.68    | 1.869   | 0.591   | 3.68±1.33     |
| COD        | mg/L  | 2.35  | 8.17  | 4.99    | 1.923   | 0.608   | 4.991±1.374   |
| BOD        | mg/L  | 1.05  | 3.26  | 1.83    | 0.804   | 0.254   | 1.829±0.574   |
| Са         | mg/L  | 137.0 | 416   | 229.6   | 84.638  | 26.765  | 229.6±60.48   |
| Mg         | mg/L  | 74.0  | 173   | 119.8   | 36.036  | 11.396  | 119.8±25.75   |
| Na         | mg/L  | 247   | 1675  | 760.2   | 471.484 | 149.096 | 760.2±336.9   |
| К          | mg/L  | 24.0  | 200   | 70.80   | 59.314  | 18.757  | 70.8±42.39    |
| F          | mg/L  | 0.38  | 1.36  | 0.98    | 0.253   | 0.080   | 0.984±0.180   |
| Fe         | mg/L  | 0.37  | 15.69 | 2.90    | 4.838   | 1.530   | 2.9±3.457     |
| Cr         | mg/L  | 0.14  | 2.15  | 0.82    | 0.712   | 0.225   | 0.821±0.509   |
| Pb         | mg/L  | 0.00  | 0.35  | 0.11    | 0.1149  | 0.03634 | 0.1097±0.082  |
| Hg         | mg/L  | 0.00  | 0.15  | 0.05    | 0.05351 | 0.01692 | 0.0487±0.038  |



http://www.indjst.org

Vol.1 No 6 (Nov. 2008)

North-East Libya. *Pollution Res.* 24(1), 1-6. 2. Agarwal KC (1991) *Environmental Biology*, 9. Jain P, Sharma JD, Sohu D and Sharma P (2006) Chemical analysis of drinking water of

| Table 8. | Statistica | l values | of the | groundv | vater sampl | les in the su | ımmer seas | son | (March-200 | 7) |
|----------|------------|----------|--------|---------|-------------|---------------|------------|-----|------------|----|
|          |            |          |        |         |             |               |            |     |            |    |

| Parameters | Units | Min   | Max   | Average | SD      | SE      | 95% CL        |
|------------|-------|-------|-------|---------|---------|---------|---------------|
| Turbidity  | NTU   | 0.10  | 11.30 | 1.76    | 3.446   | 1.090   | 1.76±2.462    |
| EC         | μS/cm | 2356  | 10620 | 5169    | 2870.29 | 907.667 | 5169±2051.3   |
| TDS        | mg/L  | 1255  | 5728  | 2740.7  | 1550.71 | 490.378 | 2740.7±1108.2 |
| pН         |       | 6.37  | 7.05  | 6.71    | 0.240   | 0.076   | 6.706±0.172   |
| Alkalinity | mg/L  | 191   | 862   | 344.50  | 244.009 | 77.162  | 344.5±174.4   |
| Sulphate   | mg/L  | 109   | 788   | 433.30  | 207.458 | 65.604  | 433.3±148.26  |
| Chloride   | mg/L  | 491   | 2527  | 1219.90 | 643.857 | 203.606 | 1219.9±460.15 |
| Nitrate    | mg/L  | 10.0  | 46.0  | 23.80   | 12.118  | 3.832   | 23.8±8.66     |
| TH         | mg/L  | 529.0 | 1584  | 987.04  | 302.829 | 95.763  | 987.04±216.42 |
| DO         | mg/L  | 0.30  | 5.80  | 2.38    | 1.807   | 0.571   | 2.377±1.291   |
| COD        | mg/L  | 3.38  | 8.42  | 5.42    | 1.816   | 0.574   | 5.420±1.298   |
| BOD        | mg/L  | 1.17  | 3.33  | 1.99    | 0.747   | 0.236   | 1.994±0.534   |
| Ca         | mg/L  | 112.0 | 392.0 | 211.80  | 93.731  | 29.640  | 211.8±66.98   |
| Mg         | mg/L  | 59.00 | 144   | 109.30  | 29.166  | 9.223   | 109.3±20.844  |
| Na         | mg/L  | 293.0 | 1989  | 902.20  | 560.138 | 177.131 | 902.2±400.31  |
| К          | mg/L  | 30.0  | 252   | 88.40   | 75.328  | 23.821  | 88.4±53.83    |
| F          | mg/L  | 0.24  | 1.56  | 0.95    | 0.394   | 0.124   | 0.949±0.281   |
| Fe         | mg/L  | 0.49  | 4.05  | 1.17    | 1.054   | 0.333   | 1.165±0.753   |
| Cr         | mg/L  | 0.15  | 1.69  | 0.63    | 0.480   | 0.152   | 0.628±0.342   |
| Pb         | mg/L  | 0.00  | 0.35  | 0.09    | 0.106   | 0.033   | 0.087±0.075   |
| На         | ma/l  | 0.00  | 0.17  | 0.07    | 0.057   | 0.018   | 0.066+0.041   |

