
A New Approach to Concurrency Control
in XML Databases

Sayyed Kamyar Izadi1* and Mostafa Haghjoo2

1Department of Computer Science, Shahid Beheshti University, Tehran, Iran; Sk_Izadi@sbu.ac.ir
2Faculty of Computer Engineering, Iran University of Science & Technology, Tehran, Iran; haghjoom@iust.ac.ir

Abstract
One of the most important features of a database in a multi-user environment is its concurrency control mechanism. The
existing protocols either provide a restricted concurrency level which is less than what logically could be or provide a high
level of concurrency which may lead to some defects. To overcome these problems, we offer a novel locking protocol with
some rich locks named “XML Path Locking by Child Consideration” (XPLC). In our approach unlike the existing ones, we
consider the child of the node which we want to lock. Also our locks have different granularities according to their types.

*Author for correspondence

1.  Introduction

With the growing popularity of XML, it becomes an
important format for exchanging and storing semistruc-
tured data. It is now widely used in many applications
such as science, biology, business and particularly web
applications. Managing huge data stored in XML docu-
ments, emphasizes the need for native XML databases1–4.

Native XML databases support all of the features which
are found in traditional database systems. Concurrency
Control is one of the most important features of a database
in multi-user environments. As a result some concurrency
control protocols have been developed for XML databases
so far. These protocols can be classified as XPath or DOM
model based5.

Some of the current protocols have constraints which
lead to a restricted concurrency level while other proto-
cols have some integrity defects like phantom problem.
Moreover improper granularity assigned to the locks, results
in using more locks while the transaction is scheduled.

Most of the XPath-based protocols use different types
of path locking. XPath Locking Protocol4 considers two
types of operations: one type modifies the structure of the
document and the other one keeps the structure without

any change. In compatibility matrix it assumes that the
locks for different types of operations are compatible with
each other and the conflict happens between the locks used
for the same types of operations. For an example it says
read and insert locks are compatible because one opera-
tion is structural and another is unstuctural. But this may
lead to phantom problem. In fact, defining compatibility
matrix in this way is basically wrong. Furthermore, in this
approach the set of pass-by nodes in a path from root to
destination nodes in each step are locked by P-lock if they
do not conflict with the locks held by other transactions,
but after passing this step, all P-locks on the nodes which
have been accessed in this step are released. Read lock
(R-lock), write lock (W-lock), insertion lock (I-lock) and
deletion lock (D-lock) are just applied to destination nodes
for reading, writing, inserting and deleting. This locking
method causes a potential risk of deleting a subtree by a
transaction while other transactions are executing read or
write operations on the nodes in lower levels of that sub-
tree which in effect may lead to an integrity defect.

In XPath-based concurrency control6, every active
transaction uses a copy of the main document to execute
its updates in it and to check the conflict between the
locks of different transactions. Also a copy of document

Indian Journal of Science and Technology, Vol 7(2), 151–157, February 2014

Keywords: Concurrency Control, Transaction, XML Database, XPLC

ISSN (Print): 0974-6846
ISSN (Online) : 0974-5645

A New Approach to Concurrency Control in XML Databases

Indian Journal of Science and Technology152 Vol 7 (2) | February 2014 | www.indjst.org

is produced which contains all updates of all active
transactions. When a transaction commits, all the updates
done by it are reflected to the main document. So when
there are n active transactions, n+1 copy of the main
document should be produced. Consequently this is an
expensive method and has high overhead.

In Sedna locking method it is claimed that the sub-
trees can be locked without locking the ancestors of the
root in intention mode7. In order to achieve this goal it
uses a labeling algorithm but does not define its mecha-
nism of assigning labels to the nodes of XML document.
Also like previous methods, it doesn’t allow two transac-
tions concurrently execute two insert operations under a
parent, although it is logically possible and does not lead
to any fault.

 In the protocol proposed by Dekeyser and Hidders5,8,9,
update operation need to be simulated by sequence of
simple delete and insert, so it needs more commands and
locks. It is claimed that two write operations can be done
concurrently on the same node while assuming writing
always implies reading. By considering these assumptions
beside the fact that read and write locks are in conflict, it
is impossible to execute two concurrent write operations
on a node by different transactions, because implicit read
of the second write is in conflict with the first write. Thus
the second write is not executable concurrently with the

first one. In this model during executing an XPath query,
all the nodes existing in the path which is traversed, are
locked in read mode. This applies a great restriction to
concurrency and prevents many update operations which
are logically can be done concurrently by that read opera-
tion. For example consider XML document in Figure 1 and
this XPath query: /Library/Books/Book/Title. Applying
this query to the document Figure1 locks Library, Books,
Book, Title elements in read mode. Now, if we want to
insert a new Chapter node under <Book id=1> it is not
possible because we need write lock on it but it has a read
lock, and conflict happens. Finally delete operation is
only applicable for leaf nodes, so it’s not possible to delete
a subtree by a single delete command. In order to delete a
subtree, every node in it needs a separate command to be
deleted one by one in bottom-up order.

