

Vol. 3 No. 1 (Jan 2010)

ISSN: 0974-6846

In vitro propagation and cell suspension culture of *Callistemon citrinus* L.

R.S. David Paul Raj¹, Sheena Michael Morais² and K. Gopalakrishnan¹ ¹Center for Research and Development, PRIST University, Thanjavur, Tamilnadu, India. ²Dept. of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai, India. dpaulraj1976@gmail.com

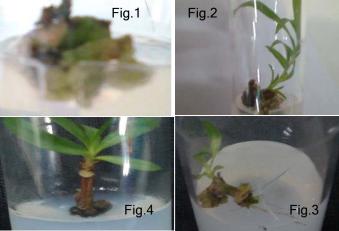
Abstract

The bottle brush tree, Callistemon citrinus is a shrub that is nearing extinction. An attempt to revive this plant and propagate it in vitro has been performed for large scale production. Calli cultured on MS medium with different combinations of cytokinins and auxins viz. 1.0 mg/l Kinetin along with 1.0 mg/l IAA; 1.5 mg/l Kinetin along with 1.0 mg/l IAA; 1.0 mg/l Kinetin along with 1.0 mg/l IBA, and 2.0 mg/l Kinetin along with 1.5 mg/l IBA. All combinations were very effective in inducing callus. 0.5 mg/l kinetin along with 0.5 mg/l IAA was very effective for shoot regeneration and shoot elongation. The developed shoots when transferred to MS medium, supplemented with 1.5mg/l IBA, shows root development within a week. Axillary bud proliferation is also observed in the explants inoculated in MS medium supplemented with combinations of kinetin and IAA.

Keywords: Callistemon citrinus, Indole Acetic Acid (IAA), Indole Butyric Acid ((IBA), Benzyl amino purine(BAP).

Introduction

The bottle brush tree, Callistemon citrinus is a shrub belonging to the family, Myrtaceae. The synonym of the plant is C. lanceolatus. Due to the over exploitation for its volatile oils and secondary metabolites, there is a need to develop alternate strategies for conservation and industrial production of bioactive compounds from this plant (Vogler et al., 1998). The leaf of the plant is used as a tea substitute and it has a refreshing flavor too. The standardized oil from the leaves of C. citrinus has been proved to have anti-nociceptive and anti-inflammatory effects in experimental animals (Sudhakar et al., 2004). The oil of *C. citrinus* stimulates the analgesic activity with aspirin and pentazocine. The oil reduces the paw volume in case of paw edema. Many phenolic compounds and cross reactive allergenic components have been


identified in this plant (Stanaland et al., 1986; Mahmoud et al., 2002). The essential oils from C. exhibit citrinus higher activity than the synthetic antibiotics like miconazole and clotrimazole (Brophy et al., 1998; Sharma et al., 2006). The plant has been proved to exhibit anticandidal activity (Dutta et al., 2007). Studies have also proved that methanol extract of the plant has anti-thrombin activity (Chistokhodova et al., 2002).

C. *citrinus* has phytotoxin (leptospermone) belongs to the family of β - triketones and acts as a natural herbicide (Vogler et al., 1998). This plant is usually propagated through seeds and cuttings; meanwhile, tissue culture technique has also been attempted. The most suitable medium for callus induction of *C. citrinus* is Murashige and Skoog medium (MS), supplemented with 5.0 mg/l of 6- BAP, 4.0 mg/l of Kinetin, 2.0 mg/l of IBA and 30g/l of sucrose (Lin Che et al., 2005).

We report the in vitro propagation of this plant using differential combinations of hormones. In order to revive and mass multiply, a protocol has been devised to produce callus from the explants. Moreover, an attempt has also been made to stimulate the axillary bud proliferation and initiate the shoot and root regeneration from the callus.

Fig. 1. Callus development with 2 mg/l kinetin & 1.5 mg/l IAA; Fig.2. Shoot regeneration with 1 mg/l kinetin & 1 mg/l IBA; Fig.3. Root regeneration with 1.5 mg/l IBA;

Fig.4. Axillary bud proliferation with 2 mg/l kinetin & 1 mg/l IAA

Growth in MS medium

Materials and Methods

and Medium hormone preparation

MS supplemented with sucrose (30g/I) and agar (8g/I) at pH 5.8 was used for the in vitro propagation of C. citrinus. The various hormone combinations used for the study of callogenic response are given in the Table 1.