Nitrate Botanica Publishers, New Delhi, 289-300.

- APHA, AWWA, WEF (1995) Standard Methods for the Examination of water and waste water. American Public Health Association, Washington DC, 19th ed.
- 4. Board of Indian Standards (BIS) (1991) *Indian Standards for drinking water specification* (BIS 10500: 1991).
- 5. Dash JR, Dash PC and Patra HK (2006) A correlation and regression study on the groundwater quality in rural areas around Angul-Talcher industrial zone. *Indian J. Environ. Prot.*, 26(6), 550-558.
- 6. Harris BL, Hoffman DW and Mazac FJ Jr. (2001) *Reducing Contamination by Improving Petroleum Product Storage*. USEPA/625/6-87.
- Ibrahim M, Bathusa and Saseetharan MK (2006) Sttistical study on physico-chemical characteristics of groundwater of Coimbatore South Zone. *Indian J. Environ. Prot.* 26(6), 508-515.
- Jain A and Nidhi S (2004) Effect of industrial wastewater on groundwater of Jabalpur. *Indian J. Environ. Prot.* 24(9), 689-694.

villages of Sanganer Tehsil, Jaipur District. *Intnl. J. Environ. Science and Tech.* 2(4), 373-379.

- 10. Jeyaraj T, Padmavathy S and Jebakumari SSH (2002) Correlation among water quality parameters for groundwater samples of Bharathi Nagar of Thiruchirappalli City. *Indian J. Environ. Prot.* 22(7), 755-759.
- 11. Kalvin M (1996) Well water quality in Latvia. Intnl/ J. Environ. Studies. 50, 41-50.
- 12. Kalyanaraman SB and Geetha G (2005) Correlation analysis and prediction of characteristic parameters and water quality index of groundwater. Pollution *Research*. 24(1), 197-200.
- 13. Karthikeyan G, Shanmugasundararaj A and Elango KP (2003) Mapping of fluoride endemic areas and correlation studies of fluoride with other quality parameters of drinking water of Veppanapalli Block of Dharmapuri District in Tamil Nadu. *Indian J. Environ. Health.* 45(4), 281-284.
- 14. Madhusudana Reddy P and Subba Rao N (2001) Effect of industrial effluents on the groundwater region in Visakapatnam. *Pollution Res.* 20(3), 383-386.



http://www.indjst.org Vol.1 No 6 (Nov. 2008) Table 9a. Correlation coefficient(r) for different parameters of GW samples (September -2006)

|         | Turb  | EC    | TDS   | pН     | Alk   | Sulp  | Chlo  | Nitrate | TH    | DO     | COD    |
|---------|-------|-------|-------|--------|-------|-------|-------|---------|-------|--------|--------|
| Turb    | 1.000 | 0.739 | 0.745 | -0.345 | 0.808 | 0.559 | 0.808 | 0.654   | 0.668 | -0.447 | -0.074 |
| EC      |       | 1.000 | 0.999 | 0.223  | 0.950 | 0.859 | 0.970 | 0.857   | 0.818 | -0.532 | -0.125 |
| TDS     |       |       | 1.000 | 0.213  | 0.953 | 0.851 | 0.970 | 0.850   | 0.825 | -0.518 | -0.118 |
| pН      |       |       |       | 1.000  | 0.005 | 0.376 | 0.130 | 0.143   | 0.054 | 0.054  | -0.100 |
| Alk     |       |       |       |        | 1.000 | 0.757 | 0.927 | 0.787   | 0.849 | -0.494 | -0.074 |
| Sulp    |       |       |       |        |       | 1.000 | 0.886 | 0.720   | 0.614 | -0.587 | -0.156 |
| Chlo    |       |       |       |        |       |       | 1.000 | 0.851   | 0.796 | -0.599 | -0.215 |
| Nitrate |       |       |       |        |       |       |       | 1.000   | 0.846 | -0.383 | -0.144 |
| TH      |       |       |       |        |       |       |       |         | 1.000 | -0.077 | -0.085 |
| DO      |       |       |       |        |       |       |       |         |       | 1.000  | 0.374  |
| COD     |       |       |       |        |       |       |       |         |       |        | 1.000  |

