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Abstract

Application of curved beams in special structures requires a special analysis. In this study, the differential quadrature
method (DQM) as a well-known numerical method is utilized in the dynamic analysis of the Euler-Bernoulli curved
beam problem with a uniform cross section under a constant moving load. DQ approximation of the required partial
derivatives is given by a weighted linear sum of the function values at all grid points. A prismatic semicircular arch with
simply supported boundary conditions is assumed. The accuracy of the obtained results is corroborated by employing
the Galerkin and finite element methods. Finally, the convergence rate of the DQM and Finite Element Method (FEM)
in the associated problem is explored. In the structural problems with specific geometry, use of DQM which is
independent of domain discretization, is proved to be efficient.

Keywords: Differential Quadrature Method (DQM), Semicircular curved beam, Moving load, Galerkin method, Finite
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Introduction

Differential Quadrature Method (DQM) is a proper
method in solving mathematic and engineering equations
straightly. This method estimates a partial derivative of a
variable function with respect to a coordinate at a grid
point as a weighted linear sum of the function values at all
grid points along that coordinate direction. DQ method
was introduced for the first time by Bellman and Casti
(1971), and was applied in solving partial differential
equations by Bellman et a/. (1972). Bert et al. (1988) and
Jang et al. (1989) utilized DQ method in structural
mechanic problems for the first time. However, DQ
method application in continuum mechanics is extremely
restricted to those problems with a regular domain and
specific boundary conditions. One of the DQ method
applications in solving beam problems was studied by
Laura and Gutierrez (1993) in Timoshenko beam free
vibration with the classical boundary conditions. Liu and
Wu (2001) have conducted research on free vibration of
Euler-Bernoulli beam employing this method.

DQ method application in solving dynamic equations
is difficult to cope with due to the simultaneous existence
of boundary and initial conditions. Analysis of structural
problems via this method is frequently carried out to static
analysis. In this paper, DQM application will be
investigated grounded on Euler-Bernoulli beam theory,
which is appropriate for analysis of beams limited in size
and also multi-span beams. Initially, essentials and the
equations dominating DQM will be explained.
Subsequently, dynamic equations governing the curved
beam will be extracted, and DQM will be applied in the
mentioned beam analysis with simply supported (SS-SS)
boundary conditions. Finally, it will be illustrated that
DQM is applicable in the curved beams dynamic analysis
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excited by a moving load, and its convergence will be
explored.

Differential quadrature method (DQM)

Differential Quadrature (DQ) is capable of calculating
derivative orders of the field variable up to A-7 order in
the case of N grid points. DQ equations based on
polynomial or Fourier series expansion are computable;
in this paper, DQ based on polynomials, which provides
fine compatibility in analyzing high-order differential
equations, is employed. A test function is required for
deriving DQ equations; moreover, Shu (2000) proved the
Lagrange interpolation polynomials as the test function
generates the best convergence. The value derived for
the function w(x) in the th grid point is calculated via
summing weighting-linear function values in the other
nodes (Eqg. (1)). Besides, rnth-order derivative (n=2, 3, ..,
N-7) in the th grid point can be calculated in the same
way(Eg. (2))

aw(x) Z cOw(x,),
dx (1)
d"w(x) _ n)
an - ;(:Ik W(Xk) 1 (2)

Where N is the number of grid points in the x-direction,
q(kl) and (kn) are the weighting coefficient associated

with the first and mth-order derivative, respectively, and
w(xy) are field variables at the point x(k=7,2...,N).

Weighting coefficients for the first and rth-order
derivative are obtained from the following recurrence
equations,

Ali Nikkhoo et al.
Indian J.Sci.Technol.



