

Indian Journal of Science and Technology Vol. 5 No. 2 (Feb 2012) ISSN: 0974- 6846

Sci.Technol.Edu. “LQN Models” B.Bharathi & G.Kulanthaivel
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

2148

A simple method for deriving LQN-models from software-models represented as UML diagrams

B.Bharathi1 and G.Kulanthaivel2

1Sathyabama University, Chennai-119
2National Institute of Technical Teacher’s Training and Research (NITTTR), Chennai-113

bharathivaradhu@gmail.com

Abstract
The evaluation and performance analysis of software architecture at the design level increases the quality of the
software and also reduces the cost of rework during the later stages of the product. The derivation of performance
results of a software product, during the early stages of the software life cycle can be achieved by quantitatively
evaluating the software performance model. There has been lot of research identifying the methods of evaluating
software (Booch, 2001). The evaluation process starts by analyzing the performance model which is derived from the
software model annotated with suitable usage profiles. This paper provides a simple approach to convert the software
models represented as Unified Modeling Language (UML) diagrams using the profile for Schedulability, Performance
and Time specifications (SPT) into Layered Queuing Network (LQN) performance models. The paper mainly illustrates
the conversion process from UML to LQN, and also substantiates the method by a simple example.

Keywords: Usage profiles, Unified modeling language, Performance model, Model Driven Development.
Introduction

Software Performance Engineering assists in
performance requirements validation (Smith, 1990). The
performance engineering approach is applied throughout
the development cycle by the use of methods for building
performance models from software development models.
The resultant performance models can then be evaluated
and their results checked against relevant performance
requirements. Muhammad Ali Babar et al. (2004) state
that performance characteristics, such as response time
and throughput, play an important role in defining the
quality of software products. Many researchers have
analyzed the role of software architectures in determining
the software quality. Since architectural decisions are
made very early in the software development process, it
would be helpful to be able to assess their effect on the
software performance as early as possible. This paper
aids the UML to LQN conversion process, which can be
later evaluated for performance requirements.
Software performance engineering (SPE)

Software Performance Engineering analyses the
method of integrating the performance evaluation into the
software development process from the early stages and
continues throughout the entire software life cycle. OMG
group (2005) gives the SPT profile on UML is used to
assess the performance effects of different design and
implementation alternatives. Small key performance
scenarios representing the system are first generated to
build the performance model. The performance model
captures the execution paths for each scenario; the
quantitative demands of resources represented as I/O
operations and CPU demands, reasons for queue delays
due to hardware or software resources, etc. The result of
evaluating the performance model is set of indices which
include the response time, resource utilizations,
throughput, etc. The indices can be analyzed to identify
bottlenecks in the system and also can be used as

feedback for improvement of the system. The goal of this
paper is to present some mapping rules necessary to
transform the UML design to LQN model representations.
Model driven development (MDD)

Model-driven development is the method of building
an abstract model of a system that can be transformed
into more refined models and finally into the system
implementation. Model-driven development needs the
knowledge to write functions that can transform one
model into another model and can be executed. A new
trend is emerging, which facilitates the automatic
transformation of UML models into different analysis
models. There are number of analysis techniques for
performance evaluation and each requires some
additional information from the UML model.
Unified modeling language (UML)

Grady Booch (2001) defines UML as the OMG
standard that helps in defining, specifying, visualizing and
documenting the various artifacts of a software intensive
system. It is used to model the software system including
their structure and design to meet stakeholder
requirements. UML 1.0 presents nine diagrams and UML
2.0 presents thirteen diagrams. The nine diagrams of
UML1.0, which forms the basis to many researches, can
be classified into three categories: 1. Structural diagrams,
which include the class diagrams, object diagrams,
package diagrams and deployment diagrams. 2.
Behavioural Diagrams includes the use case diagram,
activity diagram and start chart diagrams.3. Interaction
diagrams include sequence diagram and collaboration
diagrams.

