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Abstract
The need for an optimized area, speed and power plays a vital role for any median filter is good at removing impulse noise 
without degrading the image details. The main operation of the median is Rank ordering.  It is a computationally complex 
operation, so it is hard to implement it in real time. This paper introduces a new sorting technique called for Snake like 
sorting. The proposed Sorting technique is implemented as a parallel architecture. This algorithm is a Mesh based sort-
ing that require less number of comparators for rank ordering. The proposed architecture is compared with other Rank 
Ordering algorithm on the basis of power, speed, and area and found to exhibit good results. The proposed architecture is 
implemented on parallel and pipelined schemes and is targeted for Spartan 3e Device with gate capacity 5000 using Xilinx 
7.1i compiler version. The pipelined scheme has an operating frequency of 81 Mhz occupying 283 slices with a gate count 
of 5,640.
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1. Introduction

Median filtering is a popular method of noise removal, 
employed extensively in applications involving speech 
and signal and image processing. This non-linear tech-
nique has proven to be a good alternative to linear 
filtering as it can effectively suppress impulse noise, 
while preserve edge information1–18. These properties 
make it very popular filter in speech processing and 
image processing schemes. There are two types of linear 
filters. Non-recursive and recursive. In non-recursive 
median filtering, a window is moved along the sampled 
values of the image and the center value of each window 
is replaced by the median of the values in the window. 
For instance in 2D non-recursive median filtering, the 
(i,j)th window of size(k*k), Wij, is centered at (i,j) and the 
(i,j)th output yij = median{wij}.  In recursive median filter-
ing, the window consists of recent median values as well 
as input values. In 1D recursive median filtering, the 
ith window of size(2N + 1),Wij consists of (N+1) input 
values xi……..xi+N, and N output values yi-N……….yi-1;  

wi={yi-N,…….yi-1,xi,………xi+1} and the ith output yi =  
median{wi}. The existing architecture for median filter 
can be broadly classified in to two classes. The array based 
architecture2–4, and sorting network based architecture5,6 
gives an excellent survey of the existing architecture. 
The array based architecture consists of K processors of 
the windows is of size K, but they have a large sample 
period compared to sorting network based architecture. 
A good survey paper of VLSI median filters is discussed 
the author7 where the hardware complexity is expressed 
in terms of number of samples ‘N’, word length ‘l’, and 
running size ‘R’. In principle, these digital algorithms 
and methods can be classified into two categories8; 
word-level and bit-level. In this paper, only word level 
median filters are studied since they offer high through-
put capability as required in many real-time image/
video systems. However a very cost-effective hardware 
solution to meet this goal is often difficult to achieve 
and hence system performance becomes degraded to 
allow trade-off between hardware cost and achievable 
performance. For example a fast median  filter based 
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on the bubble sorting algorithm9. By means of a set of 
 processing  elements or PEs, the required values can be 
obtained with a latency of N cycles, where N is the num-
ber of input samples. Though this approach is fast, the 
size of the hardware implementation complexity is pro-
portional to the square of the number of input samples. 
Hence hardware overheads increase rapidly with the 
number of input samples. In addition to this sorting 
kernel, it is necessary to provide extra hardware in the 
form of a data buffer to rearrange input samples for the 
parallel processing and hence increase the memory band-
width. Another solution is a message passing method10 
realized on a systolic array architecture11 both deletion 
and insertion messages pass through the systolic arrays 
until certain conditions are encountered. Although 
the hardware complexity depends on the number of 
input samples (N), the latency remains the same as that 
needed in the parallel bubble sorter. This latency of N 
cycles may not be allowed when real-time performance 
is concerned. Sorting is one of the most commonly used 
data processing applications as a fundamental operation 
on a computer system. Much effort has been devoted to 
find out faster sorting algorithms because of its practical 
importance as well as its theoretical interest, Batcher12 
proposed a parallel sorting algorithm based on a bitonic 
sequence and obtained an execution time of O(log2N) 
for N data using O(log2N) processors. Stone13 Also 
proposed a bitonic sorting with the perfect shuffle net-
work and achieved an execution time of O(log2N) using 
O(Nlog2N) processors. Preparata14 proposed another 
algorithm with O(log2N) time for O(NlogN) processors. 
Horiguchi and sheigei15 proposed a parallel sorting algo-
rithm with O(N) time for O(logN) linearly connected 
arrays. Thompson and Kung16 and Nassimi and Sahni17 
extended Bacher’s algorithm to a mesh connected arrays  
with N2 Processors. They obtained the execution time of 
O(N) for N2 data. The revolutionary VLSI device tech-
nology has made practical and production of special 
purpose computing system with highly parallel structure. 
The systolic array is generally a set of relatively a simple 
processing unit of the same type, which are connected by 
a simple interconnection scheme and are able to be oper-
ated in parallel.19,21 The architecture serves a very high 
performance, because the primitive cells use data from 
neighbours without having to store and retrieve inter-
mediate results. Section II deals with the implementation 
of proposed algorithm. Section III deals with simulation 
results Section IV deals with conclusions.

