
A Novel 8 Bit Digital Comparator for 3x3 Fixed
Kernel based Modified Shear Sorting

K. Vasanth1, A. A. F. Kavirajan2*, T. Ravi3 and Nirmal Raj4

1,4Department of E.E.E, Sathyabama University, Chennai-119, Tamil Nadu, India; vasanthecek@gmail.com
2,3Department of E.C.E, Sathyabama University, Chennai-119, Tamil Nadu, India; april04.kavirajan@gmail.com

Abstract
The need for an optimized area, speed and power plays a vital role for any median filter is good at removing impulse noise
without degrading the image details. The main operation of the median is Rank ordering. It is a computationally complex
operation, so it is hard to implement it in real time. This paper introduces a new sorting technique called for Snake like
sorting. The proposed Sorting technique is implemented as a parallel architecture. This algorithm is a Mesh based sort-
ing that require less number of comparators for rank ordering. The proposed architecture is compared with other Rank
Ordering algorithm on the basis of power, speed, and area and found to exhibit good results. The proposed architecture is
implemented on parallel and pipelined schemes and is targeted for Spartan 3e Device with gate capacity 5000 using Xilinx
7.1i compiler version. The pipelined scheme has an operating frequency of 81 Mhz occupying 283 slices with a gate count
of 5,640.

Keywords: Borrow Look Ahead Select Comparator, Median Filter, Modified Shear Sorting, Salt and Pepper Noise

*Author for correspondence

1. Introduction

Median filtering is a popular method of noise removal,
employed extensively in applications involving speech
and signal and image processing. This non-linear tech-
nique has proven to be a good alternative to linear
filtering as it can effectively suppress impulse noise,
while preserve edge information1–18. These properties
make it very popular filter in speech processing and
image processing schemes. There are two types of linear
filters. Non-recursive and recursive. In non-recursive
median filtering, a window is moved along the sampled
values of the image and the center value of each window
is replaced by the median of the values in the window.
For instance in 2D non-recursive median filtering, the
(i,j)th window of size(k*k), Wij, is centered at (i,j) and the
(i,j)th output yij = median{wij}. In recursive median filter-
ing, the window consists of recent median values as well
as input values. In 1D recursive median filtering, the
ith window of size(2N + 1),Wij consists of (N+1) input
values xi……..xi+N, and N output values yi-N……….yi-1;

wi={yi-N,…….yi-1,xi,………xi+1} and the ith output yi =
median{wi}. The existing architecture for median filter
can be broadly classified in to two classes. The array based
architecture2–4, and sorting network based architecture5,6
gives an excellent survey of the existing architecture.
The array based architecture consists of K processors of
the windows is of size K, but they have a large sample
period compared to sorting network based architecture.
A good survey paper of VLSI median filters is discussed
the author7 where the hardware complexity is expressed
in terms of number of samples ‘N’, word length ‘l’, and
running size ‘R’. In principle, these digital algorithms
and methods can be classified into two categories8;
word-level and bit-level. In this paper, only word level
median filters are studied since they offer high through-
put capability as required in many real-time image/
video systems. However a very cost-effective hardware
solution to meet this goal is often difficult to achieve
and hence system performance becomes degraded to
allow trade-off between hardware cost and achievable
performance. For example a fast median filter based

Indian Journal of Science and Technology, Vol 7(4), 452–462, April 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

K. Vasanth, A. A. F. Kavirajan, T. Ravi and Nirmal Raj

Indian Journal of Science and Technology 453Vol 7 (4) | April 2014 | www.indjst.org

