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Abstract 

Highly parallel systems are receiving significant attention to solve the large and complex problems. This has resulted in 
the emergence of many attractive interconnection network topologies. This paper introduces a new processor 
interconnection topology called STH (Scalable Twisted Hypercube) to counter the poor scalability of twisted hypercube. 
Its suitability for use as multiprocessor interconnection networks has also been explored. The various properties of the 
proposed topology have been analyzed and it has been compared with some other highly scalable topologies of 
interest on a number of interconnection networks evaluation parameters. With reduced diameter, better average 
distance, low traffic density, low cost, maximum number of links, high bisection width and tremendous scalability, STH 
is more suitable for Massively Parallel Systems. Procedures for routing and broadcasting on the proposed topology 
have also been discussed and a simple routing algorithm has been presented. The proposed interconnection network 
provides a great architectural support for parallel computing due to the concurrent existence of multiple LST(m) and  
TQn. 
 
Keywords: Parallel Systems, Processor Topology, Scalability, LST, Routing. 
Introduction  

High speed parallel computing is essential for modern 
research as the demand for more and more computing 
power is continuously increasing. In the resent past 
several high performance parallel computing platforms 
have been installed with more than 10,000 processing 
elements. Some examples of such installations are 
BlueGene/L at Lawrence Livermore National Laboratory, 
Blue Gene Watson at IBM and Columbia at NASA. 
Research projects in the varied application areas such as 
environmental simulation, astronomy and engineering 
design have been undertaken to utilize this tremendous 
amount of computing power.  

Massive parallel systems are placing a major 
emphasis on scalable processor topologies with low 
degree and diameter (Dongarra et al., 1997). Many 
processor topologies such as Hyperstar (Ayyoub & Day, 
1998) Hyper-Mesh (Abuelrub, 2008) and Hex-Cell 
(Sharieh et al., 2008) have been proposed in the literature 
for the purpose of connecting hundreds or thousands of 
processors. Each of these topologies has some attractive 
features as well as some inherent limitations.  

The Hypercube graph is a topology with logarithmic 
diameter, simple node designation scheme, good 
connectivity, fault tolerance, vertex/ edge symmetry, 
partitionability, simple routing and existence of node 
disjoint parallel paths (Saad & Schultz, 1998; Hwang, 
2004). From the research point of view Hypercube and its 
variants like Twisted Hypercube (Abuelrub, 2007) have 
always been the popular choice of researchers and a 
large number of processor interconnection topologies and 
effective computation algorithms based on them have 
been reported in the literature.  (Day & Tripathi, 1994) 
compared topological properties of hypercube with Star 
Graphs. Al-Sadi et al. (2002) proposed a fault tolerant 

routing algorithm and Chiu & Chon (1998) proposed 
efficient multicasting procedure for binary hypercube. 
Klasing (1998) discussed efficient compression of CCC 
networks and a dynamic interconnection network named 
as ‘Scalable Optical Hypercube’ has been reported by 
Louri & Sung (1994). Consequently a large number of 
commercial installations of parallel computers like Intel’s 
iPSC Series (can have up to 128 processors), NCUBE/ 
10 (can have up to 1024 processors) and FPS’s T Series 
(can have up to 4096 processors) and nCube are based 
on Hypercube architecture. 

A parallel architecture is said to be scalable if it can be 
expanded (reduced) to a larger (smaller) system with a 
linear increase in its performance (Louri et al., 1998; 
Rewini & Barr, 2005). This general rule indicates the 
desirability for providing equal chance for scaling up a 
system for improved performance and for scaling down a 
system for greater cost-effectiveness and/ or affordability. 
In spite of their admitted superiority the Hypercube and its 
variants architectures like Twisted Hypercube have a 
major disadvantage related to scalability. It grows to its 
next higher dimension by a factor of 2. For example the 
nine-dimensional hypercube (HC(9)) has 29 = 512 nodes, 
whereas a ten-dimensional hypercube (HC(10)) has 210 = 
1024 nodes. This significant gap between the two 
consecutive sizes of the Hypercube is considered a major 
drawback of this topology and needs further attention for 
its improvement. Moreover, in Hypercube like 
architectures moving form a particular dimension to the 
next higher dimension, the number of communication 
paths (wires) and the number of ports per processor 
increase. Considering the above mentioned problems 
with the Hypercube like architectures a number of 
topologies like Cross Cube (Efe, 1992), dBCube (Chen et 
al., 1993), Hierarchical Hypercube (HHC) (Malluhi & 
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Bayoumi, 1994), Cube Connected Cycles (CCC) 
(Preparata & Vuillemin, 1981) have been proposed in the 
literature. These topologies in one way or other are the 
modifications of Hypercube architecture and suffer from 
similar problems. For example Cube Connected Cycles 
(CCC) topology, is obtained by replacing each node of an 
n-dimensional hypercube with a ring of size n. The result 
of this replacement is a constant degree (three) topology 
(i.e., CCC). But, such a replacement introduces some 
unwanted features in the Hypercube architecture like 
large diameter and complex routing. 