UML is selected as the Architecture Description
Language (ADL), many a times because of its rich
vocabulary and the stereotype mechanisms available. But
the generic UML does not always serve the purpose of
representing the software system as a whole and needs
some additional usage profiles to be added. The “UML

Indian Journal of Science and Technology Vol. 5 No. 2 (Feb 2012) ISSN: 0974- 6846

Sci.Technol.Edu. “LQN Models” B.Bharathi & G.Kulanthaivel
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

2149

profile for Schedulability, Performance and Time
specification”, by OMG (2005), defines a general
resource model, time modeling, general concurrency,
schedulability and performance modeling. The latest
usage profile is the MARTE profile for real-time systems.
The performance profiles are used to depict the
information: 1. To associate the performance related
characteristics with the UML model; 2. To capture all
performance requirements of the stakeholders; 3. For
easy presentation of computed performance results using
modeling tools; 4. To specify the execution parameters
used in the modeling tools to compute performance
characteristics.
Related work

Performance modeling can be done through queuing
networks, Petri nets, stochastic process algebra,
simulation, etc. The scope of the paper is not to reinvent
a new analysis method for UML models, but to boil down
the method of software model to performance model to
simpler steps. There has been much research done to
evaluate the best performance model and also to identify
the model conversion technique. The performance mode
selected is the Layered Queuing Network based on the
good survey provided in Kahkipuro (2001). The UML to
LQN transformations are done in different ways: using
existing graph rewriting tool PROGRES given by Doria
C.Petriu (2002), implementing adhoc graph
transformation technique in java (Gu et al. 2003), using
XSLT transformation technique (Williams et al., 2008).
One complex solution for the problem as stated in Doria
Petriu et at. (2003), is to use the combination of graph
transformation techniques and regular string grammar
techniques. One major recent research is to create an
intermediate model called the Core Scenario Model
(CSM), which converts the any version UML to any
performance model, required (Bharathi & Kulanthaivel,
2011). The proposed method tries to take up only the
relevant information for performance model creation from
the software model. Though the identified method is no
match to the CSM, it is simple and easily applicable to
any domain of software system. The current method is
easily implementable, in comparison with CSM, which
needs expert knowledge and tool support for
implementation.
Performance model

A performance model is an abstract representation of
a real system that captures its performance properties,
which are mostly related to the quantitative use of
resources during runtime behaviour and is capable of
reproducing its performance. The model can be used to
study the performance of different designs or
configuration alternatives. The evaluation of the
performance model is done by analytical methods or by
simulating the model. Analytic models have defined
expressions for evaluation and are based on stochastic
models. Simulation models are good for time dependent
behaviour but lack the ability to find optimal solutions. As

mentioned previously, the analytical model is the Layered
Queuing Network, which is the extension of Queuing
networks.
Queuing network model

A QN model is a collection of service centers that
represent system resources, and customers that
represent users or transactions. The customers are
moving from server to server, queuing for service and
waiting their turn. QN are used to model systems with
stochastic characteristics.

One of the disadvantages of QN is the restrictions on
model assumptions (e.g. service time distributions, arrival
process, etc.) which are often necessary for an analytic
solution to exist. A very important characteristic of QN
models is that the functions expressing the queue length
and waiting time at a server with respect to the load
intensity are very non- linear.
It is common to use the symbols:
 lamda to be the mean (or average) number of arrivals

per time period, i.e. the mean arrival rate
 µ to be the mean (or average) number of customers

served per time period, i.e. the mean service rate
There is a standard notation system to classify queueing
systems as A/B/C/D/E, where:
 A represents the probability distribution for the arrival

process (poisson distribution)
 B represents the probability distribution for the service

process (exponential distribution)
 C represents the number of channels (servers)
 D represents the maximum number of customers

allowed in the queueing system (deterministic - either
being served or waiting for service)

 E represents the maximum number of customers in
total

If D and E are not specified then it is assumed that they
are infinite. Queuing discipline of how, from the set of
customers waiting for service, do we choose the one to
be served next can be FIFO (first-in first-out) also known
as FCFS (first-come first served) or LIFO (last-in first-out),
or randomly.