Locking protocol introduced in10 places locks on differ-
ent granules according to their types. So it involves lower
locking overhead by requesting fewer locks for concur-
rency. Placing intention locks on every node in the path
from the root node to those subtrees or nodes that a trans-
action wants to read or write, besides preventing integrity
defects, provides an appropriate level of concurrency.
But this approach causes some restrictions by preventing
some certain operations from performing concurrently,
although logically they are executable concurrently. For

<Library>
 <Books>
 <Book id="1">
 <Title>Database</Title>
 <Chapter num="1">
 <Subject>storage</Subject>
 <Content>A relational database ….</Content>
 </Chapter >
 <Chapter num="2">

<Subject>indexing</Subject>
 <Content>A relational database ….</Content>
 </Chapter>
 </Book>

<Book id="2">
 <Title>Native XML Databases</Title>

<Chapter num="1">
 <Subject>storage</Subject>
 <Content>A native XML database ….</Content>
 </Chapter >

</Book>
 </Books>
 <Magazines>

<Magazine id = "1">
<Title>computer science</Title>

 </Magazine>
 </Magazines>
</library>

Figure 1.  A fragment of an XML document library.

Sayyed Kamyar Izadi and Mostafa Haghjoo

Indian Journal of Science and Technology 153Vol 7 (2) | February 2014 | www.indjst.org

example in document Figure 1 assume that transaction
T1 wants to read every books subject while transaction T2
wants to add a new chapter to the book entitled “Native
XML Database”. To read all book’s subject, T1 should per-
form path expression /Books/Book/Subject on the Library
document. To perform this query T1 requires IS-locks on
Library, Books and Book nodes and it requires S-lock on
Subject nodes. To add a new chapter, T2 requires IX-locks
on Library and Books nodes and it requires X-lock on
Book node by Id=1. This node was locked in IS mode
by T1 and since IS-lock conflicts with X-lock; T2 cannot
acquire its needed locks and should wait. But logically it
is possible to add chapters while reading subject of a book
and performing these two operations concurrently should
not lead to any defect. Also this method does not define
any update operation for text nodes.

There are other concurrency control protocols which
are listed in12 that in all of them we did not find the idea of
considering the child node in locking.

In this paper we introduce our novel approach named
XPLC: “XML Path Locking by Child Consideration”. To
achieve higher level of concurrency, we introduce the
notion of “Child Consideration” in our path locking
approach. This means when a node is locked due an oper-
ation, the lock type is chosen with respect to not only the
operation type but also the next child of the node in the
path. This means some of our locks have two parts. The
first part is its ordinary lock type chosen from lock table
regarding the operation and the second part is chosen
with respect to the next child in the path.

In order to use proper number of locks, we have
assigned proper granularity to our locks. For example
the granularity of our read and delete locks is set at the
subtree level while our intention locks are set at the node
level. The data model in our approach is based on a sim-
plification of the standard XPath data model which is
described in section 3.1.

The remaining parts of this paper are organized as the
following: We introduce our approach in Section 2, while
we have a serializability analysis and comparison of our
work with respect to others in section 3. We have our con-
clusion and future works in section 4.

2.  XPLC: Our Proposed Protocol
XML Path Locking by Child Consideration (XPLC) is our
novel protocol for concurrency. In order to clarify our
approach, we first present our data model.

2.1 Data Model
The data model used in our approach is based on XPath
data model5,8,9. In this model there is no difference between
element, attribute or text nodes. We classify nodes only to
terminal and non-terminal cases. Terminal nodes are the
leaf nodes which cannot accept any child. They contain an
uninterrupted stream of bytes, such as text strings, graph-
ics, or video/audio sequences.

Definition: An Xtree xt is a tuple (N, B, r, V) where
N is a set of nodes, B:N×N is a binary relation represent-
ing the directed edges (branches) of the tree xt, and r∈N
is the root node of xt. The function V maps the nodes
(except r) to strings representing the node’s name.