A recently proposed topology (Sharieh et al., 2008), 
which is not based on Hypercube architecture has been 
named as Hex-Cell. The maximum degree of Hex-Cell is 
3 (constant) and it offers simple routing. But, the diameter 
of a Hex-Cell consisting of N nodes is given by 4√(N/6) – 1 
which is sufficiently large as compared to the diameter of 
Hypercube. Also, it is irregular, vertex asymmetric and its 
bisection width is too low. So, Hex-Cell can’t be used to 
design massively parallel systems.  

Other attempts for scaling the Hypercube architecture 
have been made by means of Hybrid Topologies. Hyper-
Star (Ayyoub & Day, 1998), Hype-Mesh (Abuelrub, 2008), 
Arrangment Star Network (Awwad et al., 2003) and 
Double-Loop Hypercube (Youyao et al., 2008) are some 
examples of such attempts. A Hybrid topology is derived 
from two or more existing topologies using a graph 
theoretic operator. Researchers have extensively used 
the Cartesian Product operator while designing the 
Hybrid Topologies. Star-Hypercube Hybrid 
Interconnection Networks (Zeng et al., 1993), Hyper-
Mesh Multicomputers (Abuelrub, 2002), Banyan-
Hypercube Networks (Youssef & Narahari, 1990) and 
Hyper Petersen Network (Das & Banerjee, 1992) are 
some examples of topologies based on cartesian product 
of graphs. The generalized results for the Cartesian 
Product of topology graphs were first derived by Youssef 
(1995) and later extended by Day & Ayyoub (1997). The 
most recently reported topology in this category has been 
named as Double Loop Hypercube (DLH) (Youyao et al., 
2008). It has been derived as the Cartesian Product of 
Double Loop topology with Hypercube.  
This paper introduces and analyses a new hybrid 
processor interconnection topology called STH (Scalable 
Twisted Hypercube). To establish suitability of STH for 
massively parallel systems, it has been compared with 
two recently proposed highly scalable topologies (Hex-
Cell and DLH) on several parameters. It has been 
observed that STH is scalable and economical. A simple 
routing scheme that makes good use of STH architecture 
has also been proposed.  
Materials and methods 
Preliminary remarks and graph theoretic terms 

This paper uses the standard graph theoretic 
terminology (Chartrand & Lesniak, 1986) and definitions 
used by Alam & Kumar (2010). 

Definition 1: The interconnection network topology is a 
finite undirected graph G = (V, E), where V = {v1, v2… vn} is 
the set of nodes (vertices) and E = {e1, e2… em} is the set 
of edges. Each vertex represents a processor and each 
edge a communication link between processors. 
Definition 2: The degree of a vertex v in G, denoted as dv 
is the number of edges incident on v. The minimum 
degree of a graph G, min{dv(G) | v є V} is denoted by 
δ(G). The maximum degree of G, max{dv(G) | v є V} is 
denoted by Δ(G). The degree of the graph is the 
maximum of the degrees of all vertices in the graph. 
Moreover, a graph is called regular if all of its vertices 
have the same degree. 
Definition 3: The distance between two nodes u and v of 
a graph G denoted by sG(u,v) is the number of edges in G 
on the shortest path connecting i and j. 
Definition 4: The diameter of a graph G(V, E) denoted by 
D(G),  is the maximum distance between any two nodes 
in G. The diameter provides a bound on communication 
between any two nodes. Mathematically: 
D(G) = max{ sG(u,v) | u, v є V} 
Definition 5: A graph G(V, E) is vertex-symmetric, if for 
every pair of vertices u and v, u, v є V, there exists an 
automorphism of the graph that maps u into v. 
Definition 6: The (κ-1) - fault diameter of a κ-connected 
topology graph G(V, E), D κ(G), is defined as: 

1}κF V(G), F | F) -max{d(G   (G)Dκ  , Where F is an 

induced subgraph of G. 
Definition 7: An n-dimensional binary hypercube, Qn, 
consists of 2n nodes. Each node v, for 0≤ v ≤ 2n-1, is 
labeled as n-bit binary string, L(v). There is an edge 
between two nodes, u and v, if, and only if, their labels 
differ in exactly one bit position. 
Definition 8: An n-dimensional twisted hypercube, TQn, is 
constructed from a Qn as follows. Two distinct edges, say 
(a, b) and (c, d), which have no nodes in common, in a 4-
cycle of the hypercube are selected. Now the two new 
edges (a, d) and (b, c) are created while the original 
edges (a, b) and (c, d) are removed. Such a twist doesn’t 
effect the degree of a node (d), but the diameter of TQn is 
one less than the diameter of Qn, i.e., D(TQn) = n-1. 
The Scalable twisted hypercube (STH) interconnection 
network 