Table 9b. Correlation coefficient(r) for different parameters of GW samples (September -2006)

|            |        |        | ()     |        |        |        | , ,    |        | ,      |        |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|            | BOD    | Са     | Mg     | Na     | К      | F      | Fe     | Cr     | Pb     | Hg     |
| Turbidity  | -0.231 | 0.677  | 0.355  | 0.567  | 0.793  | 0.486  | 0.923  | 0.335  | -0.140 | -0.231 |
| EC         | -0.308 | 0.760  | 0.572  | 0.909  | 0.875  | 0.462  | 0.693  | 0.317  | -0.130 | -0.073 |
| TDS        | -0.301 | 0.773  | 0.566  | 0.910  | 0.882  | 0.484  | 0.695  | 0.325  | -0.139 | -0.064 |
| рН         | -0.121 | 0.073  | -0.002 | 0.283  | -0.193 | -0.228 | -0.213 | -0.376 | -0.118 | 0.186  |
| Alkalinity | -0.231 | 0.831  | 0.510  | 0.858  | 0.938  | 0.606  | 0.706  | 0.490  | -0.284 | 0.016  |
| Sulphate   | -0.310 | 0.591  | 0.394  | 0.895  | 0.684  | 0.117  | 0.470  | 0.071  | 0.033  | -0.021 |
| Chloride   | -0.383 | 0.742  | 0.553  | 0.907  | 0.881  | 0.460  | 0.742  | 0.185  | -0.001 | -0.050 |
| Nitrate    | -0.307 | 0.687  | 0.790  | 0.731  | 0.795  | 0.473  | 0.741  | 0.137  | 0.128  | -0.347 |
| ТН         | -0.240 | 0.932  | 0.695  | 0.772  | 0.883  | 0.777  | 0.719  | 0.363  | -0.200 | -0.213 |
| DO         | 0.418  | 0.019  | -0.231 | -0.513 | -0.426 | 0.134  | -0.262 | 0.027  | -0.311 | -0.214 |
| COD        | 0.969  | 0.122  | -0.454 | -0.329 | -0.105 | -0.042 | -0.179 | 0.498  | -0.382 | -0.072 |
| BOD        | 1.000  | -0.015 | -0.579 | -0.482 | -0.268 | -0.085 | -0.346 | 0.393  | -0.366 | 0.083  |
| Са         |        | 1.000  | 0.387  | 0.692  | 0.801  | 0.773  | 0.659  | 0.421  | -0.436 | -0.038 |
| Mg         |        |        | 1.000  | 0.592  | 0.656  | 0.439  | 0.521  | 0.088  | 0.359  | -0.474 |
| Na         |        |        |        | 1.000  | 0.839  | 0.413  | 0.496  | 0.211  | -0.024 | 0.038  |
| К          |        |        |        |        | 1.000  | 0.675  | 0.700  | 0.506  | -0.073 | -0.129 |
| F          |        |        |        |        |        | 1.000  | 0.491  | 0.338  | -0.251 | 0.130  |
| Fe         |        |        |        |        |        |        | 1.000  | 0.178  | -0.080 | -0.451 |
| Cr         |        |        |        |        |        |        |        | 1.000  | -0.579 | -0.134 |
| Pb         |        |        |        |        |        |        |        |        | 1.000  | -0.228 |
| Hg         |        |        |        |        |        |        |        |        |        | 1.000  |

