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Abstract
In this paper assessment of the reliability of the results in the finite element method is studied by using probability theory. 
A probabilistic error indicator is presented which is based on Kriging error interpolation and is used for mesh smoothing 
purpose. Effective parameters such as shape functions, volume of elements and distance between nodes are considered 
simultaneously. The field variation is also considered and is calculated statistically or by other means such as user’s sense. 
This error indicator is used for adaptive mesh smoothing purposes especially in the uncoupled ALE approaches. Robustness 
and accuracy of the method are shown through several examples on different fields with irregular boundaries or abrupt 
changes.
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1.  Introduction

In the FEM analyses, mesh quality affects solution accuracy. 
Hence this quality should be improved via smoothing. Mesh 
smoothing algorithms relocate the nodes of the previous 
mesh to improve mesh quality. The field variation is also an 
important factor which affects the mesh quality. Although 
field variation has been used in some mesh refinement 
applications such as ALE approaches, generally it is not 
considered in the conventional smoothing methods.

In literature, the mesh quality is often characterized 
by the smoothness or shape of the elements. Some mea-
sures such as aspect ratio, change in elemental area and 
the angles subtended at a node are commonly used to 
quantify the smoothness of a mesh. One popular mesh 
smoothing algorithm is the Laplacian smoothing which 
relocates a node by calculating the average of the adjacent 
nodes coordinates which are connected by element edges 
to the node in question1. Volume smoothing relocates a 
node by computing a volume-weighted average of the 
element centers in the elements surrounding the node. 

This approach can be considered as a modified Laplacian 
smoothing. Similarly, there are various mesh smooth-
ing algorithms which are based on distances between 
points2–8. A number of other mesh smoothing methods, 
produce acceptable quality meshes by minimizing a dis-
tortion metric9,10. Also some approaches are angle-based 
optimization 11,12. In order to generate better results, some 
researchers combine two or more smoothing methods13,14. 
However no error estimation is performed in the above 
mentioned smoothing methods.

To the author’s opinion error estimation, evaluated 
based on variation of field variable can be a logical basis 
for improvement of mesh quality. Although there are 
some error estimators in literature15–23, these methods 
have not been directly used to improve mesh quality and 
mesh refinement. In these methods only field variation 
has been considered for error indication. In these for-
mulations there is not any measure to show the effect 
of relocation of nodes to reduce errors. These methods 
should be used in successive runs and they do not provide 
any exact clue about size of required elements.
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is usually used as a bench mark in structural problems. 
Finally the application of this method in a three dimen-
sional thermal analysis of flame forming process is also 
explained. This example is an illustration of the ability of 
the presented method in ALE refinement technique. 

If heating path is simply a straight line, an appropriate 
mesh can be created by the user, nevertheless in complex 
heating paths it is difficult to obtain anadequately refined 
mesh near the region of interest. In these cases using adap-
tivity techniques help to obtain quality solutions while the 
cost of the analysis is reduced. The fundamentals of the 
probabilistic approach used in this study are explained in 
the next section.  

2.  Interpretation of Probability
Probability theory is an appropriate approach to handle 
uncertainty in mathematics. There are several categories 
of probability interpretations such as classical probability, 
frequency probability, subjective probability and objec-
tive probability. In the elementary probabilistic textbooks, 
classical definition of probability is used. Definition of 
classical probability is “ratio between the favorable cases 
and the number of equally probable cases”. Since there are 
some paradoxes in this definition, frequency probability 
is more used in the engineering textbooks. This inter-
pretation defines an event’s probability as the limit of its 
relative frequency in a large number of trials. Therefore 
frequency probability is based on the idea that some iden-
tical events exist. Obviously it is not a perfect idea. In the 
other word repeated trials do not exist in reality.

On the contrary of the above mentioned interpreta-
tions, according to subjective probability, “Probability 
depends on the Subject’s State of Information”25. Therefore 
if the state of knowledge is alike, the evaluation of prob-
ability would coincide and “for an omniscient being 
probability would not exist”25. 