The proposed STH(m,n) network is based on two 
topologies. An m level Linearly Scalable Topology (LST), 
which is an improved version of the Linearly Extendible 
Arm Topology (Alam & Kumar, 2010), and the well known 
n-dimensional twisted hypercube topology. Whereas the 
level m LEA topology consists of 6m processors, the 
LST(m) consists of 8m processors and an altered 
connectivity formula. Formally it is defined as follows: 
Let m be a positive integer such that m≥2, then level m 
LST, denoted as LST(m), is an undirected graph 
consisting of N( = 8m) processing elements (vertices) 
labeled as PE0, PE1, PE2… … …PE(N-1), for 0 ≤ i < N and 
arranged in m columns, each of which consists of exactly 
eight processors. A link (edge) exists between processors 
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PEi and PEj, iff , (i+1) modulo N = j or (i+4) modulo N = j.  
Alternately, for m ≥2, LST(m) = G(V, E), where, 
 V = {PEi | i є I+ and 0 ≤ i <N}  
 E = {(PEi, PEj) | j = ((i+1) modulo N) OR j = ((i+4) 

modulo N)}. 
From the definition of LST it is obvious that each 

processor on an LST network provides two links to the 
two distinct processors and receives two links from two 
distinct processors. An example of a LST(m) is shown in 
Fig.1, where m equals to 3, which is composed of 3x8 = 
24 nodes. 

The topology of LST network is simple, symmetric and 
scalable in architecture and it is 4-regular vertex (node) 
symmetric graph.   

STH (m, n) topology is obtained as a cartesian product 
of level m LST topology and n-dimensional twisted 
hypercube topology, so it can formally be defined as 
follows:   
Let m and n be two positive integers such that m≥2, and 
the level m LST topology is represented by the undirected 
graph, X1(V1,E1) and the n dimensional twisted hypercube 
topology is represented by the undirected graph, 
X2(V2,E2), then the STH topology, is an undirected graph, 
X(V,E), where V and E are given by: 
 V = {(a,b) | a є V1 and b є V2}, and 
 For any x = (a,b) and y = (c, d) in V, (x,y) is an edge in 

E if, and only if, (a,c) is an edge in E1 and b = d or 
(b,d) is an edge in E2 and a = c. 

Fig.2 shows STH (2, 3), which has been obtained as a 
Cartesian Product of LST (2) and TQ3. From Fig.2 it is 
fairly obvious that STH (m,n) can be obtained from an n-
dimensional twisted hypercube such that each of its node 

is replaced by LST (m) and connections are established 
according to the above definition. For the sake of 
simplicity, each node in STH (m, n) is represented as two 
tuples: (u, v), where PEu is a node in LST network and 
PEv is a node in TQn network. More precisely, in an 
STH(m, n) network we define the following two kinds of 
connections: 
LST Connection: A node (u, v) є STH, is adjacent to 
another node (u’, v) є STH, if and only if, u’ = ((i+1) 
modulo N) OR u’ = ((i+4) modulo N). 
Twisted Hypercube Connection: Twisted Hypercube 
connection can be obtained using Definition 2.5. A node 
(u, v) є STH, is adjacent to another node (u, v’) є STH if, 
and only if, L(v) and L(v’), where L(v) and L(v’) denote the 
n-bit binary strings corresponding to v and v’ respectively,  
follow Definition 8. 
Topological properties of STH(m,n) 
Lemma 1: The total number of nodes in STH(m, n) 
network is  m.2n+3. 
Proof: From the construction method of STH(m, n), we 
know that STH(m, n) can be obtained by replacing each 
of the n nodes of an n-dimensional twisted hypercube 
network (TQn) by an m level LST network consisting of 
8m nodes.  So, replacement of one node of TQn, 
introduces 8m new nodes in the network. It implies that 
replacement of all n nodes will introduce 8m.2n = m.2n+3 
nodes in the network.  
Lemma 2: The Degree of STH(m,n) is (n+4). 
Proof: It follows directly from the definition of STH(m, n). 
Two components of STH(m, n) are LST(m). LST is a is 4-
regular vertex (node) symmetric graph and the degree of 
TQn is n. Hence the degree of STH(m, n) is (4+n) . Fig.2 
further confirms this expression. In STH(2, 3), the degree 
of each node is 7. 
Lemma 3: The Diameter of STH(m,n) is (m+1)+  1)/2(n 
. 
Proof: It is easy to know that: 
Diameter of 16 node LST, i.e., D(LST(2)) = 3. 
Diameter of 24 node LST, i.e., D(LST(3)) = 4. 
Diameter of 32 node LST, i.e., D(LST(5)) = 5. 
So, the Diameter of 8m node (level m) LST i.e.  D(LST 
(m)) = m+1 
The diameter of an n-dimensional twisted hypercube is 
 1)/2(n  . So, the diameter of STH(m, n) is given by the 

following expression (Youssef, 1995; Day & Ayyoub, 
1997): 
D(STH(m,n)) = (m+1)+  1)/2(n   