2.  Modified Shear Sorting
In this work Modified Shear sorting was used to  showcase 
the proposed Borrow Look Ahead select Comparator 
(BLAC). The Modified shear sorting is one of the simplest 
and fastest median finding algorithms in recent years. 
The methodology of the modified shear sorting is given 
in Figure 1.  

The algorithm of the modified shear sorting algorithm 
is as follows. Consider a 2D processing window as shown 
in Figure 1.

Step 1:  The rows of the window are arranged in ascending 
order as shown in Figure 1a.

Step 2:  The columns are arranged in ascending order as 
shown in Figure 1b.

Step 3:  The right diagonal of the window is now arranged 
in ascending order as shown in Figure 1c. After 
this operation it was found that the first element 
of window is the minimum value, the last element 
of window is the maximum value and the centre 
element of window is the median value.

3.   Proposed BLAC as Two Cell 
Sorter

In an 8 bit image, an eight bit comparator acts as a basic 
operation in finding the median. This paper presents a 
novel 8 bit comparator that uses BLAC to find the greater 
of two numbers. This is now referred as two cell sorter 
(a comparator). The proposed architecture is developed 
for two input comparator. The borrow look ahead select 
logic network is implemented using compare-swap func-
tion. The select logic in each BLAC is modified version of 
borrow equation of A-B subtract function. The proposed 
BLAC network is shown in Figure 2.

Figure 1. Illustration of the modified Shear sorting.
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To understand the working of borrow look ahead 
select logic, consider the basic borrow equation of a full 
subtractor in equation 1. Let a and b are the two 8 bit 
inputs and cin refers to initial carry Cin (which is gener-
ally 0) and C refers to carry out. 

C = ((not a) and b) or ((not a) and Cin) or (b and Cin) (1)

On assuming two functions to represent the basic bor-
row functions named as Generate (G), Propagate (P) as 
shown in equation 2 and 3. The subscript i represents the 
number of bits. In this case, the value of  i varies between 
0 and 7 where 0 and 7 refers to LSB and MSB of the given 
data respectively.
       Gi = (not ai) and bi (2)
       Pi   = ai xor bi (3)       

Substituting the equation 2 and 3 in 1 we get.

    Ci+1= Gi + (not Pi) Cin (4)

Now the equation 1 gets modified as equation 4. Vary 
the value of i from 0 to 7 resulting in a carry generation in 
C7 referred as carryout.

       i = 0 C0 = G0  (5)
  i = 1 C1 = G1 + P1G0 (6)
      i = 2 C2 = G2 + P2G1 + P2P1G0 (7)
      i = 3 C3 =  G3 + P3G2 + P3P2G1 + P3P2P1G0 (8)
i = 4 C4 =  G4 + P4G3 + P4P3G2 + P4P3P2G1  

+ P4P3P2P1G0 (9)
i = 5 C5 =  G5 + P5G4 + P5P4G3 + P5P4P3G2  

+ P5P4P3P2G1 + P5P4P3P2P1G0 (10)
i = 6 C6 =  G6 + P6G5 + P6P5G4 + P6P5P4G3 + P6P5P4P3G2 

+ P6P5P4P3P2G1 + P5P4P3P2P1G0 (11)
i = 7 C7 =  G7 + P7G6 + P7P6G5 + P7P6P5G4 

+ P7P6P5P4G3 + P7P6P5P4P3G2 + 
P7P6P5P4P3P2G1 + P7P6P5P4P3P2P1G0 (12) 

The generated carryout value act as a select line for the 
first 2:1 Multiplexer and the inverted Carryout value is fed 
to the another 2:1 Multiplexer which gives the HIGH pixel 
value and LOW pixel value is obtained after inverting the 
carryout. Equation 5 illustrates that the initial carry cin is 0.  
Hence the propagate function is also zero. So the first 
stage carry is equal to generate function.