on the bubble sorting algorithm9. By means of a set of
 processing elements or PEs, the required values can be
obtained with a latency of N cycles, where N is the num-
ber of input samples. Though this approach is fast, the
size of the hardware implementation complexity is pro-
portional to the square of the number of input samples.
Hence hardware overheads increase rapidly with the
number of input samples. In addition to this sorting
kernel, it is necessary to provide extra hardware in the
form of a data buffer to rearrange input samples for the
parallel processing and hence increase the memory band-
width. Another solution is a message passing method10
realized on a systolic array architecture11 both deletion
and insertion messages pass through the systolic arrays
until certain conditions are encountered. Although
the hardware complexity depends on the number of
input samples (N), the latency remains the same as that
needed in the parallel bubble sorter. This latency of N
cycles may not be allowed when real-time performance
is concerned. Sorting is one of the most commonly used
data processing applications as a fundamental operation
on a computer system. Much effort has been devoted to
find out faster sorting algorithms because of its practical
importance as well as its theoretical interest, Batcher12
proposed a parallel sorting algorithm based on a bitonic
sequence and obtained an execution time of O(log2N)
for N data using O(log2N) processors. Stone13 Also
proposed a bitonic sorting with the perfect shuffle net-
work and achieved an execution time of O(log2N) using
O(Nlog2N) processors. Preparata14 proposed another
algorithm with O(log2N) time for O(NlogN) processors.
Horiguchi and sheigei15 proposed a parallel sorting algo-
rithm with O(N) time for O(logN) linearly connected
arrays. Thompson and Kung16 and Nassimi and Sahni17
extended Bacher’s algorithm to a mesh connected arrays
with N2 Processors. They obtained the execution time of
O(N) for N2 data. The revolutionary VLSI device tech-
nology has made practical and production of special
purpose computing system with highly parallel structure.
The systolic array is generally a set of relatively a simple
processing unit of the same type, which are connected by
a simple interconnection scheme and are able to be oper-
ated in parallel.19,21 The architecture serves a very high
performance, because the primitive cells use data from
neighbours without having to store and retrieve inter-
mediate results. Section II deals with the implementation
of proposed algorithm. Section III deals with simulation
results Section IV deals with conclusions.

2.  Modified Shear Sorting
In this work Modified Shear sorting was used to showcase
the proposed Borrow Look Ahead select Comparator
(BLAC). The Modified shear sorting is one of the simplest
and fastest median finding algorithms in recent years.
The methodology of the modified shear sorting is given
in Figure 1.

The algorithm of the modified shear sorting algorithm
is as follows. Consider a 2D processing window as shown
in Figure 1.

Step 1: The rows of the window are arranged in ascending
order as shown in Figure 1a.

Step 2: The columns are arranged in ascending order as
shown in Figure 1b.

Step 3: The right diagonal of the window is now arranged
in ascending order as shown in Figure 1c. After
this operation it was found that the first element
of window is the minimum value, the last element
of window is the maximum value and the centre
element of window is the median value.

3.   Proposed BLAC as Two Cell 
Sorter

In an 8 bit image, an eight bit comparator acts as a basic
operation in finding the median. This paper presents a
novel 8 bit comparator that uses BLAC to find the greater
of two numbers. This is now referred as two cell sorter
(a comparator). The proposed architecture is developed
for two input comparator. The borrow look ahead select
logic network is implemented using compare-swap func-
tion. The select logic in each BLAC is modified version of
borrow equation of A-B subtract function. The proposed
BLAC network is shown in Figure 2.

Figure 1. Illustration of the modified Shear sorting.

A Novel 8 Bit Digital Comparator for 3x3 Fixed Kernel based Modified Shear Sorting

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org454

To understand the working of borrow look ahead
select logic, consider the basic borrow equation of a full
subtractor in equation 1. Let a and b are the two 8 bit
inputs and cin refers to initial carry Cin (which is gener-
ally 0) and C refers to carry out.

C = ((not a) and b) or ((not a) and Cin) or (b and Cin) (1)

On assuming two functions to represent the basic bor-
row functions named as Generate (G), Propagate (P) as
shown in equation 2 and 3. The subscript i represents the
number of bits. In this case, the value of i varies between
0 and 7 where 0 and 7 refers to LSB and MSB of the given
data respectively.
 Gi = (not ai) and bi (2)
 Pi = ai xor bi (3)

Substituting the equation 2 and 3 in 1 we get.