The proof can also be obtained using the analytical 
method as follows: 
Let x = (p, q) and y = (r, s) be two vertices of STH graph. 
x would be at a maximum distance from y in STH if, and 
only if, p is at a maximum distance (m+1) from r in LST 
and q is at a maximum distance  1)/2(n   from s in TQn. 
Clearly, the maximum distance (diameter) of STH(m, n) is 
(m+1)+  1)/2(n  . 
  

Fig. 1. LST(m) network, where m equals to 3 
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  Fig. 2. 128-node STH Network (STH(2,3)) 
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Lemma 4: STH(m, n) is a  regular vertex (node) 
symmetric graph. 
Proof: Each node of STH(m,n) has the degree 4+n so, its 
obvious that STH(m, n) is a regular graph. Let LST(m) 
network is represented by a graph X(V, E), and ϕ be a 
permutation of the vertex set V, of LST(m). Then, for any 
edge x = (a, b), x є E and a, b є V, we have ϕ(x) = (ϕ(a), 
ϕ(b)), is also an edge. It shows that graph X (representing 
LST(m)) is isomorphic to itself (automorphism). Clearly 
LST is a vertex symmetric (Definition 5). 

Twisted Hypercube belongs to the family of graphs 
known as Cayley Graphs and every Cayley Graph is 
vertex symmetric (Day & Ayyoub, 1997). Hence, Twisted 
Hypercube graph is also vertex symmetric. If two given 
graphs X and Y are vertex symmetric then X.Y is also 
vertex symmetric (Youssef, 1995). From this discussion, 
it is easy to conclude that STH(m, n) is vertex symmetric. 
Lemma 5: The Bisection Width (ω) of STH(m ,n) is given 
by (3m-1).2n+1 or (3N-8).2n-2. 
Proof: The Bisection Width of an interconnection network 
is defined as the minimum number of edges (wires) cut to 
split a network into two parts each having the same 
number of nodes.   
Bisection Width of LST(k) can be calculated as follows 
(Table 1):  

Table 1. Bisection Width Calculation for LST(k) 

m N = 8*m No. of edges cut to split LST(m) into two 
Parts 

2 16 20 = (12*2 - 4)  
3 24 32 = (12*3 - 4) 
4 32 44 = (12*4 - 4) 
5 40 56 = (12*5 - 4)  
… … … 
… … … 
m 8m (12*m – 4)  

STH(m, n) is obtained by replacing each of the 8m nodes 
of LST(m) by an n-dimensional twisted hypercube. We 
have already proved that the bisection width of LST(m) is 
(12m-4). The bisection width of TQn is 2n-1.Hence the 
Bisection Width of STH(m, n) is (12m-4).2n-1, i.e. 
ω = (12m-4).2n-1 = (3m-1).2n+1 = (3N-8).2n-2 
Lemma 6: The average distance of STH(m, n) is given by: 

1n2

11nn.2
21)(8m

7)m(4m(STH)d








  

Proof: The average distance (G)d of a graph G, consisting 
of N nodes is given by the following equation: 

1)N(N

N
1j j)d(i,N

1i(G)d


   , where i ≠ j  

The average distance vd  of a node v is obtained from the 
following equation: 

1)(N

N
1j j)d(i,

vd


 
 , where i ≠ j 

Average Distance of LST can be calculated as follows. 
The average distances for node 1 in different level LST 
networks are shown in the Table 2: 

Clearly, the average distance of first node in LST(m) is be 
given by: 

1)(8m
7)m(4m

1)(8m
1))4x(m7xm1)8x(m.......8x38x2(4x11d










As LST is a 4-regular, node symmetric graph, average 
distance for each node is same and can be given by the 
above expression. 
Thus, the average distance of LST graph i.e. 1d can be 
calculated as follows. 