Now referring to the PDE’s, usually there is no explicit 
solution to these equations. Therefore some researchers 
focus on finding approximate solution methods such as 
FEM. Since FEM solutions depend on the mesh and other 
assumptions used in the formulations, the field variable 
(denoted here by f(x)) is generally nondeterministic. In 
fact the state of information about exact solution affects 
the probability of the approximate solution and its accu-
racy. For someone who is aware of the exact solution the 
field variable and its accuracy are deterministic. Since the 
circumstances for field variable in finite element method 

Hence, available techniques are either mesh refinement 
based on error estimation of the field which considers field 
variable or are smoothing methods such as Laplacian or 
volumetric method etc. In this study, an adaptive mesh 
smoothing method is presented which eliminates the 
above mentioned shortcomings. To the authors’ knowl-
edge there is no available adaptive mesh smoothing 
method which directly performs a mesh smoothing as 
well as mesh refinement based on field variation and its 
error estimation. An error indicator is presented and 
then is used directly to improve mesh quality. In this 
method, the degree of belief on the accuracy of discreti-
zation which is evaluated by a probabilistic method is 
used as an error indicator. This error indicator consid-
ers parameters such as shape functions, volume of the 
elements, distance between nodes and field variation 
simultaneously. Therefore this indicator can be used in r, h 
or p refinement methods. However in this paper, the pre-
sented error indicator is only used for r refinement mesh  
smoothing. 

A new aspect of this paper is its probabilistic meth-
odology which is also implemented for the first time. 
The fundamentals of the probabilistic approach used in 
this study are based on Kriging interpolation method24. 
Assumptions used in traditional Kriging method have 
been modified to be applicable for numerical analyses 
used in this paper. 

This adaptive mesh smoothing automatically yields 
an optimized mesh structure from a smooth to a coarse 
mesh as a function of field variation and its error. In 
available mesh refinement techniques in literature, 
error of the filed variable is estimated then mesh refine-
ment is performed but region of refinement is not well 
defined and this refinement should be performed in 
several runs. While in the present method region of 
refinement is automatically obtained. Even the sizes of 
refined elements are obtained based on acceptable error 
values. Using this method number of elements are kept 
constant and sizes of the elements are automatically 
altered. Hence it would be beneficial in terms of com-
putation time since number of nodes and elements are 
not increased.

Capability of this adaptive mesh smoothing to recon-
struct various mesh geometries is examined by several 
simple examples such as smoothing near the boundaries 
and near a load concentration. Then capability of error 
estimator and stability of method is shown by a rectangu-
lar plate with a circular hole under in plain loading which 
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and subjective probability are the same, therefore this 
paper will be constructed based on this probabilistic idea.

In the FEM, the solution precision is extremely 
affected by the interpolation procedure. For example if an 
element base function matches the exact field, the exact 
solution can be obtained by the FEM. Therefore if the 
degree of belief (or the degree of unbelief) in the behav-
ior of interpolation of the field variable is measured, an 
error indicator will be obtained. Strictly speaking, in the 
present research, the degree of belief is used as an error 
estimator instead of traditional methods.

In common problems, variance is a suitable func-
tion that can be used to evaluate the degree of belief. 
For example for a given temperature state, if tempera-
ture is measured several times by one thermometer, the 
degree of belief in the precision of that thermometer 
can be evaluated by variance of these temperatures. In 
the present study similar approach is used to evaluate 
the degree of belief in the accuracy of interpolation. 
However there is only one solution at every point in the 
FEM. Therefore the variance function cannot be calcu-
lated directly.

Suppose FEM procedure is a black box and nodal 
values (fi) are its outputs. These outputs are considered 
as a realization of the field. Since these outputs are sam-
ples of a smooth field, the values of the field at every 
arbitrary point can be approximated by vicinal samples. 
In other words, there is a certain correlation between 
nearby samples. In this paper, this correlation between 
data at nearby spatial locations is used to calculate the 
variance and evaluate the degree of belief in the accu-
racy of interpolation used in FEM. This idea which was 
used by Matheron24 for the first time in the geostatistic 
applications will be rewritten in the next section in our 
FEM approach.