 Ci+1= Gi + (not Pi) Cin (4)

Now the equation 1 gets modified as equation 4. Vary
the value of i from 0 to 7 resulting in a carry generation in
C7 referred as carryout.

 i = 0 C0 = G0 (5)
 i = 1 C1 = G1 + P1G0 (6)
 i = 2 C2 = G2 + P2G1 + P2P1G0 (7)
 i = 3 C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 (8)
i = 4 C4 = G4 + P4G3 + P4P3G2 + P4P3P2G1

+ P4P3P2P1G0 (9)
i = 5 C5 = G5 + P5G4 + P5P4G3 + P5P4P3G2

+ P5P4P3P2G1 + P5P4P3P2P1G0 (10)
i = 6 C6 = G6 + P6G5 + P6P5G4 + P6P5P4G3 + P6P5P4P3G2

+ P6P5P4P3P2G1 + P5P4P3P2P1G0 (11)
i = 7 C7 = G7 + P7G6 + P7P6G5 + P7P6P5G4

+ P7P6P5P4G3 + P7P6P5P4P3G2 +
P7P6P5P4P3P2G1 + P7P6P5P4P3P2P1G0 (12)

The generated carryout value act as a select line for the
first 2:1 Multiplexer and the inverted Carryout value is fed
to the another 2:1 Multiplexer which gives the HIGH pixel
value and LOW pixel value is obtained after inverting the
carryout. Equation 5 illustrates that the initial carry cin is 0.
Hence the propagate function is also zero. So the first
stage carry is equal to generate function.

4.  Three Cell Sorter
The modified shear sorting algorithm extensively oper-
ates on three pixels at a time either in row, column or right
diagonal. Hence a three pixel sorting is the basic opera-
tion for this algorithm as shown in Figure 3. The above is
facilitated using three cell sorter. The output of the three
cell sorter is maximum, middle and minimum of three
pixels which are used for sorting. The internal architec-
ture of three cell sorter requires three two cell sorter (used
as BLAC) as shown in Figure 3.

The three cell sorter arranges three pixel elements in
ascending order. The first two cells are compared in the
first comparator. Here the comparator is BLAC, which
results in a high and low. The low value is then compared
with the third number in the second comparator resulting
in a maximum and a minimum number. The minimum
number of the second comparator is the minimum of the
three numbers. The maximum value of the first and sec-
ond comparator acts as an input to the third comparator.
The output of the comparator results in maximum and
minimum values. These values act as the maximum value
of an array and median value of an array.

5.   VLSI Architecture for Modified 
Shear Sorting

The paper presents two different architectures for modi-
fied shear sorting. The former is a parallel structure and

Figure 2. Illustration of Borrow look ahead select logic. Figure 3. Internal architecture three cell sorter.

K. Vasanth, A. A. F. Kavirajan, T. Ravi and Nirmal Raj

Indian Journal of Science and Technology 455Vol 7 (4) | April 2014 | www.indjst.org

Figure 4. Illustration of the Parallel architecture for modified shear sorting.

for pipelined using clock sequence. In this structure, at
the first clock pulse the first set of three pixels values
are passed into the three cell sorter and the outputs are
passed into the three set of registers. In the second clock
pulse, second set of three pixels values are passed into the
same three cell sorter and stored in the next three set of
registers. In the third clock pulse, last set of three pixels
are passed into the same sorter and at the same instant
the values stored in the two set of registers are compared
using another three cell sorter and the result are obtained
at the end of the third clock pulses. At the fifth clock pulse
the results from the two sorter outputs are compared and
the results are once again passed into the three cell sorter
at the sixth clock pulse. At the seventh clock pulse the
median output is obtained, the median is obtained at the
seventh clock pulse as shown in Figure 5.