Surface sterilization of explants

The explants (leaf. stem, axillary bud) were washed thoroughly with tap water for 10 min. then washed with two drops of tween- 20 followed by a wash with distilled water for 10 min. The leaves were

ISSN: 0974-6846

Vol. 3 No. 1 (Jan 2010)

Table 1. List of hormone combinations used for callus induction, axillary bud proliferation and shoot regeneration in MS medium

then cut into small pieces of 1.0
cm ² . The stems and axillary
buds were cut to 1 cm in height.
These explants were treated
with 70% (v/v) ethanol for 20
sec. The leaves were then
washed with 0.1% (w/v)
mercuric chloride for 15- 20 sec,
then 35- 40 sec for stems and
finally, 50 sec min ⁻¹ for axillary
buds. The explants were
washed thoroughly thrice with
distilled water and wiped dry
with sterile Whatmann no.1 filter
paper prior to inoculation.
Inoculation
The medium was outcoloved

The medium was autoclaved at 1.06 kg/cm² at a temperature of 121°C for 15 min. The required filter quantity of sterilized hormones was amended with medium kept in culture tubes. The surface sterilized explants were aseptically inoculated on the medium kept in the culture test tubes and incubated at 25+1°C with 3000 lux intensity cool white light region. After the development of shoot, shoots were excised into single shoot and transferred to MS medium supplemented with 1.5 mg/I IBA for rooting.

Cell suspension culture

Approximately 0.1 g of callus, which still in its active growth phase (i.e., after the 15th day of subculture), was placed in 250 ml flasks containing 100 ml liquid MS medium supplemented with 1.0 mg/l kinetin and 1.0 mg/l Indole acetic acid (IAA). Cultures were incubated in 25°C in a horizontal shaker at 100 rpm for 21 days. Growth of cells were then determined by

measuring absorbance at 600 nm, fresh weight, dry weight and hemocytometer reading were taken at every 3 days.

K+ IBA

K+ IBA

K+ IBA

K+ IBA

Number of generations, n= (log X- logX₀) x 3.32 Where, X represents number of cells/ml at the end of log phase and Xo represents that at the start. Multiplication rate, r (generations/ hour), r= n/ (t_1 - t_0). Generation time, g (hours) =1/r. Specific growth rate, μ (hour 1) = 0.693/ g.

Hormone Conc. S. Hormone Conc. combinations (mg/l) No combinations (mg/l) K + IAA K+ IBA 2.0/1.5 0.5/0.5 23 K + IAA 0.6/0.5 24 K+ IBA 2.0/2.0 25 K+ 2,4-D K+ IAA 0.7/0.6 0.5/0.5 K+ IAA 0.9/0.5 26 K+ 2,4-D 1.0/0.5 K+ IAA 0.9/1.127 K+ 2,4-D 1.0/1.0 K+ 2,4-D K+ IAA 0.9/1.8 28 1.5/0.5 K+ 2,4-D K+ IAA 0.9/3.5 29 1.5/1.0 K+ IAA 30 K+ 2,4-D 2.0/0.5 1.0/1.0 K+ IAA 1.0/0.5 K+ 2,4-D 2.0/1.0 31 K+ IAA 1.5/0.5 32 K+ 2,4-D 2.0/1.5 K+ IAA 2.0/0.5 33 K+ 2.4-D 2.0/2.0 BAP + IAA K+ IAA 2.0/1.0 34 0.5/0.5 K+ IAA 2.0/1.5 35 BAP + IAA 0.6/0.5 K+ IAA 2.0/2.0 BAP + IAA 0.7/0.5 36 K+ IAA 1.5/1.0 37 BAP + IAA 0.9/0.5 K+ IBA 0.5/0.5 38 BAP + IAA 0.9/1.1 K+ IBA 1.0/0.5 39 BAP + IAA 0.9/1.8 K+ IBA 1.0/1.0 40 BAP + IAA 0.9/3.5

Table 2. Hormone combinations for callus induction in MS medium (Callus initiation observed after 3 weeks)