The Library document in Figure 1 has been repre-
sented as an Xtree in Figure 2. The value of each node in
Figure 2 is shown in Table 1.

2.2 Operations
Like all traditional databases, XML databases have four
operations: Read, Insert, Delete, and Update. In this paper
we use the following notations for these operations:

•	 �r(p): This query operation retrieves XML data based
on the path p. Path expressions are based on XPath
query language syntax.

•	 �a(n, v): This operation creates a new node m with
V(m) =v and a new edge (n, m) in the Xtree.

•	 �d(n): This operation deletes node n. All the nodes,
whose ancestor is node n, are also deleted. In other
words this operation deletes the subtree whose root is
node n.

•	 �u(n,v): This operation changes the value of the node
n to a new value v. This operation is only done on the
terminal nodes.

2.3 Lock Modes and their Granularity
Regarding to the previous defined operations on Xtree
and the notion of the child consideration, we propose
the lock modes needed to support concurrency between
these operations as follow:

•	 �R lock: This lock is set on the nodes which their cor-
responding subtree is the result of a r(p) query. As a
result the granularity of R lock is at subtree level.

•	 �IRC lock: If a node like n is locked by IRC lock, it means
that a transaction is going to read some descendants
of n. The index c means that the next child of node

A New Approach to Concurrency Control in XML Databases

Indian Journal of Science and TechnologyVol 7 (2) | February 2014 | www.indjst.org154

node m under the node n. As a result this lock is only
applicable to non-terminal nodes and its granularity is
at node level. The index c in this lock is set equal to v
which shows this lock is set to add a node with v type.
So it is possible to place an append lock Ac on a node
locked in IRc mode they have different indexes.

•	 �U lock: When an update operation u(n, v) wants to
change the content of the node n to v it locks n by U
lock. Thus prevents reading or writing this node while
updating operation is active. This lock is only appli-
cable to terminal nodes so its granularity is at node
level.

•	 �IC lock: This lock is applied to the nodes in the path
from root to destination nodes of every update opera-
tions e.g. (delete, insert and update). This lock is only
applicable to non-terminal nodes with granularity at
node level.

•	 �D lock: If a node n is locked by this lock, it means the
node n and its corresponding subtree will be deleted.
As a result granularity of this lock is at subtree level.

A summary of the lock modes and their compatibility
rules is given in Table 2.

In order to show the correctness of our locking behav-
ior, the following explanations are needed to clarify the
intuitions behind our locks.

•	 It is logically possible to have two insert operations
under a node by two different transactions5,9. So two
AC locks are not in conflict with each other.

Figure 2.  A representation of XML document.

Table 1.  Values of the nodes shown in Figure 1

V(n1) = Library V(n14) = id V(n27) = Subject
V(n2) = Books V(n15) = Title V(n28) = Content
V(n3) = Magazines V(n16) = “1” V(n29) = “1”

V(n4) = Book V(n17) =
“Database”

V(n30) = computer
science

V(n5) = Book V(n18) = num V(n31) = “1”
V(n6) = Magazine V(n19) = Subject V(n32) = storage

V(n7) = id V(n20) = Content
V(n33) = A
relational
database ….

V(n8) = Title V(n21) = num V(n34) = “2”
V(n9) = Chapter V(n22) = Subject V(n35) = indexing

V(n10) = Chapter V(n23) = Content V(n36) = relational
database ….

V(n11) = id V(n24) = “2” V(n37) = “1”

V(n12) = Title V(n25) = Native
XML Databases V(n38) =storage

V(n13) = Chapter V(n26) = num V(n39) = A native
XML database ….

n with type c is the next node that should be locked.
This lock is needed to prevent conflicting operations,
e.g. delete, from operating on this node, while other
reading transactions are active in its subtree. This lock
considers the child of the node which it is applied to.
This lock is only applicable on non-terminal nodes.

•	 �AC lock: If a node n is locked by this lock, it means
that an append operation a(n, v) is going to add a child

Sayyed Kamyar Izadi and Mostafa Haghjoo

Indian Journal of Science and Technology 155Vol 7 (2) | February 2014 | www.indjst.org

•	 It is not possible to have AC lock and U lock on the
same node because AC lock is only applicable on non-
terminal nodes while U lock is used only for terminal
nodes.

•	 Suppose that two transactions want to lock a node n
by AC1 and IRC2 locks. These two locks are in conflict if
C1=C2, because this means that the first transaction
wants to add a C1 type node while the second trans-
action wants to read C1 type nodes and this lead to
phantom problem.