6.   Simulation Results &
Discussions

This paper compares conventional 8 bit comparator and
carry select logic23 with the proposed BLAC. The gate level
complexities of the two cell sorter and the complexity
when used in both parallel and pipelined architecture is
discussed and tabulated. For a basic two cell sorter of exist-
ing Carry select logic we need 24 AND gate, 15 OR gate,
9 inverters and 35 EXOR gates. Totally we need 91 gates.
In proposed BLAC we need 16 AND gates, 8 OR gate, 16
inverters and 40 EXOR gates. Totally we need 88 gates.
For the parallel architecture of existing Carry select logic
we need 1,911 gates. In proposed BLAC we need 1,848
gates only. For pipelined parallel architecture of existing
Carry select logic we need 2,100 gates. In proposed BLAC

the later is a pipelined structure. The basic functional unit
for these architectures are two cell sorter. Here this paper
uses borrow look ahead select logic (BLAC) as two cell
sorter. The higher processing element of the architecture
is a three cell sorter. These three cell sorters were built
using three two cell sorters (BLAC).

5.1 Parallel Architecture
In this proposed work, a minimum exchange network
required to find the median value from nine input pixels
values by performing a partial sort, is developed20. The
Figure 4 shows the minimum exchange network for the
parallel architecture. In this sorter seven three cell sorters
are used, initially to perform Row sorting in three rows,
three set of three cell sorters are used for comparison. Each
three cell sorter exhibit outputs in the form of low, mid,
high from its inputs. The high values of the first three cell
sorter, the second three cell sorter and the third three cell
sorter passes to the parallel first three cell sorter. The mid
values of the first three cell sorter, the second three cell
sorter and the third three cell sorter passes to the second
parallel three cell sorter. The low values of the first three
cell sorter, the second three cell sorter and the third three
cell sorter passes to the third parallel three cell sorter.
Then the low value of the first parallel three cell sorter,
mid value of the second three cell sorter and the high
value of the third parallel three cell sorter is compared
using the final three cell sorter and the median value is
finally produced at the output as shown in Figure 4.

5.2 Pipelined Parallel Architecture
Pipelining process leads to the reduction in the critical
path, which reduces the speed. The circuit is implemented

A Novel 8 Bit Digital Comparator for 3x3 Fixed Kernel based Modified Shear Sorting

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org456

we need 2,037 gates. In all the tables the proposed logic is
addressed as look ahead logic. Table 1 gives the gate level
complexities of the various architectures. Table 2 illustrates
the comparison of various two cell sorters. The proposed
architecture is implemented for XC3s5000-5fg900 using
Xilinx 7.1 compiler tool for synthesis and model sim 5.8IIi
for simulation using VHDL. All the Rank ordering algo-
rithms have been implemented using VHDL for the above
targeted device. Table 3 illustrates the comparison of other
Rank ordering techniques with the proposed logic on the
basis of area, speed, power. Figure 6 gives the utilization of
number of slices for various algorithms. Figure 7 gives the
utilization of 4 input look up table by various algorithms.
Figure 8 illustrates the gate count of various algorithms.
Figure 9 denotes the Maximum combinational delay for

Figure 5. Illustration of the Pipelined Parallel architecture
for modified shear sorting.

Table 1. Gate level complexity

S.No PARAMETERS BASIC TWO CELL SORTER PRALLEL
ARCHITECTURE

PIPELINED
ARCHITECTURE

CL CSL BLAC CL CSL BLAC CL CSL BLAC
1. XOR - 35 40 - 735 840 - 735 840
2. AND 16 24 16 336 504 336 336 504 336
3. OR 8 15 8 168 315 168 168 315 168
4. INVERTER 24 9 16 504 189 336 504 189 336
5. MUX - 8 8 - 168 168 - 168 168
6. REGISTERS - - - - - - 189 189 189

Table 2. Various two cell sorter for the targeted device XC3s400tq144-5

PARAMETERS
COVENTIONAL
LOGIC

CARRY SELECT
LOGIC

BLAC

AFTER SYNTHESIS
Number of Slices 13 13 15
Number of 4 input LUTs 24 23 26
Number of bonded IOBs 32 32 34
Maximum combinational path delay 10.708 ns 13.638 ns 16.466 ns
AFTER MAPPING
Slices occupied 12 12 13
Number of 4 input LUTs 24 23 26
Number of bonded IOBs 32 32 34
Gate count for design 168 141 165
AFTER PLACE AND ROUTE
External Iob’s 32 32 34
Number of Slices 12 12 13