Indian Journal of Science and Technology

(1)
- R ("(1)) ik, i,k=1,2,...,N,
(X| _Xk)R (Xk) (3)
Ci(n_l)
ci =n(c" Vg ——*—) =k
X =%
n=2,3,...,N-1 i,k=1,2,...,N, (4)
¢l = Zcfk") = LN-1i=1,2,..,N,
k=1,k=i (5)
Where R(x)and R”(x) are defined as:
R(X) = (X—%).(X=%,) -« (X=Xy) (6)
N
RY(x)= [T(x—=x%)-
k=1, k=i (7)

X7, Xz, .., Xy are coordinates of the grid points that might
be selected as desired. Obviously, weighting coefficients
of the second and higher-order derivatives is computable
via weighting coefficients of the first-order derivative (Egs.
(3-5)). It has been proved that multi-dimensional cases,
similar to one-dimensional case, are computable
separately in any directions (Shu, 1991).

Curved beam equations excited by a moving load

The beam is assumed as a plane circular arch of
constant cross section and an incompressible centerline.
It is essential to utilize the polar coordinates with the
origin at the center of the arch, and denotes by r the
radius of the arch, j the variable angle, s the arch length
equal to j rand ds the variations along the arch equal to
rdj . One element is taken out of the arch (Fig. 1) and the
element equilibrium conditions in the tangential and
normal direction as well as the moment conditions are
written.

Neglecting the effect of shear, element rotation and
infinitely small quantities of higher orders, the following
equations would be obtained

Fig. 1.Equilibrium of an element of circular centerline beam
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TG0, g gy OV D i
3 +N( ,t)—mr——= o +rp,( ,t)=0, "
NEY 16 - m @Y p6 =0,
I (©)
M—rT(i b+rp.( .t)=0,
(10)

Where u(j ,t) represents tangential displacement, v({j ,?)
radial displacement, 7(j ,¢) shear force, N( ,?) normal
force, M(j ,t) bending moment, p,( ,Z) normal load per unit
length of arch, pyj ,¢) tangential load per unit length of
arch, p.( ,#) bending load per unit length of arch and m
constant mass per unit of length arch. Further, for arches

with incompressible centerlines and large radial of
curvature:
El| v 1) ouf .t
MG 1) rz[ a(i ), gj )}
) 11)
ouf ,f)
v ="
(12)

Where E is the Young’'s modulus and /is moment of
inertia at the beam sections.

By eliminating all unknowns (Egs. (8-12) except
u(j ,t), the following single partial differential equation is
obtained (Fryba, 1999).

u( ,t)+284u(i ,t)+82u(j Ry
@' 6 a 4 a 2
+n’r“ a'uf ,t) o°ug 1)
El | g %t° ot

[ap(i 1)
TEH| g
(13)

Taking the solution of this non-homogeneous equation,
though possible, would be very time-consuming and
laborious. Therefore, the approximate estimations as
numerical methods are required to be employed.

—rpG b+ %‘;G Tl t)}

Problem formulation via DQM

In this section, DQM application for analyzing an
Euler-Bernoulli curved beam deformation under a moving
load will be investigated. Consider a hinged-hinged beam
as one with an arched shape, central angle @, radius r
and symmetric about the central axis with the hinges at
equal heights (Fig. 2a). A vertical load, P(xt), moves
horizontally over the arch at the constant speed, ¢. The
load components in polar coordinate are
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PG .t)=p(xt)cosf —f /2),
pa .)=pxtsing —f/2),
pm(i ’t):Q

Fig.2. Circular arch a) motion of a vertical force
b) bending vibration c) radial vibration

PUx.TY =

= i i S

(14)
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As it is known, in a hinged-hinged arches one
differentiates between bending vibration (Fig. 2b) and
radial vibration (Fig. 2c). Usually, the bending vibration
that has the lowest natural frequency is taken as the
dominant vibrational mode for solution. Radial vibration
does not satisfy the assumption concerning the
incompressibility of the centerline. However, in large-
span, thin, curved bars the elongation of the centerline is
very small in comparison with the effect of bending
(Fryba, 1999).