3.  Error Estimator and Mesh 
Smoothing
As was mentioned in the previous section, the field vari-
able f(x) and the results of FE method (fi) are considered 
as nondeterministic values and realization of the field 
respectively. In the FE method, approximation of the field 
is an important concept which is obtained by the follow-
ing assumption:

	 f fi i
i

n

h ( )x = ∑
=

j
1
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in which, φi 's and fj 's are shape functions and nodal  
values respectively. In this paper, error indicator is defined 
as follows: 
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where, f(x) is the field variable and E(f) the mathematical 
expectation of f. E(f) is a linear function which expresses 
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It should be noted that generally E(f) can be evalu-
ated statistically by Arithmetic Mean. Since there are 
not sufficient data to evaluate this function, Eq. (3) must 
be rewritten as a function of appropriate parameters. 
Sincecovariance is defined as follows:
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It should be noted that in probabilistic theory, cova-
riance function Cov(fi, fj) represents the correlation 
between fi and fj which are evaluated at points xi and xj 
respectively. Due to continuity of the field variable, in 
sufficiently small vicinity of two points, the difference 
between fi and fj will decrease if distance between xi and 
xj decreases. Disregarding other parameters, Cov(fi, fj) is 
a function of distance between xi and xj and can be repre-
sented as follows:

Cov f f C C Ci j i j i j ij( , ) ( , ) ( ) ( )= = − =x x x x h � (6)

where, C is a certain function. Therefore equation 5 can 
be rewritten:

s j j jE i j ij
i

n

j

n

i
i

n

iC C C2

11 1
0 2( ) ( ) ( ) ( )x = + ∑∑ − ∑

== =
h h � (7)

where, hij and hi are distances between xi, xj and xi, x 
respectively. 
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It is supposed that in a small domain, the variation of 
C0 is negligible. Therefore E((f – E(f ))2)can be evaluated 
statistically at every element by Arithmetic Mean and 
adjacent nodal values as follows:

	 c
f E f

n
I

i i
I

i

n

0

2

1
=

−( )
∑

∧

=
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where, CI
0  is calculated in element I. Values of fi is are 

FEM results at nodal points which were defined as the 
realization of field variable and n is the total number of 
nodes in the vicinity of element I. The term of E fi

I ( ) is 
the mathematical expectation of field variable in relation 
to element I at node i. In this paper, E fi

I ( ) is calculated 
by least square approximation in which the order of base 
function is similar to order of element shape function. 
The values of E fi

I ( ) for element I are shown in Figure 2 
schematically.

The estimation of E fi
I ( ) is based on two assumptions. 

Firstly in FE method, it is expected that the element size 
and the order of element shape function can characterize 
the field variable. Secondly, it is expected that the FEM 
results represent global behavior of field variable. 

By using equation 8, equation 7 can be modified as 
follows:

s j j jE i j

X X

a

j

n

i

n

i

X X

E f f c c e c e
i j i

2 2
0 0

11
0

2

2= − = + ∑∑ −
−

−

==

−
−

(( ) )
( ) (

h
aa

i

n )2

1=
∑

          s j j jE i j

X X

a

j

n

i

n

i

X X

E f f c c e c e
i j i

2 2
0 0

11
0

2

2= − = + ∑∑ −
−

−

==

−
−

(( ) )
( ) (

h
aa

i

n )2

1=
∑ � (11)

in which, s E
2 is calculated at X and Xi is are nodal posi-

tions. Therefore the interpolation quality is quantified by 
the integration of s E

2 over the whole domain. Therefore:

Since there is not any exact function for equation 6, 
a presumed model is considered to estimate covariance 
function. This model must have reasonable properties and 
also reoresents statistical behaviors of the field variable. 
For instance, if the distance between xi and xj increases, 
this dependency should decrease. Therefore the cova-
riance functions must be bell shaped. In this study, the 
following model is used:

	 C c eij

h

a
ij

( )
( )

h =
−

0

2 � (8)

Therefore only C0 and a must be evaluated reasonably 
and statistically.

In this equation, the radius of domain in which cor-
relation between values is important is quantified by 
parameter a, as is shown in Figure 1. It should be noted 
that the dependency in a parabolic PDE equation exists 
between every two points but only those points with sig-
nificant dependency should be considered. These points 
are recognized by radius of domain using parameter a. 
In practical problems, statistical identification of this 
parameter is intricate. Therefore parameter a should be 
determined base on experience. 

Since in FE methods dependency among nodal values 
is usually outstanding in one element, parameter a can 
be estimated by element size. Generally, a l el= 2  has 
yielded reasonable results.