K. Vasanth, A. A. F. Kavirajan, T. Ravi and Nirmal Raj

Indian Journal of Science and Technology 457Vol 7 (4) | April 2014 | www.indjst.org

Table 3. Various sorting algorithms for the targeted device XC3s5000-4fg900

S.no PARAMETERS
BUBLE
SORT

HEAP
SORT

INSERTION
SORT

MDF
SELECTION
SORT

TDF PA Parallel

AFTER SYNTHESIS
1 NO OF SLICES 4375 3810 4375 4021 4375 4132 252
2 NO OF 4 I/P LUT 6080 5312 6080 6854 6080 7066 439
3 BONDED IOB 328 321 321 82 321 82 80

4 MAX COMB DELAY PATHS
(ns) 151.715 327.557 151.715 188.933 151.71 190.94 109.13

AFTER MAPPING
5 NO OF 4 I/P LUT 6080 5,312 6080 6,922 6,080 7,139 439
6 BONDED IOB 328 321 321 82 321 82 80
7 GATE COUNT 43075 37,699 43,075 42,055 43,075 43,927 2,634

AFTER PLACE AND ROUTE
11 EXTERNAL IOB 321 321 321 82 321 82 80
12 SLICES FLIP FLOP 3088 2783 3088 3689 3088 3800 227
13 EXTERNAL IOB 321 321 321 82 321 82 80

POWER CONSUMED

14 POWER CONSUMPTION 298 100 100 298 100 298 100

Figure 6. Various architecture vs number of slices.

Figure 7. Various architecture VS number of 4i/p Lut’s.

Figure 8. Various architecture vs equivalent gate count.

Figure 9. Various architecture vs combinational delay.

A Novel 8 Bit Digital Comparator for 3x3 Fixed Kernel based Modified Shear Sorting

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org458

various algorithms after place and route. Figure 10 implies
the power used in each algorithms. Figure 11–13 illus-
trates the simulation results, floor plan and routed FPGA
for the parallel Modified Shear architecture. Figures 14
and 15 gives the simulation results, floor plan and routed
FPGA for the pipelined Modified Shear Sorting. Table 2
gives the simulation result of proposed two cell, three cell
algorithms. Table 5 gives the simulation results of pipe-
lined architecture.

The Proposed Architectures are compared with the
existing different architectures for modified shear sorting
and its pipelined version, implemented using conven-
tional 8 bit comparator, carry select comparator with the
proposed BLAC respectively. The proposed architectures Figure 10. Various architecture vs power.

Figure 11. Simulation results for the parallel architecture (using BLAC).

Figure 12. Floor plan of the parallel architecture (using BLAC).

K. Vasanth, A. A. F. Kavirajan, T. Ravi and Nirmal Raj

Indian Journal of Science and Technology 459Vol 7 (4) | April 2014 | www.indjst.org

Figure 13. Routed FPGA of the parallel architecture (using BLAC).

Figure 14. Simulation results for the pipelined parallel architecture (using BLAC).

Figure 15. Floor Plan of the pipelined parallel architecture (using BLAC).

A Novel 8 Bit Digital Comparator for 3x3 Fixed Kernel based Modified Shear Sorting

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org460

are developed using VHDL in Xilinx Project manager
environment for the targeted devices XC3s5000-4fg900
and XC3s400tq144-5. The simulations are carried out
using Model sim 5.8IIe and the synthesis tool is XST
which is available in Xilinx 7.1i FPGA design suite. The
architectures are targeted for Spartan 3e family of device
having 5000 gate capacity and 400 gate capacity (Devices
XC3s5000–4fg900 and XC3s400tq144-5). The Simulation
and synthesis are carried out on an i3 processor with
2.2 GHz with 3 GB RAM.

