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Abstract 
In this paper, we determine the nonabelian tensor square G ⊗G for special orthogonal groups SOn (Fq) and 
spin groups Spinn (Fq), where Fq is a field with q elements. 
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Introduction 
For a group G, the nonabelian tensor square      

G ⊗G is the group generated by the symbols g ⊗ h 
and defined by the relations 

gg′ ⊗ h = ( gg′ ⊗ gh) (g ⊗ h),  
g ⊗ hh′ = (g ⊗ h) (hg ⊗ hh′) 

for all g, g′, h, h′∈ G, where gg′=gg′g -1. The 
nonabelian tensor square is a special case of the 
nonabelian tensor product which has its origin in 
homotopy theory and was introduced in 1984, 1987 
(Brown & Loday 1984 & 1987). The exterior square 
G ⋀ G is obtained by imposing the additional 
relations g ⊗ g = 1⊗ for all g ∈ G on G ⊗G. The 
commutator map induces homomorphisms  

 : g ⊗ h ∈ G ⊗ G           ߢ (g ⊗ h) = [g, h ] ∈ G', 

 'G ∋ [ g, h] = (g ⋀ h) ′ߢ             g ⋀ h  ∈ G ⋀ G : ′ߢ
and J2 (G) = ker (ߢ). 

The results of Brown and Loday (1984 & 1987) give 
the following commutative diagram with exact rows 
and central extensions as columns:  

Fig. 1. The commutative diagram 
 

                                       0                 0    

 J2 (G)      M (G)        0       (Ga) ߁                  

                                                 G ⊗G       G ⋀G        1      (Gab) ߁                

                                     G’             G’ 

                                
                                 1              1 

where G′ is the commutator subgroup of G, M (G) 
the multiplicator of G and ߁ the Whitehead's 
quadratic function (Whitehead, 1950). 

The determination of G ⊗G for linear groups was 
mentioned as an open problem by Brown et al. 
(1987) and was pointed out in a more general form 
by Kappe (1999). In the latter paper, there is a list of 
open problems on the computation of the 
nonabelian tensor square of finite groups. 
(Hannebauer, 1990) determined    the    nonabelian   
tensor   square   of   SL2 (Fq), PSL2 (Fq), GL2 (Fq) and 
PGL2 (Fq) for all q ≥ 5 and q = 9. Later, in 2008 
(Erfanian et al., 2008)  determined the nonabelian 
tensor square of SLn (Fq), PSLn (Fq), GLn (Fq) and 
PGLn (Fq) for all n, q ≥ 2. The Schur multiplier and 
nonabelian tensor square of special linear groups, 
projective special linear groups, symplectic groups 
and projective symplectic groups  determined by in 
2011 (Rashid et al., 2011a). They also computed the 
nonabelian tensor square of groups of order p2q 
(Rashid et al., 2011b). 

In this paper, we focus on the Schur multiplier 
and nonabelian tensor square of special orthogonal 
groups SOn(Fq) and spin groups Spinn (Fq), where Fq 
is a field with q elements. 

The nonabelian tensor square of special 
orthogonal groups and spin groups are stated in the 
following theorem: 
Main theorem 
Let Fq be a finite field with q elements, |Fq | > 4. Then  
(i) Spinn (Fq) ⊗ Spinn (Fq) ≅ Spinn (Fq)   
(ii) SOn (Fq) ⊗ SOn (Fq) ≅ Spinn (Fq). 
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Preliminaries 
This section includes some preparatory 

definitions and basic results on the Schur multiplier 
and nonabelian tensor square of groups which are 
used for proving our main theorem. 
Definition 1: (Wilson, 2010) An n ⊗ n matrix A is an 
orthogonal matrix if AAT = I, where AT is the 
transpose of A and I is the identity matrix. 
Definition 2: (Wilson, 2010) The orthogonal group of 
degree n over a field Fq consisting q elements, On 

(Fq), is the group of n ⊗ n orthogonal matrices with 
entries from Fq, with the group operation of matrix 
multiplication. 
Definition 3: (Wilson, 2010) A finite group G is 
quasisimple if G = [G,G ] and G = Z (G) is a simple 
group. 
Definition 4: (Wilson, 2010) A group G is a 
subnormal subgroup of H if there is a normal series 
from G to H.  
Definition 5: (Wilson, 2010) A group G is a 
component of H if G is a quasisimple group which is 
a subnormal subgroup of H. 
Definition 6: (Wilson, 2010) The special orthogonal 
group SOn (Fq) is the component of orthogonal 
group On (Fq) containing the identity. 
Definition 7: (Wilson, 2010) The spin group Spinn 

(Fq) is the double cover of the special orthogonal 
group SOn (Fq), such that there exists a short exact 
sequence of Lie groups  

1          C2           Spinn (Fq)          SOn (Fq)         1. 

If R         F        G is a presentation of a group G, 

then M(G) ≅ (F′ ⋂ R ) = [F,R ] (Hopf's Formula). 