In equation 8, the parameter C0 can be written as fol-
lows:

	 c C E f E f0
20= = −( )( )( ) ( ) � (9)

Figure 1.  Gaussian model and the ratio between parameter 
a and the area under model. Figure 2.  The estimation of E fi

I ( ).
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where, e and g subscripts show the element number and 
the integration point number respectively in the ele-
ment e. s E

2  is calculated at integration points and wg is 
are integration weights. If equation 12 is minimized with 
respect to nodal positions, the best mesh is obtained. 
Therefore:
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Equation 13 can be solved by the Newton-Raphson 
method. In the finite element method, shape functions 
are constructed by natural coordinates. Therefore shape 
functions are not dependent on the nodal positions. In a 
2-D space, the position of xk is modified as follows:
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in which, Ψ0 is residual of equation 13 and Ψ1 is the deriva-
tive of Ψ0 and are calculated by nodal position of previous 
mesh arrangement. It can be shown that:
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and:

	 h x x y yk g k g= − + −( ) ( )2 2 � (15-c)

where, xg is are the integration points. According to 
equations 15-a and 15-b, the presented mesh smooth-
ing procedure depends on the shape functions, the nodes 
positions, the volume of adjacent elements and the con-
centration of the field (identified by C0) which can be 
calculated statistically in the relevant applications if 
required.

4.  Results
In the first example of this section, capability of the pre-
sented method to reconstruct various meshes is examined. 
Figure 3, shows a mesh which is randomly and highly 
distorted. The modified meshes shown in Figures 4 and 
5 have been obtained by one and five iteration of mesh 
smoothing. These regular meshes have been obtained 
when C0 and a are considered as constant parameters. 
The value of C0 has no effect on the procedure but the 
value of a must be bigger than the minimum element size. 
If a is changed by a x y= − + − +( ) ( )10 10 52 2 , the mesh 
is concentrated at point (10, 10) as is shown in Figure 6. 
Also if the definition of hij

a
 in equation 8 is replaced by:

	 g x g y g x yxx yy xy. . . .∆ ∆ ∆ ∆2 2+ + � (16)

Figure 3.  A randomly distorted mesh.
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Figure 4.  Reconstructed mesh obtained from the mesh in 
Figure 3.  by one iteration of mesh smoothing. Here, C0 and 
a are constants.
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mesh concentration will be anisotropic. For example 
if in equation 16 g a g axx x yy y= =1 12 2/ , /  and gxy = 0 , in 
Figure 7 anisotropic concentration is obtained by follow-
ing covariance function: 

C h c e a x yij

x
a

y
a

x

ij

x

ij

y( ) , ( ) ( ) ,
( ) ( )

= = − + − +
− +




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







0
2 2

2 2

10 10 5 aay = 2� (17)

In the above examples, the presented method has been 
fairly stable and rapidly converged. In this stage, the time 
cost of this method is in the order of volumetric approach.

The presented method can be applied for a complicated 
geometry. Figures 8 and 10 show initial meshes. Smoothed 
meshes are shown in Figures 9 and 11 respectively. As it 
can be seen the mesh is affected by the geometry of the 
domain. In these examples, since C0 and a are considered 
to be constant, the resultant smoothed meshes reflect the 
shapes of the boundaries. 

If a primary solution of field exists or an explicit FEM 
procedure is used, C0 can be calculated statistically. Figure 
12 shows this parameter for a quadrant rectangular elas-
tic plate with a circular hole under static in plain stress 
loading. Based on statistical values of C0, the variance of 
interpolation is calculated and plotted in Figure 13. The 
improved mesh is reconstructed in Figures 14 and 15 
by using 5 iterations and 30 iterations respectively. Also 
Figure 16 shows that the error of stress field on y-axis 
obtained by the presented adaptive mesh has reduced by 
further iterations. This figure also shows that this adaptive 
approach is quite stable and error values do not increase 
by increasing iterations. In this study, the same procedure 
is used to reconstruct the adaptive mesh for a thermal 
analysis. In this example, a plate is traversed by a moving 
heat flux and the consequence adaptive mesh is computed 
by presented approach. Since the statistical values of C0 in 

Figure 5.  Reconstructed mesh obtained from the mesh in 
Figure 3 by 5 iteration of mesh smoothing. Here, C0 and a 
are constants.
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Figure 6.  Reconstructed mesh, C0 is constant and a = (x – 10)2 

+ (y – 10)2 + 5.
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Figure 7.  Reconstructed mesh by eq. 17.
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Figure 8.  Initial mesh.
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Figure 9.  Reconstructed mesh.
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Figure 10.  Initial mesh.
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Figure 11.  Reconstructed mesh.
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Figure 12.  Contour of C0.
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Figure 14.  The reconstructed mesh by 5 iteration of mesh 
smoothing.