•	 The IRC, IC and AC locks are only applicable to non-
terminal nodes while U lock is only used for terminal
nodes. In other words it is not possible to request
U-lock for the node which is locked with IRC, IC or AC
locks.

2.4 Locking Protocol
In order to demonstrate our locking protocol, first we
present the scenario of locking when an operation is
scheduled.

•	 r(p): To perform this read operation all the nodes in
the path p, except the destination nodes which are
locked by R-lock, are locked by IRC locks. For example
r(/Library/Books/Book) leads to the following locks:
IRC1(r), IRC2 (n1), IRC3(n2), R(n4), R(n5).
where, C1=”Library”, C2=”Books”, and C3=”Book”. It
is clear that before reaching the destinations node n4
and n5, we lock r, n1, and n2 with respect to the child
of them.

•	 a(n, v): To perform this insert operation, all the nodes
from the root r till node n are locked by IC lock. Node
n is also locked by AC lock. For example to add a chap-
ter element behind the <Book id=”1”> the following
lock should be set:

IC(r), IC(n1), IC(n2), AC(n4),
where, C=”Chapter”.

•	 d(n): This operation deletes the node n with its cor-
responding subtree. To perform this delete operation,
all the nodes from the root r till node n is locked by IC
and node n is locked by D-lock. For example, deleting
<book id=”2”> needs the following locks:
IC(r), IC(n1), IC(n2), D(n5).

•	 u(n, v): This operation updates the content of a termi-
nal node. To perform this operation the existing nodes
from root till node n is locked by IC locks and the node
n is locked by U lock. For example updating the title of
the book with id=”1” to “Databases Concepts” needs
the following locks:
IC(r), IC(n1), IC(n2), IC(n4), IC(n8), U(n17)

Now we are ready to present our locking protocol.
XPLC protocol is based on the following rules:

Rule 1: Before performing any operations, use the
proper locking scenario.

Rule 2: Before a transaction acquires a lock its com-
patibility should be checked with lock compatibility
matrix (Table 2).

Rule 3: Each transaction should obey 2PL protocol.

3. Analysis and Comparison

3.1 Serializability Analysis
The combination of locking with correct behavior and
observing 2PL protocol ensures serializability of the lock-
ing protocol11. According to this rule our XPLC protocol
is serializable because:

•	 In section 3.3 we have shown the correctness of our
locking behavior.

•	 Rule 3 of XPLC protocol explicitly express the exis-
tences of 2PL in this approach.

3.2 Comparison with the Previous Protocols
We have found seven problems in the previous protocols.
These problems have been listed below:

Problem 1: XLP protocol assumes R-lock and I-lock
are compatible because the insert operation modifies the
structure rather than the content of a node but the read
operation locks the content of the node. This assumption
may not be true and may lead to phantom problem when
a transaction inserting a child under a node is read by
another transaction.

Table 2.  Compatibility matrix

IRC IC R AC U D
IRC + + + → x −
IC + + − + x −
R + − + − − −
AC → + − + x −
U x x − x − −
D − − − − − +

+: compatible −: conflict →: conditional
 x: impossible
(→) means that those locks are compatible if the C parts of
them are different.

A New Approach to Concurrency Control in XML Databases

Indian Journal of Science and TechnologyVol 7 (2) | February 2014 | www.indjst.org156

Problem 2: In XLP Protocol Read lock (R-lock), write
lock (W-lock), insertion lock (I-lock) and deletion lock
(D-lock) are applied to destination nodes and the pass-by
nodes in path from root to destination nodes are tem-
porarily locked in P mode. This may lead to integrity
defect when a transaction wants to delete a subtree while
another one performs a reading operation in lower levels
in the subtree.

Problem 3: Some of these models like Dekyser and
Hidder5,8,9 and Lightweight multigranularity locking10 do
not define any independent update operation. It implies
that they need to simulate update operation by a delete
and insert command.

Problem 4: Sedna7 has ambiguity in its concurrency
control method, since it uses a labeling algorithm but
does not define its mechanism for assigning labels to the
nodes of XML document.

Problem 5: XPath-based concurrency control6 uses
three copies of a document to control concurrency. This
is an expensive method and has high overhead.

Problem 6: Having proper granularity levels for locks
according to their types lead to reduce the number of the
needed locks. However most of the previous protocols
except10 do not consider this fact.