In order to solve the differential equation of a curved
beam deformation, Eq. (13), time equations can be
solved as independent parameters and by considering
initial conditions of the problem. Consequently, Eq. (13)
has been transformed into a one-dimensional equation.
But, in this paper, time was also considered as an
independent parameter and Eq. (13) was analyzed via
DQ method as a partial differential equation in two
dimensions of time and space. Expanding Egs. (1-7) in

directions of time and displacement and in polar
coordinates is as follows:
d" W(j 1) &
— N it/ z (n) W(] k, J
|_1,2,...,N, 1:1,2,...,|v|, (15)
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d wo., d™w( ) ic(””wﬂi’”

|:1,2,...,N, 1_12 M, (16)
Eq. (15) represents the value of the mth-order derivative
for wj ,#) function in the th grid point based on j (angle
variation) while Eq. (16) represents the value of mth-order
for w(j ,¢) function in the j#th grid point based on #(time). In
these equations, N corresponds to the number of grid
points along j , M the number of grid points in # domain,

Fig.3 Normalized maximum tangential displacement via
Galerkin method, FEM and DQM
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q(k”) weighting coefficients for the rth-order derivative

along j, Cj(&n) weighting coefficients for the mth-order
derivative in fdomain and wjj ;) function value in jth grid
point. Weighting coefficients for the first-order derivative
along j, first-order derivative in ¢ domain, rth-order
derivative along j and mth-order derivative in ¢ domain
are obtained

(D) ;
o RU) o120,
(li_J j)R (] j) (17)
D _ el G
" =n(e e - )
Ji—l i
i#j,n=23,..,N-11ij=12,..N, (18)
N
¢”=-3c" n=1,2,.,N-1i=1,2,.,N
J=Lj (19)
1)
=W L i o12,.Mm,
(ti_tj)Q (tj) (20)
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(m) _ (m-D=@) _ G
—_m m m-. C )
j (Gi ¢ —t,.)
i#j, m=23,...M-1 i,j=12,...,M, (21)
Eli(m) Zc(m)
j=1, j=i
m=1,2,...,.M -1 i=12,..,M, (22)
Where A" (p,) and Q'/(1,) are defined as
1 . N - .
R()(J k): H(J k) j)l
j=1, j#k (23)
. M
Q()(tk): H(tk_tj)
i=1, j#k (24)

j irepresents the /th grid point coordinate, which would
be selected as desired. { corresponds to the jth moment
that proceeds in ¢ domain. Chebyshev grid point
distribution model is chosen as the grid point distribution
model along the domain since it corresponds well with the
interpolation of ponnomiaIs:

1- cos(—p)
= N-1 _ i-12,.N,
2 (25)
j_
1—cos( p)
t = M-1 " j=12,.M,
2

(26)

Numerical Examples

Eq. (13) would be solved via DQM for the SS-SS
curved beam. The curved beam was assumed as a
semicircular arch with the opening angle of the arch @=r
radian, radius /=1 m, moving load with constant value of
P=1 N with constant speed of =1 m/s Young’s modulus
of £21 N/m, moment of inertia 1 m* and mass per unit
of length n¥1 kg/m. The boundary conditions were
applied separately based on Eq. (27) corresponding to
the SS-SS boundary conditions and u{j ,0)~0 and
au(j ,0)@t=0 as the initial conditions.

u(0,t) =0, u(d,t)=0,
v(0,t) =0, v(d,t)=0,
M(O,t)=0, M(d,t)=0, 27)

In these equations, bending moment (M) is obtained via
Eq. (11) and radial displacement (V) via Eq. (12). In order
to apply boundary and initial conditions separately, the
Generalized Differential Quadrature Method was utilized
since it provides acceptable convergence in obtaining
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Table 1. The numerical analysis results for curved beam via DQ

method
Number of grid points DAF DAF; DAF;
11 3.326204 | 1108.735 2498.765
15 2.277727 | 759.2423 1711111
19 2.243216 | 747.7386 1685.185
analysis results of high-order differential equations (Wang
et al., 2005).
The results are normalized. The tangential
displacements, radial displacements and bending

moments of the numerical solutions for the curved beam
under a moving load are divided by the tangential
displacement, radial displacement and bending moment
of the analytical solution same prismatic circular arch,
subjected to a concentrated unit force, A, at the middle of
the beam, respectively. The analytical solution can be
obtained by using the complementary virtual work method
to solve this statically indeterminate structural problem
(Tsumura, 1956).