iSee© category: Research article Indian Society for Education and Environment



9

| Table 10a. | Correlation coefficient(r) for different parameters of GW samples (December -2006) |  |
|------------|------------------------------------------------------------------------------------|--|
|------------|------------------------------------------------------------------------------------|--|

http://www.indjst.org

|         | Turb  | EC    | TDS   | pН    | Alk   | Sulp  | Chlo  | Nitrate | TH     | DO     | COD    |
|---------|-------|-------|-------|-------|-------|-------|-------|---------|--------|--------|--------|
| Turb    | 1.000 | 0.839 | 0.858 | 0.216 | 0.618 | 0.685 | 0.719 | -0.059  | 0.494  | 0.465  | -0.161 |
| EC      |       | 1.000 | 0.990 | 0.284 | 0.838 | 0.591 | 0.758 | 0.271   | 0.524  | 0.490  | -0.429 |
| TDS     |       |       | 1.000 | 0.346 | 0.850 | 0.652 | 0.725 | 0.290   | 0.488  | 0.477  | -0.389 |
| pН      |       |       |       | 1.000 | 0.175 | 0.195 | 0.458 | 0.683   | 0.132  | 0.229  | 0.140  |
| Alk     |       |       |       |       | 1.000 | 0.498 | 0.443 | 0.343   | 0.067  | 0.530  | -0.236 |
| Sulp    |       |       |       |       |       | 1.000 | 0.166 | 0.210   | 0.171  | -0.010 | -0.174 |
| Chlo    |       |       |       |       |       |       | 1.000 | 0.230   | 0.557  | 0.512  | -0.268 |
| Nitrate |       |       |       |       |       |       |       | 1.000   | -0.234 | 0.007  | -0.118 |
| TH      |       |       |       |       |       |       |       |         | 1.000  | 0.311  | -0.313 |
| DO      |       |       |       |       |       |       |       |         |        | 1.000  | 0.439  |
| COD     |       |       |       |       |       |       |       |         |        |        | 1.000  |

Table 10b. Correlation coefficient(r) for different parameters of GW samples (December -2006)

|            | BOD    | Са     | Mg     | Na     | K      | F      | Fe     | Cr     | Pb     | Hg     |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Turbidity  | -0.197 | 0.559  | 0.194  | 0.776  | 0.742  | 0.462  | 0.772  | 0.496  | 0.065  | -0.090 |
| EC         | -0.503 | 0.499  | 0.348  | 0.922  | 0.740  | 0.476  | 0.694  | 0.376  | -0.061 | -0.395 |
| TDS        | -0.449 | 0.508  | 0.261  | 0.896  | 0.695  | 0.533  | 0.671  | 0.400  | -0.081 | -0.316 |
| рН         | 0.020  | 0.351  | -0.244 | 0.323  | 0.254  | 0.091  | 0.098  | 0.383  | -0.238 | -0.447 |
| Alkalinity | -0.316 | 0.124  | -0.040 | 0.804  | 0.511  | 0.497  | 0.263  | 0.515  | -0.289 | -0.187 |
| Sulphate   | -0.126 | 0.233  | 0.014  | 0.433  | 0.123  | 0.282  | 0.332  | 0.143  | 0.330  | 0.108  |
| Chloride   | -0.422 | 0.553  | 0.329  | 0.844  | 0.902  | 0.219  | 0.725  | 0.412  | -0.062 | -0.552 |
| Nitrate    | -0.263 | -0.153 | -0.252 | 0.372  | -0.004 | -0.134 | -0.293 | 0.064  | -0.033 | -0.482 |
| ТН         | -0.275 | 0.890  | 0.753  | 0.324  | 0.539  | 0.399  | 0.889  | -0.065 | 0.066  | -0.397 |
| DO         | 0.326  | 0.531  | -0.130 | 0.496  | 0.625  | 0.433  | 0.335  | 0.674  | -0.564 | -0.347 |
| COD        | 0.964  | 0.025  | -0.671 | -0.361 | -0.171 | -0.103 | -0.384 | 0.444  | -0.345 | 0.121  |
| BOD        | 1.000  | 0.061  | -0.645 | -0.518 | -0.327 | -0.028 | -0.362 | 0.288  | -0.319 | 0.305  |
| Са         |        | 1.000  | 0.370  | 0.283  | 0.484  | 0.518  | 0.811  | 0.123  | -0.191 | -0.276 |
| Mg         |        |        | 1.000  | 0.250  | 0.393  | 0.067  | 0.636  | -0.317 | 0.409  | -0.411 |
| Na         |        |        |        | 1.000  | 0.843  | 0.293  | 0.542  | 0.512  | -0.004 | -0.486 |
| К          |        |        |        |        | 1.000  | 0.305  | 0.703  | 0.606  | -0.048 | -0.508 |
| F          |        |        |        |        |        | 1.000  | 0.409  | 0.146  | -0.153 | 0.287  |
| Fe         |        |        |        |        |        |        | 1.000  | 0.123  | 0.043  | -0.247 |
| Cr         |        |        |        |        |        |        |        | 1.000  | -0.415 | -0.256 |
| Pb         |        |        |        |        |        |        |        |        | 1.000  | 0.113  |
| Hg         |        |        |        |        |        |        |        |        |        | 1.000  |



