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Abstract 
 

Periodic loop solutions of the CH-DP equation are investigated by using the dynamical system theory. The solutions 
are characterized by two parameters. The periodic loops existent conditions are found. Explicit analytical periodic loop 
solutions of CH-DP equation are derived. 
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Introduction  
 

It is well known that the Cammasa-Holm (CH) 
equation (Camassa et al., 1993): 

 

xxxxxxxxxtxt uuuuuuukuu +=+−+ 232    (1.1)     

                 
is a model for unidirectional nonlinear dispersive waves in 
shallow water. This eqn. has attracted a lot of attention 
over the past decade due to its interesting mathematical 
properties, e.g., it is an integrable equation and admits a 
peakon solution. For k = 0, Camassa and Holm (1993) 
showed that Eqn. (1.1) has peaked solitary wave 
solutions. 
A new variant of (1.1) was introduced by Degasperis and 
Procesi (1999): 

xxxxxxt uucmbuumm γ−=++ 0         (1.2) 

Which is called the CH-DP equation, where  

 is a momentum variable,xxuum 2α−= α , c0, b, γ  are 

constants and 0≠α   
In recent years, much work on the CH-DP equation has 
been done (Degasperis et al., 1999; Degasperis et al., 
2002; Holm et al., 2003; Dullin et al., 2004; Vakhnenko et 
al., 2004; Liu et al., 2007; Li et al., 2009; Xie et al., 2010).  
For c0=0, γ =0, α =1 and b=3, Eqn. (1.2) becomes 

Degasperis-Procesi (DP) eqn.  

xxxxxxxxtxxt uuuuuuuucu 340 ++=+−      (1.3)                  

Vakhnenko and Parkes (2004) have obtained that hump-
like, loop-like and coshoidal periodic-wave solutions of 
Eqn. (1.3). The some exact travelling wave solutions of 
Eqn. (1.3) have been given by Li and Yi (2009). Xie and 
Wang (2010) obtained exact explicit parameter 
expressions of compactons and implicit expressions of 
generalized kink wave solutions of Eqn. (1.2) for b=3. 

In this paper, for b=3, we to continue study the periodic 
loop wave solutions of Eqn. (1.2) by use of the dynamical 
system theory. 
 
Properties of singular points 
For b = 3 and 0≠α , substituting )(),( ξφ=txu with 

ctx −=ξ  in Eqn. (1.2), we have 

)3(4)( 2
0 φφφφαφφφ ′′′+′′′−′+′−− cc  

             (2.1) 0)( 2 =′′′++ φγα c
where c is the wave speed. 
Integrating (2.1) once with respect toξ .  We have the 

following travelling wave eqn. 

φγαφαφφ ′′−−−+−− )(2)( 222
0 ccc  

              (2.2) 0)( 22 =+′− gφα
where g is integral constant. 
Letting y=′φ , we obtain a planar system 
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which is called travelling wave system. The system (2.3) 

has a singular line 2α
γφ +== cq  which is inconvenient 

to our study. So we make the transformation  

τφαξ dqd )(2 −=                      (2.4) 
where τ  is a parametric variable. Thus system (2.3) 
becomes 
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Obviously, systems (2.3) and (2.5) have the same first 
integral as follows: 

+++−−= 0
422 (

3
2)(),( ccyqyH φφαφ

hqggqccq =+++− φφφ 2))(()2 2
0

3     (2.6)  

Therefore both systems (2.3) and (2.5) have the same 
topological phase portraits except the straight line q=φ . 

Let 

8
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=                       (2.7) 
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and 
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It is easy to know that g3(c)  g≤ 2(c)  g≤ 1(c), and the (c*, 
g*) is unique intersection point of the three curves g1(c), 

g2(c) and g3(c), where 2
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Using the bifurcation method of planar systems, we know 
that the singular points of systems (2.5) have following 
properties. 

(1). When g > g1,   are 2 saddle points. ),( ±yq
(2). When g = g1 and c c*,  are 2 saddle points, ≠ ),( ±yq

)0,( 0φ is a degenerate saddle point. 

(3). When g = g* and c = c*, (c*, g*) is a saddle point. 

(4). When g3<g<g1 and c* < c,  and ),( ±yq )0,( −φ  are 3 

saddle points, )0,( +φ  is a center point, and H = 

H

),( ±yq
)0,( −φ  when g = g2. 

(5). When g = g3 and c* < c, (q, 0) = ( +φ , 0) is a 

degenerate saddle point, ( −φ , 0) is saddle point. 

(6). When g < g3, ( ±φ , 0) are 2 saddle points. 

(7).   When g = g3 and c < c*, (q, 0) = ( −φ , 0) is a 

degenerate saddle point, ( +φ , 0) is a saddle point. 

(8).   When g3 < g < g1 and c < c*,   and ),( ±yq )0,( +φ  

are 3 saddle points, ( −φ ,0) is a center point, and 

H = H),( ±yq )0,( +φ  when  g = g2. 
 