For example the M/M/1 queueing system, the
simplest queueing system, has a Poisson arrival
distribution, an exponential service time distribution and a
single channel (one server). Note here that in using this
notation it is always assumed that there is just a single
queue (waiting line) and customers move from this single
queue to the servers.
Layered queuing networks

LQN was developed as an extension of the well-
known Queuing Network model. The main difference with
respect to QN is that LQN can easily represent nested
services. A server may become in turn a client to other
servers from which it requires nested services, while
serving its own clients. An LQN model is an acyclic graph,
with nodes representing software entities and hardware
devices, and arcs denoting service requests.

Indian Journal of Science and Technology Vol. 5 No. 2 (Feb 2012) ISSN: 0974- 6846

Sci.Technol.Edu. “LQN Models” B.Bharathi & G.Kulanthaivel
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

2150

The software entities, also known as tasks, are drawn
as thick-line rectangles, and the hardware devices as
circles. The nodes with outgoing but no incoming arcs
play the role of clients, the intermediate nodes with both
incoming and outgoing arcs are usually software servers
and the leaf nodes are hardware servers (such as
processors, I/O devices, communication network, etc).

A software or hardware server node can be either a
single-server or a multi-server. Each kind of service
offered by a LQN task is modeled as an entry, drawn as a
thin-line rectangle. Every entry has its own execution
times and demands for other services (given as model
parameters). Each software task is running on a
processor, communication network delays and the disk
devices used by the Database are shown as circles.

In LQN, tasks in a layer may call each other or skip
over layers. Therefore, the word “layered" in the LQN
name does not imply a strict layering of tasks. The arcs
with a full arrow represent synchronous requests, where
the sender is blocked until it receives a reply from the
provider of service. It is possible to have also
asynchronous request messages (shown as a half-
arrow), where the sender does not block after sending a
request to the server.

The structure of a sample LQN diagram is given in
Figure1. Another communication style in LQN is
forwarding, which allows for a client request to be
processed by a chain of servers instead of a single
server. The first server in the chain will forward the
request (shown with a dotted line) to the second server,
the second to the third, and so on; the last server will
reply to the client, which is blocked waiting for the reply. It
has to be noted that there is no explicit reply arc in the
LQN notation.

Each server in the chain becomes idle as soon as it
has completed his part on behalf of a given request. The

difference between a forwarding chain and a series of
synchronous requests (e.g. a client calls synchronously a
first server, that calls synchronously a second server, and
so on) is that, in the former case, the client receives the
reply directly from the last server in the forwarding chain,
whereas in the later case, the replies travel backwards
through the series of servers, until reaching the client.
Although not explicitly illustrated in the LQN notation,
every server, whether a software or hardware, has an
implicit message queue where incoming requests are
waiting their turn to be served.

Servers with more than one entry have a single input
queue, where requests for different entries wait together
to attain service. A server entry may be decomposed in
two or more sequential phases of service. Phase 1 is the
portion of service during which the client processes are
blocked waiting for a reply from the server (it is assumed
that the client has made a synchronous request). At the
end of phase 1, the server will reply to the client, which
will unblock and continue its execution. The remaining
phases, if any, will be executed in parallel with the client.

The activities represented as circles are connected
together to form a directed graph. Parallel threads of
control, can be extended as parallel branches or may be
chosen randomly between different branches. Activities
have execution time demands, and can make service
requests to other tasks, very similar to phases.
Annotation of UML model with SPT

Performance annotations of a UML specification
define two categories of information. Performance
parameters describe the workload, the resource use and
the behavior of the program (they are inputs to a
performance evaluation). Performance measures
describe the performance itself, such as response delays,
throughputs, utilization, or percentage of lost packets.
They may be given as specified values, coming from the
requirements analysis, or they may be performance
predictions (the output of a performance evaluation).
Specified and predicted values may both be defined for
the same measure, and there could be more than one
specified value (normal service, premium service) and
more than one prediction (by different analysis methods,
for instance). In the SPT Profile, a Scenario is the unit of
operation for which performance specifications and
predictions are to be given; the duration of the Scenario
defines what a performance engineer would call a
response. Performance specifications are tags attached
to a Step stereotype, which may be a Scenario, or a Step
within it. Workload intensity parameters, and demands for
resource usage, which are used in creating predictive
models, and also attached to Steps.