Table 1 illustrates the gate level complexities of the
BLAC, and its position as a processing element in paral-
lel and pipelined architecture of modified shear sorting
architectures. From Table 2 we infer that the two cell
sorter has a on par area usage and low speed when com-
pared to conventional 8 bit comparator (Conventional
logic) and comparator that uses carry select logic (Carry
select logic). It is vivid from Table 3 that the proposed
parallel architecture has a low area, high speed and low
power architecture when compared to conventional 1D
sorting algorithms. It was also noted that the proposed
BLAC logic on modified parallel shear sorting requires
one tenth of the gate count when compared with other
1D algorithms. It is also evident from Figures 6–10 that
the parallel architecture occupies less number of slices,
4 input look up table, very meagre gate count, very less
combinational delay and low power. This indicates that
the proposed parallel architecture consumes less area,
works at high speed and consumes low power for the
targeted device XC3s5000-4fg900. From the Table 4 the

performance of the proposed parallel architecture is
compared with Conventional logic and look ahead logic
(BLAC). It is observed that the parallel architecture has a
par area, speed and power performance when compared
with existing logic. The Table 5 tabulates the performance
of parallel pipelined architecture using BLAC and other
algorithms. When compared to carry select logic, the
proposed pipelined parallel architecture has a low combi-
nation delay, lower gate count and occupies less number
of slices. Figures 11–13 gives simulation result, floor plan
and routed FPGA of the parallel architecture. Figures
14–16 gives simulation result, floor plan and routed
FPGA of the parallel pipelined architecture. It is visually
vivid that the proposed algorithms occupy less area and
routed in FPGA.

7.  Conclusions
The Paper proposes two architectures which are on par
with the standard 8 bit comparator and carry select
comparator. The performance of parallel architecture
for modified shear sorting median architecture occupies
one tenth of the area occupied by other 1D algorithms.
The delay offered by the parallel architecture is found
to be less and consumes less power. When targeted for
XC3s5000-4fg900 for FPGA, the architecture consumed
252 slices of the logic, having a combinational delay
of 109.13ns and consuming a power of 100mw. When
targeted for XC3s400tq144-5 FPGA, Parallel pipelined
version of the parallel architecture the architecture

Figure 16. Routed FPGA of the pipelined parallel architecture (using BLAC).

K. Vasanth, A. A. F. Kavirajan, T. Ravi and Nirmal Raj

Indian Journal of Science and Technology 461Vol 7 (4) | April 2014 | www.indjst.org

Table 4. Comparision of different parallel architecture for modified shear
sorting for the targeted device XC3s400tq144–5

PARAMETERS COVENTIONAL
LOGIC

CARRY
SELECT LOGIC

BLAC

AFTER SYNTHESIS

Number of Slices 226 216 250

Number of 4 input LUTs 411 378 442

Number of bonded IOBs 80 48 80

Maximum combinational path delay 47.352 ns 82.496 ns 94.664 ns

AFTER MAPPING

Slices occupied 211 194 231

Number of 4 input LUTs 411 378 442

Number of bonded IOBs 80 80 80

Gate count for design 2,964 2,301 2,739

AFTER PLACE AND ROUTE

External Iob’s 80 80 80

Number of Slices 211 194 231

Table 5. Various pipelined architecture for modified shear sorting for the
targeted device XC3s400tq144-5

PARAMETERS
COVENTIONAL
LOGIC

CARRY SELECT
LOGIC

BLAC

AFTER SYNTHESIS

Number of Slices 172 371 283

Number of Slice Flip Flops 120 120 120

Number of 4 input LUTs 318 696 530

Number of bonded IOBs 33 33 33

Number of GCLKs 1 1 1

Minimum period 14.727 ns 10.656 ns 12.346 ns

Maximum Frequency 67.902 MHz 93.845 MHz 81.000 MHz

AFTER MAPPING

Slices occupied 120 120 120

Number of 4 input LUTs 672 294 560

Number of occupied Slices 377 187 298

Number of bonded IOBs 33 33 33

Gate count for design 6,579 4,629 5,640

AFTER PLACE AND ROUTE

External Iob’s 33 33 33

Number of Slices 377 187 298

A Novel 8 Bit Digital Comparator for 3x3 Fixed Kernel based Modified Shear Sorting

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org462

consumes 282 slices of area and operates at 81 MHz
frequency and consumes less power. The pipelined
architecture is found to operate faster when com-
pared to conventional 8 bit pipelined comparator. The
parallel pipelined comparator also occupies less area
when compared to existing carry select logic. Hence a
low area, high speed parallel pipelined architecture is
proposed.