10

| Table 11a. | Correlation | coefficient(r) for | different par | rameters of GN | V samples (March | -2007) |
|------------|-------------|--------------------|---------------|----------------|------------------|--------|
|            |             |                    |               |                | /                | /      |

http://www.indjst.org

|           | 1       | 1         |           |              |            | 1          |           |          |          | 1        |        |
|-----------|---------|-----------|-----------|--------------|------------|------------|-----------|----------|----------|----------|--------|
|           | Turb    | EC        | TDS       | pН           | Alk        | Sulp       | Chlo      | Nitrate  | TH       | DO       | COD    |
| Turb      | 1.000   | 0.735     | 0.742     | -0.373       | 0.811      | 0.560      | 0.782     | 0.648    | 0.661    | -0.437   | -0.032 |
| EC        |         | 1.000     | 0.999     | 0.204        | 0.949      | 0.860      | 0.968     | 0.857    | 0.817    | -0.522   | -0.125 |
| TDS       |         |           | 1.000     | 0.191        | 0.953      | 0.851      | 0.968     | 0.850    | 0.825    | -0.509   | -0.118 |
| рН        |         |           |           | 1.000        | -0.024     | 0.353      | 0.135     | 0.122    | 0.031    | 0.038    | -0.112 |
| Alk       |         |           |           |              | 1.000      | 0.757      | 0.914     | 0.791    | 0.849    | -0.488   | -0.074 |
| Sulp      |         |           |           |              |            | 1.000      | 0.897     | 0.715    | 0.613    | -0.639   | -0.157 |
| Chlo      |         |           |           |              |            |            | 1.000     | 0.850    | 0.781    | -0.620   | -0.225 |
| Nitrate   |         |           |           |              |            |            |           | 1.000    | 0.847    | -0.348   | -0.143 |
| TH        |         |           |           |              |            |            |           |          | 1.000    | -0.097   | -0.085 |
| DO        |         |           |           |              |            |            |           |          |          | 1.000    | 0.561  |
| COD       |         |           |           |              |            |            |           |          |          |          | 1.000  |
| 7         | able 11 | b. Correl | ation coe | officient(r) | for differ | rent paral | meters of | f GW sam | ples (Ma | nch -200 | 7)     |
|           |         | BOD       | Ca        | Mg           | Na         | K          | F         | Fe       | Cr       | Pb       | Hg     |
| Turbidit  | у       | -0.191    | 0.678     | 0.332        | 0.560      | 0.795      | 0.474     | 0.908    | 0.364    | -0.156   | -0.227 |
| EC        |         | -0.307    | 0.760     | 0.572        | 0.910      | 0.874      | 0.461     | 0.690    | 0.305    | -0.130   | -0.079 |
| TDS       |         | -0.300    | 0.773     | 0.565        | 0.910      | 0.882      | 0.484     | 0.694    | 0.314    | -0.139   | -0.071 |
| pН        |         | -0.131    | 0.041     | 0.006        | 0.256      | -0.220     | -0.253    | -0.221   | -0.394   | -0.097   | 0.147  |
| Alkalinit | y       | -0.229    | 0.831     | 0.509        | 0.858      | 0.937      | 0.606     | 0.704    | 0.480    | -0.283   | 0.014  |
| Sulphat   | е       | -0.315    | 0.591     | 0.393        | 0.895      | 0.683      | 0.116     | 0.469    | 0.059    | 0.033    | -0.036 |
| Chloride  | e       | -0.394    | 0.725     | 0.551        | 0.912      | 0.867      | 0.435     | 0.725    | 0.147    | 0.022    | -0.052 |
| Nitrate   |         | -0.300    | 0.688     | 0.790        | 0.730      | 0.800      | 0.485     | 0.742    | 0.141    | 0.130    | -0.336 |
| ТН        |         | -0.231    | 0.932     | 0.695        | 0.772      | 0.883      | 0.777     | 0.720    | 0.368    | -0.200   | -0.217 |
| DO        |         | 0.605     | -0.014    | -0.220       | -0.591     | -0.431     | 0.136     | -0.251   | 0.134    | -0.300   | -0.246 |
| COD       |         | 0.969     | 0.122     | -0.456       | -0.330     | -0.104     | -0.038    | -0.182   | 0.529    | -0.383   | -0.083 |
| BOD       |         | 1.000     | -0.006    | -0.572       | -0.482     | -0.263     | -0.069    | -0.347   | 0.430    | -0.371   | 0.070  |
| Са        |         |           | 1.000     | 0.387        | 0.693      | 0.801      | 0.771     | 0.655    | 0.435    | -0.436   | -0.045 |
| Mg        |         |           |           | 1.000        | 0.592      | 0.654      | 0.439     | 0.531    | 0.072    | 0.357    | -0.471 |
| Na        |         |           |           |              | 1.000      | 0.839      | 0.413     | 0.497    | 0.192    | -0.023   | 0.028  |
| К         |         |           |           |              |            | 1.000      | 0.676     | 0.703    | 0.495    | -0.072   | -0.133 |
| F         |         |           |           |              |            |            | 1.000     | 0.493    | 0.350    | -0.250   | 0.136  |
| Fe        |         |           |           |              |            |            |           | 1.000    | 0.174    | -0.061   | -0.451 |
| Cr        |         |           |           |              |            |            |           |          | 1.000    | -0.593   | -0.139 |
| Pb        |         |           |           |              |            |            |           |          |          | 1.000    | -0.231 |
| нg        |         |           |           |              |            |            |           |          |          |          | 1.000  |