Scenarios use the services of Resource entities,
which have parameters such as service policy,
multiplicity, and operation time, and measures such as
utilization. Performance analysis applies to instances
rather than classes. Instances of objects are deployed,
and execute. Different instances of the same class may

Fig. 1. A sample LQN representing 3 layers of
service.

Indian Journal of Science and Technology Vol. 5 No. 2 (Feb 2012) ISSN: 0974- 6846

Sci.Technol.Edu. “LQN Models” B.Bharathi & G.Kulanthaivel
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

2151

have different behavior depending on their role, or on the
data they process, and the same object instance may
have different behavior in different scenarios.
Quantities: Parameters and measures

Parameters are the inputs to the analysis (known or
assumed), and measures are the outputs or requirements
on them. Parameter values describe workload intensity
(e.g. arrival rate), behavior (e.g. branching probabilities),
and resource demands (e.g. CPU demand or the number
of I/O operations required by a Step). Examples of
performance measures include required, budgeted and
estimated values of delays, throughputs and utilizations.
The performance sub-profile uses the tag type PA
Performance Value for most delays, whether it is a
parameter or a measure, with modifying fields to indicate
• Whether the value is assumed (for a parameter),

estimated (for a measure) or measured.
• Whether the value being given is the mean, variance or

confidence interval. The modifying fields are an
economical, powerful, and flexible mechanism. The
new QoS Profile addresses the definition of these
values, and should be exploited. However the open
structure of modifying fields to provide interpretations of
the numbers is still needed.

Variables for parameters and measures
A single diagram with fixed values for parameters is

not enough for many analysis needs; there are typically
many variations in the potential system which is most
easily studied by solving the model with different
parameter values. For this reason the SPT Profile
supports symbolic variables, expressed as $name, as
well as values for parameters. The same convention is
used to support names for measures, to be filled by the
analysis. This is extremely useful, and could be
strengthened to accommodate:
• Management of multiple cases with alternative values

and results that are represented as arrays, or tables.
• Scoping of variable names to a given performance

context or class of objects, to support more structured
analysis. One advantage would be to allow separately
defined scenarios to be brought together without name
clashes for parameter names. If parameter names can
be defined at the class level, then when many
instances of the class interact, they could have
different values referenced as instance. $name.
Designers will also wish to analyze variations in the
selection of components and infrastructure; this is a
challenging problem. This may be resolved in MDA by
a platform-specific transformation layer.

Schedulability Vs performance profiles
A Scenario defines a response path through the

system, so it’s the unit for which performance
specifications and predictions are given. The different
types of SPT Stereotypes are given in Table 1.
● Scenarios use the services of Resource instances

• Resource parameters: service policy, multiplicity,
operation time.

• Resource performance measure: utilization.

• Quantitative resource demands given for each step.
● Each scenario is executed by a Workload:

• Open workload: requests arriving at in some
predetermined pattern.

• Closed workload: a fixed number of active or
potential users or jobs.

The sub-profiles for schedulability and performance
can be combined. The same Scenario structure underlies
the analysis, and the same measures are used, such as
duration for the delay of a Step. Schedulability analysis
could use modifiers on some parameters and measures,
such as:

• worst-case values (as in, “worst-case execution
time”)

• special parameters of a task, such as its release
time, its relative and absolute deadlines and laxity

• Special measures such as blocking time, pre-empted
time. A combined Profile could also include relevant
parameters for an action such as “is-atomic”, and a
description of scheduling. The stochastic behavior
parameters added for the Performance sub-profile
might be useful in recently developed approaches to
stochastic schedulability.