21)(8m

7)m(4m
1)N(N

N
1j j)d(i,N

1i(LST)d







  
  

The average distance of an n-dimensional Twisted Hyper 
Cube is given by (Abuelrub, 2007): 

1n2

11nn.2d(TQ)



  

We know that if G1 and G2 are two graphs with average 
distances )1(Gd and )(Gd 2  respectively, then the average 

distance )(Gd of the Cartesian Product graph G, of G1 

and G2 is given by : 
(G)d  = )(Gd 1 + )(Gd 2  

So, for STH(m, n) we have: 

1n2

11nn.2
21)(8m

7)m(4m(STH)d








  

Lemma 7: The (n+3) - fault diameter of STH(m, n) is 
bounded by the following inequality: 

2)n(m(STH)4)(nD   

Proof:  It has been shown (Xu et al., 2005) that if G1 and 
G2 are two undirected graphs such that G1 is κ1 
connected with Dκ1 as (κ-1) fault diameter and G2 is κ2 
connected with Dκ2 as (κ-1) fault diameter then if, the 
product graph of G1 and G2 (G1.G2) is (κ1+ κ2) connected, 
its diameter is bounded by the following inequality: 

1)2(Gκ2D)1(Gκ1D)2.G1(Gκ2)1(D   

Table 2. LST Average Distances for First Node 
m No. of Nodes 1d  

2 16 (1+1+1+1+2+2+2+2+2+2+2+3+3+3+3)/
15 = (4x1+7x2+4x3)/15 = 30/15 

3 24 (1+1+1+1+2+2+2+2+2+2+2+2+3+3+3+
3+3+3+3+4+4+4+4)/23= 
(4x1+8x2+7x3+4x4)/23 = 57/23 

4 32 ( 4x1+8x2+8x3+7x4+4x5)/31 = 92/31 
… … … 
… … … 
k 8k (4x1+8x2+8x3+ … +8x(k-

1)+7xk+4x(k+1)/(8k-1) 
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STH is a product graph of LST and TQ. Using Whitney’s 
Theorem (Balakrishnan, 2007), it is easy to prove that 
LST is 4-connected i.e. κ(LST) = 4 and its 3 – fault 
diameter i.e. D4(LST) is (m+2). 
The connectivity of n-dimensional Twisted Hypercube is n 
(Abuelrub, 2007) i.e. κ(TQ)  = n and its (n-1) – fault 
diameter is (n-1) i.e.  Dn(TQ) = n-1.  
Also, κ(STH) =  κ(LEA)+ κ(TQ) = n+4  
Hence, using the results of Xu et al. (2005) it is easy to 
prove that (n+3) – fault diameter of STH(m, n) is bounded 
by the following inequality: 

2)n(m(STH)4)(nD   

Routing on STH Network 
Routing Algorithm is an important factor which affects 

the performance of an interconnection network. Routing 
involves the process of identification of a set of 
permissible paths that may be used by a message to 
reach its destination, and a function that selects one path 
from the set of permissible paths. We have two 
approaches to develop the routing algorithms for 
interconnection networks (Rewini & Barr, 2005) – 
Adaptive Routing and Deterministic or Oblivious Routing. 
This paper favours the deterministic routing techniques 
due to their simplicity. The following sub-sections 
describe the unicast and broadcast routing algorithms for 
STH interconnection networks. 
Unicast routing algorithm for STH(m,n) 
Let on an STH(m,n) network a node u = (a,b) wants to 
send a message to another node v = (a’,b’). We propose 
the following optimal (O(m+n) in worst case) algorithm for 
the required message routing. 
Notations used 
u, v: Source and Destination Nodes 
m: Level of LST Network 
n:  Dimension  of Twisted Hypercube 
Ri: Variable to record movements along path i in LST 
network. 
Ki: List of nodes traversed along path i. 
add(K, p): A function that inserts a node p in the list L.  
follow(K): A function that forwards a message from 
source to destination along the path K. 
spath: Shortest Path 
splength: Length of Shortest Path 
ℓ(K): Last node in the list K. 
procedure_route( ): Main Routing Procedure 
sub_procedure_routLST( ): Sub procedure for dealing 
routing on LST part of STH Network. 
sub_procedure_routTH( ): Sub procedure for dealing 
routing on TQ part of STH Network. 
Main Routing Procedure 
procedure_rout(u,v,m,n) 
begin 
if (a!=a’ AND b=b’) then 
    begin 
    call sub_procedure_routLST(a,a’,m) 
     exit( ) 
     end 

if (a=a’ AND b!=b’) then 
   begin 
   call sub_procedure_routTH(b,b’,n) 
   exit( ) 
   end 
if(a!=a’ AND b!=b’) then 
   begin 
   call sub_procedure_routLST(a,a’,m) 
   call sub_procedure_routTH(b,b’,n) 
   end 
end 
sub_procedure_routLST(x,y,p) 
begin 