41

42

43

44

BAP + IAA

BAP + IAA

BAP + IBA

BAP + IBA

1.0/1.0

2.0/1.0

3.0/1.0

4.0/2.0

1.5/0.5

1.5/1.0

2.0/0.5

2.0/1.0

Hormone	Conc.	S.	Hormone	Conc.
combinations	(mg/l)	No	combinations	(mg/l)
K+ IAA	0.5/0.5	16	K+ IBA	1.5/1.0
K+ IAA	0.6/0.5	17	K+ IBA	2.0/0.5
K+ IAA	0.7/0.5	18	K+ IBA	2.0/1.0
K+ IAA	0.9/1.1	19	K+ IBA	2.0/1.5
K+ IAA	0.9/1.8	20	K+ IBA	2.0/2.0
K+ IAA	0.9/3.5	21	K+ 2, 4-D	0.5/0.5
K+ IAA	1.0/1.0	22	K+ 2, 4-D	1.0/0.5
K+ IAA	1.5/0.5	23	K+ 2, 4-D	1.5/1.0
K+ IAA	1.5/1.0	24	K+ 2, 4-D	2.0/1.5
K+ IAA	2.0/0.5	25	BAP + IAA	0.5/0.5
K+ IAA	2.0/1.0	26	BAP + IAA	0.7/0.5
K+ IAA	2.0/1.5	27	BAP + IAA	0.9/0.5
K+ IAA	2.0/2.0	28	BAP + IAA	1.0/1.0
K+ IBA	1.0/0.5	29	BAP + IBA	4.0/2.0
K+ IBA	1.0/1.0			

Results and discussion

Callus induction

Surface sterilized explants on induction gave callus after a period of 3 weeks. The various hormone combinations (Table 1) that gave callus induction are listed in Table 2. Among the hormone combinations, 1.0 mg/l kinetin along with 1.0 mg/l IAA, 1.5 mg/l kinetin along with 1.0 mg/l IAA, 1.0 mg/l kinetin and 1.0 mg/l IBA, and 2.0 mg/l kinetin along with 1.5 mg/l IBA were highly effective in inducing callus (Fig. 1). Callus was found to be fragile and white in colour initially and as the incubation days increased the callus colour changed to pale white colour and become little hardened. Shoot regeneration

Shoot was induced from the callus (Fig. 2). The hormone combinations that initiated shoot are presented in Table 3. The increase in the length of the shoot system as well as the number of leaves was monitored during this period. It was observed that 0.5 mg/l kinetin along with 0.5 mg/l IAA was very effective for shoot regeneration and shoot elongation. There was geometrical increment in the length and number of leaves (from 2 to 8), within a period of 3 months in the developed shoots.

Root induction

The developed shoots were transferred to MS medium supplemented with 1.5 mg/l IBA. Root induction was initiated within a period of one week

(Fig. 3). The total number

of roots obtained was five and few secondary root initiations were obtained during the period of three months.

Axillary bud proliferation

Axillary bud proliferation was effective with different combinations of kinetin (K) and IAA (Table 4, Fig. 4).

Cell suspension culture

When callus was placed in liquid culture they disperse easily into clumps of 0.5-5.0 mm. Further

ISSN: 0974-6846

Vol. 3 No. 1 (Jan 2010)

agitation leads to fragmentation of these clumps into small cell aggregates. The parameters that are associated with cell growth are presented in Table 5. The growth curve of cell suspension derived from callus exhibited three different stages:

(i) lag phase 0-6th day, (ii) log phase (6th -18th day) and (iii) stationary phase (18th -24th day) (Fig. 5). The doubling time is substantially reduced in suspension cultures.

Table 3. List of hormone combinations that induced shoot in MS medim

maacca chect in the meann					
Hormone	Conc.	Period for	Shoot		
combinations	(mg/l)	initiation	length* (cm)		
K+ IAA	0.5/0.5	1 month	2.1 <u>+</u> 0.1		
K+ IAA	1.0/0.5	4 months	0.3 <u>+</u> 0.1		
K+ IAA	1.5/0.5	4 months	0.9 <u>+</u> 0.1		
K+ IAA	2.0/1.5	1 month	1.7 <u>+</u> 0.2		
K+ IBA	1.0/0.5	4 months	0.4 <u>+</u> 0.1		
K+ IBA	1.0/1.0	2 months	3.5 <u>+</u> 0.2		

*Shoot length measured after 4 months of inoculation of explants in MS medium

Table 4. List of hormone combinations that

induced axillary bud proliferation in MS medium

Period

for initiation

Shoot

length*(cm)

0.7+ 0.2

0.5 <u>+</u> 0.1

1.5 + 0.1

1.2 + 0.1

for further research in different aspects on the biosynthesis of secondary metabolites of C. citrinus.

References

- 1. Brophy JJ, Goldsack RJ, Forster PI, Craven LA and Lepschi BJ (1998) The leaf essential oils of the Australian members of the genus Callistemon (Myrtaceae). J. Essen. Oil Res. 10(6), 595-606.
- 2. Chistokhodova N, Nguyen C, Calvino T, Kachirskia I and Cunningham G

Antithrombin activity of medicinal plants from central Florida. J. Ethnopharma. 81(2), 277-280.