SPT-UML TO LQN transformations
The UML to LQN transformations are obtained by

applying the conversion methodology in two steps. First is
to identify methods to convert the structure of the system
from the deployment diagram. Second is to capture the
behaviour of the system from the activity diagram. Some
steps used in the conversion process are given below.

1. Component mapped to a LQN task

2. Processing node mapped to LQN devices

3. Non-processing node mapped to LQN devices

4. Active objects mapped to LQN tasks

component
<PAresource> Compon

<<PAhost>>
processor

Processor

<<PAresource>>
disk

Disk

Active thread
<<PAresource>>

Active thread

<<PAhost
processor

>>

<<deploy>>

Component

Processor

component
<<PAresource>>

Indian Journal of Science and Technology Vol. 5 No. 2 (Feb 2012) ISSN: 0974- 6846

Sci.Technol.Edu. “LQN Models” B.Bharathi & G.Kulanthaivel
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

2152

5. Component deployed as LQN task involved in
deployment, but when it comes to the active object
generating the task, the deployment is represented
indirectly through the encapsulating component.

6. Partitions are mapped to LQN tasks. Action states
connecting different partitions are represented as LQN
entry, whereas Action states connecting the same
partition (asynchronous call and synchronous calls)
are represented as LQN activity.

Steps for design evaluation as discussed in Bharathi &
Kulanthaivel (2011)
1. Draw UML diagrams for the given application.
2. Add SPT profiled information wherever necessary to

represent behaviour of the system.
3. Call uml-convert for conversion.
4. Apply relevant lqn solver to derive performance

requirement results.
5. Derive decisions and make required changes to the

design.
The above conversion steps are applied to a simple

bookshop application. The application is elaborated as
follows.
1. The user can select his book of interest, place

orders through Internet, i.e., using the browser.
2. The request is directed to a we b-server, which in

turn directs the query to the bookshop server.

3. The bookshop server returns
the price information of the books,
through db-server.
4. The db-server calculates the
book cost and returns to the
bookshop server.
5. The price information of the
books are displayed as the result
in the users browser.

The deployment diagram
shown in Fig.2 and Activity
diagrams shown in Figure.3
illustrates the behaviour and
structure of the bookshop
application. The resultant LQN
model by applying the algorithm is
given in Figure.4.

 A simple algorithm for the
step-by-step conversion of UML
diagrams (component diagram,
activity diagram and deployment
diagram in specific) to equivalent
LQN models for performance
analysis is given below.
Uml-convert
{ select the activity diagram and
input the deployments.
For each node represented in the
deployment

1. if it device or processor or
node convert to task

2. if action state
 if same partition
 convert to activity
 else
 convert to entry
3. forwarding calls represented as lqn forwarding

entries.
4. obtain execution demands and visit ratios from the

uml-activity diagram.}

Table 1 shows the different types of SPT Stereotypes
Stereo type Applies To Tags Description

«PaclosedLoad» Action,
ActionExecution,
Stimulus, Action,
Message, Method…

PArespTime [0..*]
PApriority [0..1]
PApopulation [0..1]
 PAextDelay [0..1]

«PAcontext» Collaboration
CollaborationInstance
Set, ActivityGraph

 A performance
analysis context

«PAhost» Classifier, Node,
 ClassifierRole,
Instance, Partition

PAutilization [0..*]
PAschdPolicy [0..1]
PArate [0..1]
PActxtSwT [0..1]
PAprioRange [0..1]
 PApreemptible [0..1]
PAthroughput [0..1]

A deferred receive

«PAopenLoad» Action,
ActionExecution,
Stimulus, Action,
Message, Method…

PArespTime [0..*]
PApriority [0..1]
PAoccurrence [0..1]

An open workload

«PAresource» Classifier, Node,
 ClassifierRole,
Instance, Partition

PAutilization [0..*]
PAschdPolicy [0..1]
PAcapacity [0..1]
PAmaxTime [0..1]
PArespTime [0..1]
PAwaitTime [0..1]
PAthroughput[0..1]