1. splength ← 1; 
2. m=8*p; 
3. for i =1 to 4 do 
4. add(Ki, PEx); 
5. end for  
6. R1 ← x-4; if (R1 < 0) then R1 ← m+R1; 
7. R2 ← x+4; if (R2 >= m) then R2 ← |m-R2|; 
8. R3 = x+1; if (R3 >= m) then R3← |m-R3|; 
9. R4 ← x-1; if (R4 < 0) then R4 ← m+R4; 
10. for i =1 to 4 do 
11. add(Ki,PERi); 
12. end for 
13. while true do 
14. begin 
15. if (R1= y  OR  R2 = y OR R3 = y OR R4  = y) then 

break; 
16. hopsreq ← (y-X1) 
17. if (hopsreq >= 4) then R1 ← R1-4; 
18. else 
19. { 
20. if (hopsreq > 0) then R1 ← R1+1; 
21. else R1 ← R1-1; 
22. } 
23. if (R1 < 0) then R1 ← m+R1; 
24. hopsreq ← (y-R2) 
25. if (hopsreq >= 4) then R2 ← R2+4; 
26. else 
27. { 
28. if (hopsreq > 0) then R2 ← R2+1; 
29. else R2 ← R2-1; 
30. } 
31. if (R2 >= m) then R2 ← |m-R2|; 
32. R3 ← R3+1; if (R3 >= m) then R3 ← |m-R3|; 
33. R4 ← R4-1; if (R4  < 0) then R4 ← m+R4; 
34. for i =1 to 4 do 
35. add(Ki PERi); 
36. end for 
37. splength ← splength + 1; 
38. end while 
39. for i=1 to 4 do 
40. if (ℓ(Ki) = PEy) then spath ← Ki; 
41. end for 
42. follow(spath); 

end 
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Twisted hypercube routing has been discussed 
extensively in the literature (Agrawal & Ravikumar, 1996; 
Abuelrub, 2007) so we are not giving algorithmic code for 
sub_procedure_routeTH( ). 
Example: Let in a 192-node STH network (STH(3,3)), 
node u(2,6) wants to send a message to node v(19,3). 
Then according to the above algorithm the message is 
routed as follows: 
A. Here, a=2, b=6, a’=19  and b’=3 therefore the 
sub_procedure_routLST(2,19,3) is executed as follows: 
Steps 1 – 12: 
splength = 1, m = 8*3 = 24, K1 = K2 = K3 = K4 = PE2, R1 = 
22, R2 = 6, R3 = 3, R4 = 1. 
K1 = PE2.PE22, K2 = PE2.PE6, K3 = PE2.PE3, K4 = PE2.PE1. 
Steps 13 – 38: 
Clearly, List K1 is selected as it consists the shortest path. 
The message is now routed along the path  
Contained in K1. And now the message is available at 
(19, 6) 
B. From node(19,6) the message is sent to node (19,3) 
using sub_procedure_routTH(6,3,3). 
Broadcasting on STH (m,n) 
Let node X wants to broadcast a message on STH (m,n) 
network, then such a broadcasting will be performed as 
follows(Table 3): 
1. X will send message to all the nodes of that LST (m) 

network on which X itself resides.  
2. Then on every twisted hypercube of STH (m,n), the 

node received the messages will send them to all of 
the nodes in the same twisted hypercube network. 

Results and discussion 
Comparative Study 
Designing a high performance interconnection network is 
the most challenging task in the field of parallel 
computers. This section presents the comparative study 
of STH network with some recently proposed topologies 
of interest. The various performance parameters used 
here are degree, diameter, cost factor, bisection width, 
average distance, message traffic density, cost of one to 
all broadcasts and cost of all-to-all broadcasts.  Table 4 

presents some basic parameters for STH and other 
topologies of interest. Tables 5-7 present calculated 
values of several parameters related to the topologies 
under consideration. Fig.3–11 compare various 
parameters shown in Tables 5–7 graphically. For a 
justifiable comparison we have chosen a hypercube of 
fixed degree (7). 
Following observations can be easily made: 
Degree (d) and Diameter (D): For networks of any size, 
the node degree of STH(m, n) is admittedly larger than 
that of any of the other networks under consideration. For 
a fixed value of hypercube degree (7), the degree of DLH 
is 10 and that of STH is 11.  

Fig.3 compares the diameters of all the topologies of 
interest. It has been observed that the diameter of STH is 
smallest among all the topologies even up to more than 
106 nodes, when we scale up the network for a fixed 
hypercube dimension. The diameter may further be 
reduced by choosing the large dimensions of hypercube 
part. 
Cost Factor (ξ) and Cost (ζ): A network with high node 
degree is expensive and a network with large diameter 
suffers form high latency. It is always desirable to have a 
topology with both small degree (low cost) and small 
diameter (low latency). Thus, for an interconnection 
network the product of degree (d) and diameter (D) is 
defined as the cost factor (ξ) (Amawy & Latifi, 1991). 
Another metrics used to describe the cost (ζ) of an 
interconnection network topology is the product of the 
number of Links (L) and the diameter (Louri & Neocleous, 
1997).  

Fig.5 & 6 compare Cost Factor and Cost for the 
topologies of interest. From these figures it is evident that 
STH outperforms other topologies when topologies are 
either evaluated using Cost Factor or Cost.  
No. of Links (L): Fig.4 confirms that, in spite of its lowest 
cost, among all the topologies of interest, STH has 
maximum number of links for a given network size. In 
other words it can also be said that among all topologies 
of interest STH is maximal fault tolerant. 