The results of the mentioned beams dynamic

Table 2. The normalized maximum tangential displacements
analyzed via DQM, FEM and Galerkin method

Nabero | oaw | rew | Gaekinien
11 2498.765 2298.765 3351.852
15 1711.111 2002.469 3351.852
19 1685.185 1743.21 3351.852
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analysis solved via DQM are indicated in Table 1 for 11,
15, and 19 nodes along j and in fdomain. The Dynamic
Amplification factors for the normalized maximum
bending moments (DAF;), maximum tangential
displacements (DAF,) and maximum radial
displacements (DAF3;) are assumed.

Table 2 shows the curved beam normalized
maximum tangential displacement results under a moving
load excitation passing at 1 m/s constant speed via DQM,
Finite Element Method, and Galerkin method. In the
Finite Element solution, three-node elements were
utilized while 11, 15, and 19 elements were respectively
employed. Given that each element includes three
degrees of freedom (DOF), the sum of the DOFs along
the beam in FEM analysis exceeds to that of DQM.

Fig. 3 demonstrates the curved beam normalized
tangential displacement corresponding to SS-SS
boundary conditions traversed by a moving load via
before mentioned methods.

Galerkin solution, which is only applicable for an SS-
SS beam, assumes a large curvature radius and a flat
arch for the curved beam. This assumption is feasible
when the central angle is taken small which in this
circumstance; the load components are removed from the
sinusoidal form. Consequently, in the semi-circular
curved beam with the central angle 7, the results of
Galerkin method, the only method offering closed-form
solution for the curved beam problems under a moving
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Fig.4. Convergence of the maximum radial
displacement of an SS-SS curved beam

log [e
&

0.9 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.2
logi(N)
load, show an appreciable difference in results obtained
by those employed numerical methods.

In Fig. 4 the DQM convergence rate has been
compared to the FEM. The rate of convergence for the
DQM increased when the number of grid points
increases. The FEM convergence is constant by
increasing the number of elements.

Conclusions

Considering the mentioned issues and the curved
beam dynamic analysis excited by a moving load, it
would be concluded that:

e The numerical examples revealed DQM provides
acceptable convergence in solving high-order
differential equations compared to other numerical
methods. DQ method was assessed in the dynamic in-
plane deflection analysis model of prismatic curved
beams, and it was illustrated that this numerical method
is adequately efficient in these problems.

¢ In DQM, convergence rate augments quadratically as
the number of grid points increases and almost
complete convergence would be achieved by assuming
20 grid points in the whole domain. However, when the
number of grid points exceeds a certain limit, DQM

leads to an ill-conditioned problem. In the FEM,
convergence rate is constant.
¢ Initial conditions, rigid boundary conditions and

boundary conditions of the displacement field derivative
were applied simultaneously in the start/end grid points
of the domain. It was revealed that DQM provides
suitable compatibility with applying initial conditions,
rigid boundary conditions and bending moments.

o Application of the Galerkin method which generates a
closed-form solution for curved beams problems
excited by a moving load has some restrictions
according to the geometry and boundary condition of
the structure. If the curved beam is assumed to be
semicircular curved one, the results obtained by this
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method show remarkable errors. Consequently,
numerical methods must be utilized in order to have
accurate analyses in such problems.

e DQ method is of relative superiority compared to the
other numerical methods given its independence from
domain discretization in the structural problems with
particular geometry.
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