According to (Karpilovsky, 1987) a group G* is 
said to be a covering group of G if G*has a subgroup 
A such that 
(i) A ⊆ Z (G*) ⋂ [G*, G* ], 
(ii) A ≅ M (G), 
(iii) G ≅ G*/A.     
A central extension of a group G is a short exact 
sequence of groups  
 

1          A           H          G         1 

such that α: A        H and α (A) is in the Z (H) , the 
center of the group H. 
 
 
 

 
 
 
Let G be a finite fixed group and let 
 

E :  1          A           H          G         1 

be a central extension. Given another central 
extension by G,  

E1 :  1          A           K          G         1 

We say that E covers (respectively, uniquely 
covers) E1 if there is homomorphism (respectively, 
unique homomorphism) γ : H        K such that the 
following diagram is commutative:    

1          A           H           G          1 

         

     1         B            K          G         1 

We shall refer to the central extension E as being 
universal if it uniquely covers any central extension 
by G. 

Theorem 1. (Steinberg, 1968) If q is finite and |q | > 
4, then M (Spinn (Fq)) = 1 and the natural central 
extension Spinn (Fq)          SOn (Fq) is universal. 

A group G is said to be perfect if [G,G ] = G. In the 
following theorem, the Schur multiplier and covering 
group of a finite perfect group is stated. 

Theorem 2. (Steinberg, 1968) Let G be a finite 
perfect group and  

1        A         G*         G         1 

is a universal central extension, then A ≅ M (G) and 
G* is a covering group of G. 

Proof of main theorem 

Lemma 1. If q is finite and |q | > 4, then spin groups 
Spinn(Fq) and special orthogonal groups SOn (Fq) are 
perfect. 
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Since α: Spinn (Fq)      SOn (Fq) is an universal central 
extension, it is an immediate consequence that 
special orthogonal groups are perfect.                                                                   

Proof of Main Theorem: Let Fq be a finite field with q 
elements and |Fq | > 4. 

(i) According to Lemma 1, spin groups Spinn (Fq) are 
perfect and by Theorem 2. M (Spinn (Fq)) = 1. Then 
we have the following short exact sequence:  

1       J2 (Spinn (Fq))        M (Spinn (Fq))       1. 

Thus J2 (Spinn (Fq)) = 1. By the following central 
extension, 

1        Spinn (Fq)        Spinn (Fq)       Spinn (Fq))′        1 

it is clear that : 

Spinn (Fq) ⊗ Spinn (Fq) ≅  (Spinn (Fq))′ = Spinn (Fq). 

(ii) Since  

(SOn (Fq))′ = SOn (Fq), SOn (Fq) = (SOn (Fq))′ = 1 and 
so Im ψ  = 1, where 

ψ: ߁(SOn (Fq))
ab              SOn (Fq) ⊗ SOn (Fq) 

 is the homomorphism such that ψγ (A(SOn (Fq))′) = 
A ⊗ A and A ∈ SOn (Fq). Hence, from Fig 1., SOn 

(Fq) ⊗ SOn (Fq) is a central extension of SOn (Fq) by 
M (SOn (Fq)). By the relations 

AB ⊗ C = (AB ⊗ AC) (A ⊗ C) and 

A ⊗ CD = (A ⊗ C) (CA ⊗ CD) 

the nonabelian tensor square SOn (Fq) ⊗ SOn (Fq) is 
generated by elements A ⊗ B with A and B 

commutators. From [A ⊗ C, B ⊗ D ] = (A CA−1) ⊗ 
(BDD−1), it follows that an element is a commutator 
in SOn (Fq) ⊗ SOn (Fq). Therefore, SOn (Fq) ⊗ SOn 

(Fq)is perfect and thus is isomorphic to its covering 
group, that is, Spinn (Fq).             
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