Table 3. LST Shortest Path Route Calculations 

R1 R2 R3 R4 K1 K2 K3 K4 Splength 

21 10 4 0 PE2 PE22PE21 PE2 PE6PE10 PE2 PE3PE4 PE2 PE1PE0 2 

20 14 5 23 PE2 PE22PE21 PE20 PE2 PE6PE10 PE14 PE2 PE3PE4PE5 PE2 PE1PE0PE23 3 

19 18 6 22 PE2PE22PE21PE20 PE19 PE2 PE6PE10 PE14 PE18 PE2PE3PE4PE5 PE6 PE2PE1PE0PE23 PE22 4 

Table 4. Comparison of Basic Parameters 
Topological Property DLH(m, n)   HX(i)  STH(m, n) 
No. of Nodes (N) m.2n+2 6(2i-1) m.2n+3 
Degree (d) 3+n ≤ 3 4+n 

Diameter (D) m+n+1 4 12i   - 1 (m+1)+  1)/2(n   

No. of Links (L) m.2n+1.(3+n) 3(3i2 – i) m.2n+2.(4+n) 

Cost Factor (d*D) (3+n)(m+n+1) 3.(4 12i   - 1) (4+n).(m+n+1) 

Cost  (L*D) (m+n+1). m.2n+1.(3+n) (4 12i   - 1).(18i-12) ((m+1) +  1)/2(n  ). m.2n+2.(4+n) 

Bisection Width (ω) m.2n 2. i (3m-1).2n+1 
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Table 5. Basic topological properties comparison 

No. of 
Nodes 

Diameter (D) No. of Links (L) Cost Factor(d*D) Cost (L*D) 

DLH 
(m,7) 

HX 
STH 
(m,7) 

DLH 
(m,7) 

HX 
STH 
(m,7) 

DLH 
(m,7) 

HX 
STH 
(m,7) 

DLH(m,7) HX STH(m,7) 

1024 
*STH(m,6) 

10 51 7 5120 1497 5120 100 153 70 51200 76337 35840 

2048 12 72 7 10240 3017 11264 120 216 77 122880 217193 78848 

4096 16 103 9 20480 6066 22528 160 309 99 327680 624758 202752 

8192 24 146 13 40960 12178 45056 240 438 143 983040 1777863 585728 

16384 40 208 21 81920 24420 90112 400 624 231 3276800 5079200 1892352 

32768 72 294 37 163840 48931 180224 720 882 407 11796480 14385507 6668288 

65536 136 417 69 327680 97991 360448 1360 1251 759 44564480 40862024 24870912 

131072 264 590 133 655360 196165 720896 2640 1770 1463 173015040 115737111 95879168 

 

Table 6. Bisection width, cost of one-to-all broadcasts and cost of all-to-all broadcasts comparison 
No. of 
Nodes 

Bisection Width (ω) Cost of one to all Broadcast  Cost of All to All Broadcast  

DLH(m,7) HX STH(m,7) DLH(m,7) HX STH(m,7) DLH(m,7) HX STH(m,7) 

1024 
*STH(m,6) 256 26.127891 640 11022.400000 58603.697805 7670.073435 10102.300000 51341.000000 7102.300000 

2048 512 36.950417 1280 13225.039866 81187.076915 7587.808882 12204.700000 72682.333333 7186.090909 

4096 1024 52.255781 2816 17581.109342 114142.350239 9819.042557 16409.500000 104365.000000 9372.272727 

8192 2048 73.900834 5888 26171.732175 159411.633022 14206.941338 24819.100000 148730.333333 13744.636364 

16384 4096 104.511562 12032 43099.198719 224152.758020 22822.060078 41638.300000 213461.000000 22489.363636 

32768 8192 147.801669 24320 76495.135855 313342.399972 39754.387252 75276.700000 304922.333333 39978.818182 

65536 16384 209.023125 48896 142538.528025 440173.636341 73125.061425 142553.500000 438845.000000 74957.727273 

131072 32768 295.603338 98048 273481.455834 617699.424477 139103.939645 277107.100000 633690.333333 144915.545455 

 

Table 7. Average internode distances and message traffic density with respect to hypercube and DLH 

No. of Nodes 
(N) 

Average Distance Message Traffic Density 
DLH(m,7) HC STH(m,7) DLH(m,7) HC STH(m,7) 

1024 
*STH(m,6) 