Figure 15.  The reconstructed mesh by 40 iteration of mesh smoothing.
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some elements are zero, computational problems occur. 
Therefore in the elements in which statistical value of C0 
is less than 20 percent of mean value of C0, its mean value 
is considered. 

Figures 17–20 show the adaptive constructed meshes 
and the temperature fields in the thermal model of line 
heating analysis. In this example, value of C0 is considered 
as a function of heat flux distribution. To show the effect 
of mesh adaptively on the results, temperature values are 
examined. The maximum temperature value in the last 
increment is 808oC. In this example the temperature val-
ues in the last increment are also obtained without mesh 
reconstruction, by the same element size (Figure 21) as 
well as a finer element size (Figure 22).The maximum 
temperature values are 760oC and 808.5oC respectively. 
As it can be seen the error is reduced from 7% down to 
less than 1.4% by mesh reconstruction. In an ordinary  

laptop (2.00 GHz) CPU time without smoothing takes  
180 seconds and with smoothing takes 222 seconds and 
241 seconds when temperature updates are is also per-
formed. Hence smoothing time cost is about 22% of the 
total cost and 33% if updating of field variable is also per-
formed. It is been noted that CPU time without smoothing 
takes 1026 seconds for finer element size.

5.  Conclusion
In this paper, a probabilistic adaptive mesh smoothing 
method was introduced. The affects of mesh character-
istics and also variation of a primary field (if available) 
on the accuracy of results were considered directly in the 
presented approach.  

The capability of the presented method was examined 
by various examples. Firstly, by several examples the ability  

Figure 16.  The error of stress field on y-axis.
Figure 17.  Temperature contour and reconstructed mesh 
at t=0.

Figure 18.  The contour of temperature and reconstructed 
mesh at t=10.

Figure 19.  The contour of temperature and reconstructed 
mesh at t=15.
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of the method to reconstruct various mesh geometries 
such as uniform mesh, isotropic concentrated mesh and 
also anisotropic concentrated mesh were demonstrated. 
Secondly, mesh reconstructions of domains with curved 
boundaries were performed through two examples. Then 
the steps of mesh smoothing approach were shown for 
a rectangular plate with a circular hole under in plain 
loading. Finally presented method was used for an ALE 
example. To the authors’ knowledge there is no available 
adaptive mesh smoothing method which directly consid-
ers field variation. In other words available techniques are 
either adaptive refinement which consider field variable 
such as Z-Z method  or are smoothing methods such as 
Laplacian or volumetric etc which may be used sequen-
tially but not simultaneously. 

It was shown that, the presented mesh smoothing pro-
cedure considers nodes positions and volume of adjacent 
elements. Intensity of the field which is identified by C0 

and a parameters could be calculated statistically in the 
relevant applications.

6.  References
  1.	� Freitag LA. On combining Laplacian and optimization-

based mesh smoothing techniques. AMD Trends in 
Unstructured Mesh Generation, ASME. 1997; 220:37–43.

  2.	� Ali-Yahia DA, Baruzzi G, Habashi WG, Fortin M, 
Dompierre J, Vallet MG. Anisotropic mesh adaptation: 
towards user-independent, mesh-independent and solver-
independent CFD, Part II: structured grids. International 
Journal for Numerical Methods for Heat and Fluid Flow. 
2002 Jul; 39(8):657–73.

  3.	� Tam A, Ali-Yahia DA, Robichaud MP, Moore M, Kozel V, 
Habashi WG. Anisotropic mesh adaptation for 3D flows on 
structured and unstructured grids. Comput Method Appl 
M. 2000; 189:1205–30.

  4.	� Bossen F. Anisotropic mesh generation with particles. 
[Master’s Thesis]. [Pittsburgh, PA]: Carnegie Mellon 
University, cMU–CS–96–134; 1996 May.

  5.	� Thompson JF, Warsi ZUA, Mastin CW. Numerical grid 
generation, foundations and applications. NewYork: North-
Holland; 1985.