Periodic loop solutions  
We assume that   is the initial point of a orbit of 

system (2.5), from (2.6), it has expression H

)0,( *
0φ

),( yφ = h0, 

where h0 = H .  Let )0,( *
0φ

+++−= 3
0

4 )2(
3
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0φ

22 )(
)(
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               (3.2) 

From (3.1), we have 

+++−=′ 2
0

3 )2(24)( φφφ qccf  

qggqcc 2))((2 0 −++ φ                  (3.3) 

 

Obviously, the −φ , q and +φ  are 3 real roots of 

the 0)( =′ φf  when g < g3, where −φ < q < +φ .  So the 

polynomial of fourth order )(φf  has three possible cases 
is shown in Fig.1. 
 

Case 1.  c  c*,  g < g≥ 3  and  q < <*
0φ +φ  

In this case, 1φ , 2φ ,  and *
0φ 3φ  are 4 real roots of )(φf = 0 

(see Fig.1 (1-1 and 2)), (3.1) becomes   

)(φf = (φ  - 1φ )(φ - 2φ )(φ - )(*
0φ φ - 3φ )       (3.4)   

Thus (3.2) becomes 
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By using formula 255.00 (Byrd & Friedman, 1971), 
substituting (3.5) into the first expression of (2.5) and 

integrating it along interval [φ , ], we get *
0φ

),(1
),(

22
1

22
13

*
0

kwsnn
kwsnn

−
−

=
φφφ               (3.6) 

where τ
φφφφα
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))((|| 1
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))((
))((
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0
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φφφφ
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=k is the modulus of 

Jacobian elliptic function =1n
23

2
*
0

φφ
φφ

−
−

, and 

2φ ≤ φ ≤ *
0φ  

By using formula 400.01(Byrd & Friedman, 1971) 
Substituting (3.6) into (2.4) and integrating it, we get 
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,     (3.7) )),),,((arcsin()( 2
1
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03 knkwsn∏−φφ

 
Thus we obtain a periodic loop solution u(x, t) =φ (ξ )  of 
parametric type as follows: 
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 where <∞− ξ <  and ∞+ 2φ ≤ φ ≤ *
0φ  

Ex.1. When φ  = 1, γ  =1 and c0=1, then c*=-1. Choosing 

c =2, then g1=1.125, g2=0 and g =-9. Choosing g=-20, 

then q=3, −φ =-2.5 and +φ =4.  We take =3.55, then *
0φ

1φ ≈ -4.467647305, 2φ ≈ 2.589713343 and 

3φ ≈4.327933953. From (3.8) we can simulate a periodic 

loop of Eqn. (1.2) as (2-1) in Fig.2. 
Ex.2. When φ =1, γ =1 and c0=1, then c*=-1. Choosing 

c=-1, then g1=g2=g3=0. Choosing g =-15, then q=0, −φ ≈ -

2.738612788 and +φ ≈ 2.738612788. We take =0.5, 

then 

*
0φ

1φ ≈ -3.840572874, 2φ ≈ -0.5 and 3φ ≈3.840572874. 

From (3.8) we can simulate a periodic loop of Eqn. (1.2) 
as (2-2) in Fig.2. 
 

Case 2.  c < c*, g < g3  and  −φ < < q *
0φ

In this case, 1φ , , *
0φ 2φ  and 3φ  are 4 real roots of )(φf = 

0  (see Fig.1 (1-3)), (3.1) becomes 

)(φf =(φ  - 1φ ) (φ - )(*
0φ φ - 2φ ) (φ - 3φ )              (3.9) 

 
Thus (3.2) becomes 
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By using formula 254.00 (Byrd & Friedman, 1971), 
substituting (3.10) into the first expression of (2.5) and 

integrating it along interval [ ,*
0φ φ ], we get 
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By using formula 400.01 (Byrd & Friedman, 1971), 
substituting (3.11) into (2.4) and integrating it, we get 
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Thus we obtain other solution u(x, t) = φ ( ξ )  of 
parametric type as follows: 
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 where ∞− <ξ < ∞+  and *
0φ ≤ φ ≤ 2φ  

 
Ex.3. When φ =1, γ =1 and c0=1, then c*=-1. Choosing c 

=-2, then g1=0.125, g2=0 and g3= -1. Choosing g=-5, then 

q=-1, −φ ≈ -1.850781059 and +φ ≈1.350781059 
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.  We take = -1.57, then *
0φ 1φ ≈ -2.068455201, 2φ ≈ -

0.5797587044 and 3φ ≈2.218213905. From (3.8) we can 

simulate a periodic loop of Eqn. (1.2) as (2-3) in Fig.2. 
From Fig.2, it is shown that periodic loops are inversion 
for c > c*  and c < c* (see Fig.2 (2-1 and 3)), the loop is 
symmetry on ξ -- axes for  c = c*  (see Fig.2 (2-2)). 
 
Conclusion 

In this paper, we have studied the bifurcation and 
global behavior a CH-DP eqn. and obtained the 
conditions under which the periodic loop waves appear 
and their representations be obtained. Their planar 
graphs are simulated under the some parameter (see 
Fig.2). These results are new to CH-DP equation. 

 

(1-1) (1-2) (1-3)

Fig.1. Three possible cases for the polynomial )(φf  when g < g3. 

(1-1). c > c*.  (1-2). c = c*. (1-3). c < c*} 
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Fig.2. The periodic loops of Eqn. (1.2) with α =1,γ =1 and 

c0=1. (2-1). c=2, g=-20 and 
*
0φ =3.55. (2-2). c=-1, g=-15 and 

*
0φ =0.5. (2-3). c=-2, g=-5 and 

*
0φ =-1.57 
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