8.  References
 1. Oflazer SK. Design and implementation of a sim-

ple chip ID median filter. IEEE Trans on Acoustics,
Speech and Signal Processing, ASSP-30. 1983; 37(12):
1164–68.

 2. Fisher A. Systolic Algorithm for running order sta-
tistics in signal and image. Digital System. 1982;
6(14):251–64.

 3. Hwang JN. Systolic architecture for 2-D rank order fil-
tering. Proceedings of the International Conference on
Application Specific Array Processors. 1990 Sep 5–7;
Princeton, NJ. p. 90–99.

 4. Kung SY. VLSI Array Processor. Conf. on Systolic Arrays;
1989 May; San Diego. Prentice Hall.

 5. Karaman M, Onural L, Atalar A. Design and implementa-
tion of general purpose median filter in VLSI. International
Conference on Signal Processing and Communications.
1988 Mar; p. 111–19.

 6. Lucke L, Parli K. Parallel Structures for rank order &
stack filters. 1992 IEEE International Conference on
Acoustics, Speech, and Signal Processing, ICASSP-92;
1992 Mar 23–26; San Francisco, CA.

 7. Richards DS.VLSI Median Filters. IEEE Trans. on
Acoustics, Speech; 1982. p. 251–264.

 8. Lee CL, Jen CW. Bit-sliced median filter design based on
a majority gate. IEE Proceedings G Circuits, Devices and
Systems. 1992 Feb; 139(1):63–71.

 9. Offen J, Raymond R.VLSI Image Processing. McGraw-
hill; 1985.

10. Fisher AL. Systolic algorithms for running order statistics.
Signal and image processing, Dept. of Computer Science,
Paper 2396; Carnegie Mellon University; 1981.

11. Kung HT. Why Systolic Architectures. IEEE Computer.
1982 Jan; 15(1):37–46.

12. Batcher KE. Sorting Network and their applications. AFIPS
‘68 (Spring) Proceedings of the April 30–May 2, 1968,
spring joint computer conference. 1968; p. 307–314.

13. Stone HS. Parallel processing with the perfect shuffle.
IEEE Trans Comput. 1971 Feb; C-20(2):153–61.

14. Preparata FP. New parallel sorting schemes. IEEE Trans
Comput. 1978; C-27(7):669–73.

15. Horiguchi S, Sheigei Y. Parallel sorting algorithm for a
linearly connected multiprocessor system. Proc. Int’l
Conf. Distributed Computing Systems ICDCS. 1986;
IEEE Computer Society. p. 111–18.

16. Thompson CD, Kung HT. Sorting on a mesh-connected
parallel computer. Comm. ACM. 1981; C-27(1):151–61.

17. Nassimi D, Sahni S. Bitonics sort on a mesh-connected
parallel computer. IEEE Trans. Comput. 1979 Jan;
28(1):2–7.

18. Vasanth K, Karthik S. FPGA implementation of modi-
fied decomposition filters. International Conference on
Signal and Image Processing. 2010 Dec 15–17; Chennai,
India. p. 526–30.

19. Vasanth K, Karthik S. Unsymmetrical trimmed median
as detectors for salt and pepper noise removal. National
Conference on signal and image processing- NCSIP2012,
Gandhi gram rural university. 2012. p. 31-35.

20. Srinivasan KS, Ebenezer D. A new fast and efficient
decision- based algorithm for removal of high-density
impulse noises. IEEE Signal Processing Letter. 2007;
14(3):189–92.

21. Srinivasan KS, Ebenezer D. VLSI implementation of
decision based median filter using new efficient shear sort-
ing. ICACS. 2007; 115–20.