  6.	� Eiseman PR. Alternating direction adaptive grid genera-
tion, American Institute of Aeronautics and Astronautics 
Journal. AIAA Paper 83-1937; 1983.

  7.	� Spekreijse SP. Elliptic grid generation based on Laplace 
equations and algebraic transformations. J Comput Phys. 
1995; 118(1):38–61.

  8.	� Soni BK, Koomullil R, Thompson DS, Thornburg H. 
Solution adaptive grid strategies based on point redistribu-
tion. Comput Method Appl M. 2000; 189:1183–1204.

  9.	� Canann S, Stephenson M, Blacker T. Optismoothing: an 
optimization driven approach to mesh smoothing. Finite 
Elements Anal Design. 1993; 13(2–3):185–190.

10.	� Siroisa Y, Dompierreb J, Valletc MG, Guibaultc F. Hybrid 
mesh smoothing based on Riemannian metric non- 
conformity minimization. Finite Elements Anal Design. 
2010; 46(1–2):47–60.

Figure 20.  The contour of temperature and reconstructed 
mesh at t=20.

Figure 21.  The contour of temperature at t=20, unchanged 
coarse mesh.

Figure 22.  The contour of temperature at t=20, unchanged 
fine mesh.



S. H. Dibajian, S. H. Hashemolhoseini, M. Farzin and M. Gandomkar

167Vol 7 (2) | February 2014 | www.indjst.org Indian Journal of Science and Technology

18.	� Zienkiewicz OC, Zhu JZ. The Superconvergent Patch 
Recovery (SPR) and adaptive finite element refinement. 
Comput. Methods Appl Mech Eng. 1992; 101:207–24.

19.	� Zienkiewicz OC, Zhu JZ. The superconvergent patch 
recovery and a posteriori error estimates. I: The recovery 
technique. Int J Numer Methods Eng. 1992; 33:1331–64.

20.	� Zienkiewicz OC, Zhu JZ. The superconvergent patch recov-
ery and a posteriori error estimates. II: Error estimates and 
adaptivity. Int J Numer Methods Eng. 1992; 33: 1365–82.

21.	� Boroomand B, Zienkiewicz OC. Recovery by Equilibriumin 
Patches (REP). Int J Num Meth Eng. 1997; 40:137–54.

22.	� Boroomand B, Zienkiewicz OC. An improved REP recov-
ery and the effectivity robustness test. Int J Num Meth Eng. 
1997; 40:3247–77.

23.	� Zhang Z, Naga A. A New Finite element gradient recov-
ery method: superconvergence property. SIAM Journal on 
Scientific Computing. 2005; 26(4):1192–213.

24.	� Matheron G. Traite de Geostatistique Appliquee, Tome 
1. Memoires du Bureau de Recherches Geologiques et 
Minieres, No. 14. Editions Technip, Paris; 1962.

25.	� DeFinetti B. Decisions and Proper Scoring Rules In: Mura 
A, editor. Philosophical lectures on probability. Springer 
Science, Business Media B.V; 2008.

11.	� Xu H, Newman TS. An angle-based optimization approach 
for 2D finite element mesh smoothing. Finite Elements 
Anal Design. 2006; 42(13):1150–64.

12.	� Freitag LA, Gooch CO. Tetrahedral mesh improvement 
using swapping and smoothing. Int J Numer Meth Eng. 
1997; 40:3979–4002. 

13.	� Freitag L. On combining Laplacian and optimization-based 
mesh smoothing techniques. Proceedings of the Sixth 
International Meshing Roundtable, AMD. 1997; London. 
220:375–90.

14.	� Canann SA, Tristano JR, Staten ML. An approach to 
combined Laplacian and optimization-based smooth-
ing for triangular, quadrilateral, and quad-dominant 
meshes. Proceedings of the Seventh International Meshing 
Roundtable; 1998; Dearborn, MI. p. 479–94.

15.	� Babuska I, Rheinboldt WC. A posteriori error estimates for 
the finite element method. Internat. J Numer Methods Eng. 
1978; 12:1597–1615.

16.	� Babuska I, Strouboulis T. The finite element method and its 
reliability. Oxford: Clarendon Press; 2001.

17.	� Zienkiewicz OC, Zhu JZ. A simple error estimator and 
adaptive procedure for practical engineering analysis. Int. 
J Numer Methods Eng. 1987; 24:337–57.