A passive resource

«PAstep» Message,
ActionState, Stimulus,
SubactivityState

PahostDemand[0..1]
PArespTime [0..1]
PAprob [0..1]
PArep [0..1]
PAdelay [0..1]
PAextOp [0..1]
PAinterval [0..1]

A step in a scenario

Fig. 2. Deployment diagram of a book shop application

usercpu
<<PAhost>>

internet
<<paresource>> webserver

<<webservercpu>>

dbserverdisk
<<paresource>>

dbservercpu
<<PAhost>>

bookshopserverdisk
<<PAresource>>

bookshopcpu
<<PAhost>>

LAN
<<PAresource>> ... >>

Indian Journal of Science and Technology Vol. 5 No. 2 (Feb 2012) ISSN: 0974- 6846

Sci.Technol.Edu. “LQN Models” B.Bharathi & G.Kulanthaivel
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

2153

call for request
for book

display output

idle

request for
books

call for get book
information

bookinformation

generate output

getbook
information

call get price
information

priceinformation

calculate price
information

dbserverbookshopserv erwebserv eruser browser

Fig 3. Activity diagram for the simple book shop application.

Fig.4. Resultant LQN model by applying the algorithm

Internet

Call request
for books

Display output

User cpu

Request for
books

Call get book
information

Get book

Webserver cpu

Get book
information

Call get price
information

Price
information

Bookshop

Bookshop
server cpu

Bookshop disk

Calculate price
information

DBServer cpu

Indian Journal of Science and Technology Vol. 5 No. 2 (Feb 2012) ISSN: 0974- 6846

Sci.Technol.Edu. “LQN Models” B.Bharathi & G.Kulanthaivel
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

2154

Conclusion
The paper proposes a step by step approach to

convert the UML software model to an equivalent LQN
performance model. The algorithm discussed is very
simple and easy to understand and it also provides
provision to convert all representations of the software
model to performance model. The other conversion
algorithms stated in the related work either involve graph
grammar based techniques or mathematical modeling for
the conversion process. The most important constraint of
the algorithm and the open area for work is that, the
algorithm cannot be directly applied to communication
network systems and for complex systems. The algorithm
has to be scaled up with some more additional entries for
real-time communication systems.

References
1. Bharathi B and Kulanthaivel G (2011) A tool for

architectural design evaluations – a simplistic
approach. Special issue of IJCA online, January
2011.

2. Smith CU (1990) Performance engineering of
software systems. Addison-Wesley. MA.

3. Petriu DC and Shen H (2002) Applying the UML
performance profile: Graph grammar based
derivation of LQN models from UML specifications in
Computer Performance Evaluation – modeling
techniques and tools, LNCS Springer 2002. 2324,
159-179.

4. Doria C Petriu, Jinhua Zheng Go and Hui Shen
(2003) Performance analysis based UML SPT profile.
LNCS 2003, Vol 294/2003, 87-98.

5. Gu GP and Petriu DC (2003) Early evaluation of
software performance based on the UML
performance profile. Proce. 13th Annual IBM Centers
for Advanced Studies Conf., CASCON, Toronto,
Canada. pp: 214-227.

6. Grady Booch (2001) A guide to unified modeling
language. Addison – Wesley.

7. http:\\Object Management Group (2005) UML profile
for schedulability. Performance & Time Version
1.1,2005.

8. Kahkipuro P (2001) UML based performance
modeling framework for component based
distribution systems in R.Dumke et al., Performance
Engg., LNCS, Springer 2001, 2047, 167-184.

9. Lyod G Williams and Connie U Smith (2008)
Performance evaluation of software architectures.
Proce. First Int. Workshop on software &
Performance WOSP’98.

10. Muhammad Ali Babar and Ian Gorton (2004)
Comparison of scenario based software architecture
evaluation methods. Proce. 11th Asia pacific software
Engg. Conf., APSEC’04.