3.489320 5.004888 3.165079 0.697864 1.000978 0.633016 

2048 3.485549 5.502687 3.653018 0.697110 1.000489 0.664185 

4096 3.523719 6.001465 3.615419 0.704744 1.000244 0.657349 

8192 3.773481 6.500794 3.598294 0.754696 1.000122 0.654235 

16384 4.899130 7.000427 3.590117 0.979826 1.000061 0.652749 

32768 9.215962 7.500229 3.586121 1.843192 1.000031 0.652022 

65536 23.698827 8.000122 3.584146 4.739765 1.000015 0.651663 

131072 65.815249 8.500065 3.583163 13.163050 1.000008 0.651484 
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Fig. 7. Bisection Width Comparison 
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Bisection Width (ω): The Bisection Width of an 
interconnection network is defined as the minimum 
number of edges (wires) cut to split the network into two 
parts each having the same number of nodes.  Bisection 
width reflects the wiring density of an interconnection 
network and provides a good indicator of the maximum 
communication bandwidth along the bisection of an 
interconnection network. Interconnection network 
designers strive for high bisection width.  

Fig.7 shows that bisection width of STH is best among 
all the topologies of interest. Hex-Cell (HX) has very low 
bisection width hence is not suitable for designing 
massively parallel systems. 
Scalability of STH: Fig.8 shows the scalability of DLH, HX 
and STH with respect to the scalability of twisted 
hypercube. To determine the relative scalabilities of all 
the topologies under consideration we define the 
percentage of deviation allowed in network size 
representation (ψ)  as follows: 

100
α
βα

ψ 


 , where α = Requested Network Size,  

β = Available Network Size 

We start with ψ = 2 (i.e. deviation allowed from actual 
network size = 2%) and for each topology find out the 
number and percentage of network sizes available with 
that particular topology with the flexibility of ψ between 1 
and 50000. Then we gradually increase ψ up to 20. The 
results are presented in Table 8. 

From Fig.8 and Table 8, it is clear that scalability of 
STH network is at par with the scalabilities of DLH and 
Hex-Cell. These three topologies are capable of 
representing more than 99% of the network sizes in the 
range of 1 – 50000, even with a very low deviation (ψ = 2) 
allowed in the network size representation. Scalability of 
Twisted Hypercube (TQ) on the other hand is really poor. 
TQ is capable of representing at the most 55% (approx.) 
network sizes when maximum deviation in network size 
representation is allowed (ψ = 20). 
Costs of One-to-All and All-to-all Broadcasts: The lower 
bound on the cost of one-to-all broadcasting on a d-port 

network ( d
GL ), is given by the following equation (Graham 

& Seidel, 1993): 
2)1D(Ma/(bd))(d

GL   

Fig. 9. Cost: One-to-All Broadcast 
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Fig. 10. Cost: All-to-All Broadcast 
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and, the lower bound on the cost of all-to-all broadcast is 
given by the following equation: 

Db1)a/d(Nd
GU   

Where: - N= No. of Nodes in the Network, d = Degree of 
the Network, D = Diameter of the Network, M = Length of 
the Message, a= Unit Transmission Cost, b = Network 
Latency. 
Fig.9 & 10 show that the cost of one-to-all broadcasts and 
the cost of all-to-all broadcasts are lowest for STH. All the 
calculations have been made assuming M = 1024, a= 
1µs, b = 1000 µs (Graham & Seidel, 1993) 

Average node distance (

d ): Fig.11 compares the average 

node distance of DLH and STH with that of Hypercube 
(HC) From Fig.10 it is clear that average node distance in 
DLH increases rapidly with the increase in network size. 
In case of Hypercube it increases gradually when the 
network is scaled up. However, in case of STH the 
average node distance remains almost constant, close to 
3, even for very large network size.  
Message Traffic Density (ρ): The message traffic in a 
network can be estimated by calculating the message 
traffic density (ρ). Assuming that in a network of N nodes 
and L links each node is sending one message to a node 

at average distance d , the message traffic density is 

given by LN)d(ρ  . Fig.12 shows that for DLH network, 
message traffic density grows rapidly when the network is 
scaled up. For Hypercube the message traffic density is 
almost constant (close to 1) and for STH network it is also 
constant (close to 0.65). Clearly, STH has the lowest 
value of ρ. 
Conclusions 

A new interconnection network topology called 
Scalable Twisted Hypercube (STH) has been presented 
in this paper to counter the poor scalability of twisted 
hypercube. Its suitability for use as multiprocessor 
interconnection networks has also been explored. The 
various properties of the proposed topology have been 
analyzed and it has been compared with some other 
highly scalable topologies of interest on a number of 
interconnection networks evaluation parameters. With 
reduced diameter, better average distance, low traffic 
density, low cost, maximum number of links, high 
bisection width and tremendous scalability, STH is more 
suitable for Massively Parallel Systems. Procedures for 

routing and broadcasting on the proposed topology have 
also been discussed and a simple routing algorithm has 
been presented. To sum up the proposed interconnection 
network provides a great architectural support for parallel 
computing due to the concurrent existence of multiple 
LST(m) and  TQn.  
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