 Problem 7: All of the proposed protocols prevent
concurrent executing of some operations which can
logically commute. For example in document Figure 1
assume that transaction T1 wants to add a new chap-
ter to the book with id=2 and transaction T2 wants to
read Title of this book, so T1 should acquire a lock on
Book node with id=2 for its writing operation and T2
should acquire a lock for its reading operation on the
same node. In all of the previous protocols, these two
operations cannot be performed concurrently because
one of them needs a read lock on a node while the other
needs a write lock on it. These two locks are in conflict
according to the rules expressed by the previous pro-
tocol. But performing these two operations logically is
possible and does not result in any defect since these two
operations work on different types of the Book node’s
children and do not interfere in the execution process
of each other.

In our approach regards to our locks and the locking
protocol none of the above problems could occur. As a
result we could claim that our protocol have higher con-
currency control level without any defect.

4. Conclusion and Future Works

XML has become the most important technique to
exchange and store data in the Web. Managing huge
data stored in XML documents, emphasizes the need for
native XML databases. While XML is hierarchal and rep-
resented by tree models, its flexible structure makes the
previous tree locking protocols inadequate. Providing a
high degree of concurrency in XML databases is crucial
in many applications. In this paper we have proposed
XPLC protocol for XML concurrency control. It is a novel
approach which introduces the notion of child consider-
ation in XPath locking protocols. This protocol unlike the
pervious ones allows two transactions to have concurrent
update operations e.g. (insert, delete, update) below the
same nodes. Using AC and IRC lock modes allows a trans-
action to read a subset of a subtree and at the same time
it allows another transaction to insert a node of different
type under the root of that subtree. These enhancements
provide higher level of concurrency to XPLC protocol.

As our locking protocol is a logical protocol, our future
work is adapting our logical locking protocol to a proper
physical locking protocol to have a tradeoff between con-
currency and disk access.

5.  References
  1.	� Bourret R. Going native: use cases for native XML data-

bases. [Internet]. Available from: http://www.rpbourret.
com/xml/UseCases.htm

  2.	� Feinberg G. Anatomy of a native XML database, XML 2004;
2004.

  3.	� Jagadish HV, Al-Khalifa S, Chapman A, Lakshmanan LVS,
Nierman A, Paparizos S, et al. TIMBER: a native XML
database. VLDB Journal. 2002; 11:274–91.

  4.	� Jea KF, Chen SY, Wang SH. Concurrency control in XML
document databases: XPath locking protocol. Proceedings
of the Ninth International Conference on Parallel and
Distributed Systems (ICPADS’02); 2002 Dec 17–20; 2002;
p. 551–556.

  5.	� Dekeyser SS, Hidders J. Confict scheduling of transac-
tions on XML documents. Fifteenth Australasian Database
Conference (ADC 2004). 2004; Dunedin, New Zealand:
Australian Computer Society Inc. 2004. p. 93–101.

  6.	� Hye Choi E, Kanai T. XPath-based Concurrency Control
for XML Data. Proceedings of the 14th Data Engineering
Workshop (DEWS 2003) Japan; 2003. pp. 302–313.

Sayyed Kamyar Izadi and Mostafa Haghjoo

Indian Journal of Science and Technology 157Vol 7 (2) | February 2014 | www.indjst.org

  7.	� Pleshachkov P, Novak L. Transaction isolation in the sedna
native XML DBMS. Proceedings of the Spring Young
Researcher’s Colloquium on Database and Information
Systems SYR CoDIS. St.-Petersburg, Russia; 2004.

  8.	� Dekeyser S, Hidders J. Path locks for XML document collabora-
tion. Proceedings of the Third International Conference on Web
Information Systems Engineering; 2002. Dec 12–14; Singapore,
2002. p.105–14.

  9.	� Dekeyser S, Hidders J. A transaction model for XML data-
bases. World Wide Web: Internet and Web Information
Systems. 2004 Mar; 7(1): 29–57.

10.	� Choi Y, Moon S. Lightweight multigranularity locking for
transaction management in XML database systems. J Syst
Software. 2005; 78:37–46.

11.	� Weikum G, Vossen G. Transactional information systems:
theory, algorithms, and the practice of concurrency control
and recovery. Morgan Kaufmann; 2002.

12.	� Haustein M, Härder T, Luttenberger K. Contest of XML
lock protocols. Proceedings of the 32nd International
Conference on Very Large Databases (VLDB 2006), 2006
Sep 9; VLDB Endowment Inc.; 2006; p.1069–80.