http://www.indjst.org V

Vol.1 No 6 (Nov. 2008)

- 15. Mahajan SV, Savita Khare and Shrivastava VS (2005) A correlation and regression study. *Indian J. Environ. Prot.* 25(3), 254-259.
- Mariappan V, Rajan MR, David Ravindran A and Prabakaran P (2005) A systemic study of water quality index among the physicochemical characteristics of groundwater in and around Thanjavur Town. *Indian J. Environ. Prot.* 25(6), 551-554.
- Nagarajan S, Swaminathan M and Sabarathinam PL (1993) A correlation study on physico-chemical characteristics of groundwater in and around Chidambaram Town, Tamil Nadu. *Pollution Res.* 12(4),245-250.
- 18. Punam Tyagi, Buddhi D, Sawhney RL and Richa Kothari D (2003) A Correlation among physico-chemical parameters of groundwater in and around Pithampur industrial area. *Indian J. Environ. Prot.* 23(11), 1276-1282.

- 19. Rajasekaran R, Kannan N, Paulra K and Paulrajan S (2004) A correlation study on physico-chemical characteristics of under groundwater along river Vaigai in Madurai city. *Indian J. Environ. Prot.* 24(1), 41-48.
- Saxena HC, Dass HK and Raisingania MD (2004) *Simplified course in statistics*. S.Chand and Co. Ltd., New Delhi, 57-173.
- Sunitha V, Sudharshan V and B. Rajeshwara Reddy (2005) Hydrogeochemistry of groundwater, Gooty area, Anantapur District, Andhrapradesh, India. *Pollution Res.* 24(1), 217-224.
- Vaishnav SN and Shrivastava VS (2007) Assessment of pollution status of industrial wastewater, Correlation and Regression study, *Indian J. Environ. Prot.* 27(6), 554-558.
- WHO (2003) *Guidelines for Drinking-Water Quality*. 2<sup>nd</sup> ed., World Health Organization, Geneva, 3.