- 3. Dutta BK, Karmakar S, Naglot A, Aich JC and Begam M (2007) Anticandidial activity of some essential oils of a mega biodiversity hotspot in India. Mycoses. 50 (2), 121-124.
- 4. Mahmoud II, Moharram FA, Marzouk MS, Linscheid MW and Salch MI (2002) Polyphenolic constituents of Callistemon
- lanceolatus leaves. Pharmazie. 57(7), 494-496. 5. Lin Che, Pei FU, Wu Lin-sen and Shen Pei-fu (2005)
 - Micropropagation of Callistemon viminalis. J. Fuji Fore. Technol. 32(1), 52-54. 6. Sharma RK, Kotoky R and
 - Bhattacharya PR (2006) Volatile oil from the leaves of Callistemon lanceolatus D.C. grown in northeastern India. Flav. Frag. J. 21(2), 239-240.
 - 7. Stanaland BF, Gennaro RN, Sweeney MJ and White RS (1986) Isolation and characterization of
 - cross-reactive allergenic components in Callistemon citrinis and Melaleuca guinguenervia pollen by trans-blot enzymelinked crossed immunoelectrophoresis. Arch Allergy Appl. Immunol. 80(3), 278-284.
- 8. Sudhakar M, Rao CHV, Rao AL and Raju DB (2004) Antinociceptive and anti-inflammatory effects of the standardized oil of Indian Callistemon lanceolatus leaves in experimental animals. Acta Pharmaceutica. Turcica 46(2). 131-139.
- 9. Vogler B, Klaiber I, Roos G, Walter CU, Hiller W, Sandor P and Kraus W (1998) Combination of LC-MS and C-NMR as a tool for the structure determination of natural products. J. Natural Products. 61, 175-178.
- 10. Cheng hou Wu, Feng Yi-min, Ye Zhen-hua, Zhu Chun and Long Li-ping (2007) Callus induction and plant regeneration in Callistemon rigidus (J). Nonwood Forest Res. 27(6),

(2008)Needs for new plant-derived Wang pharmaceuticals in the post-genome era: an industrial view in drug research development. and Phytochem. Rev. 7, 395-406.

Discussion

The present research work is a first attempt towards the micropropagation of *C. citrinus* when compared with other species like C. viminalis and C. rigidus. For the induction of callus, it was observed that kinetin along with IAA and Kinetin along with IBA showed significant results ie. 0.5 mg/l kinetin along with 0.5 mg/l IAA; 1.0 mg/l

kinetin and 1.0 mg/l IBA when compared with hormone combinations for callus induction from C. viminalis (Lin che et al., 2005). In case of C. rigidus BAP (1.5 mg/I) and NAA (0.5 mg/I)was found to be the best suitable hormone combination for callus induction when compared to kinetin and IAA in C. citrinus (Cheng hou et al., 2007).

K+ IAA 0.5/0.5 1 month K+ IAA 1.5/1.0 1 month K+ IAA 2.0/1.0 1 month BAP+ IAA 4.0/2.0 1 month *Shoot length measured after 1 month of inoculation of explants in MS medium

Conc.

(mg/l)

Hormone

combinations

Effective Auxillary bud proliferation was obtained with the hormone combinations of Kinetin and IAA similar to callus induction when compared to BAP in Callistemon rigidus (Lin che et al., 2005).

Leptospermone is considered as an unusual cyclic sesquiterpene present in C. citrinus (Vogler et al., 1998). The present study on cells suspension culture of C. citrinus uoens the possibility of production of the secondary metabolite leptospermone under in vitro conditions for industrial production (Ying Wang, 2008). Cell suspension cultures from the callus led to a decrease in the generation time and an increase in the metabolic production. Innovative biotechnologies in plant cell and tissue cultures, and the latest achievements in metabolic engineering to improve

the production sustainability and plant efficiency of derived pharmaceuticals is highly needed production industrial secondary metabolites in future. This is a first attempt to study on cell suspension culture of C. citrinus secondary metabolite for (Leptospermone) production. This has provided a unique opportunity

Table 5. Growth parameters of cell cuenancion cultura

11. Ying

suspension culture				
Parameters	Value			
Generations, n	4			
Multiplication rate, r	0.016825 ± 0.0017 generations hour-1			
Generation time	60 <u>+</u> 6 hours			
Specific growth rate	0.0114 <u>+</u> 0.0009 hour-1			
0.4 " ' 1. 1. 100 1" '1100				

0.1 g callus inoculated in 100 ml liquid MS medium