4.  Three Cell Sorter
The modified shear sorting algorithm extensively oper-
ates on three pixels at a time either in row, column or right 
diagonal. Hence a three pixel sorting is the basic opera-
tion for this algorithm as shown in Figure 3. The above is 
facilitated using three cell sorter. The output of the three 
cell sorter is maximum, middle and minimum of three 
pixels which are used for sorting. The internal architec-
ture of three cell sorter requires three two cell sorter (used 
as BLAC) as shown in Figure 3.

The three cell sorter arranges three pixel elements in 
ascending order. The first two cells are compared in the 
first comparator. Here the comparator is BLAC, which 
results in a high and low. The low value is then compared 
with the third number in the second comparator resulting 
in a maximum and a minimum number. The minimum 
number of the second comparator is the minimum of the 
three numbers. The maximum value of the first and sec-
ond comparator acts as an input to the third comparator. 
The output of the comparator results in maximum and 
minimum values. These values act as the maximum value 
of an array and median value of an array.

5.   VLSI Architecture for Modified 
Shear Sorting

The paper presents two different architectures for modi-
fied shear sorting. The former is a parallel structure and 

Figure 2. Illustration of Borrow look ahead select logic. Figure 3. Internal architecture three cell sorter.



K. Vasanth, A. A. F. Kavirajan, T. Ravi and Nirmal Raj

Indian Journal of Science and Technology 455Vol 7 (4) | April 2014 | www.indjst.org

 

 
Figure 4. Illustration of the Parallel architecture for modified shear sorting.

for pipelined using clock sequence. In this structure, at 
the first clock pulse the first set of three pixels values 
are passed into the three cell sorter and the outputs are 
passed into the three set of registers. In the second clock 
pulse, second set of three pixels values are passed into the 
same three cell sorter and stored in the next three set of 
registers. In the third clock pulse, last set of three pixels  
are passed into the same sorter and at the same instant 
the values stored in the two set of registers are compared 
using another three cell sorter and the result are obtained 
at the end of the third clock pulses. At the fifth clock pulse 
the results from the two sorter outputs are compared and 
the results are once again passed into the three cell sorter 
at the sixth clock pulse. At the seventh clock pulse the 
median output is obtained, the median is obtained at the 
seventh clock pulse as shown in Figure 5.

6.   Simulation Results & 
Discussions

This paper compares conventional 8 bit comparator and 
carry select logic23 with the proposed BLAC. The gate level 
complexities of the two cell sorter and the complexity 
when used in both parallel and pipelined architecture is 
discussed and tabulated. For a basic two cell sorter of exist-
ing Carry select logic we need 24 AND gate, 15 OR gate, 
9 inverters and 35 EXOR gates. Totally we need 91 gates. 
In proposed BLAC we need 16 AND gates, 8 OR gate, 16 
inverters and 40 EXOR gates. Totally we need 88 gates. 
For the parallel architecture of existing Carry select logic 
we need 1,911 gates. In proposed BLAC we need 1,848 
gates only. For pipelined parallel architecture of existing 
Carry select logic we need 2,100 gates. In proposed BLAC 

the later is a pipelined structure. The basic functional unit 
for these architectures are two cell sorter. Here this paper 
uses borrow look ahead select logic (BLAC) as two cell 
sorter. The higher processing element of the architecture 
is a three cell sorter. These three cell sorters were built 
using three two cell sorters (BLAC).

5.1 Parallel Architecture 
In this proposed work, a minimum exchange network 
required to find the median value from nine input pixels 
values by performing a partial sort, is developed20. The 
Figure 4 shows the minimum exchange network for the 
parallel architecture. In this sorter seven three cell sorters 
are used, initially to perform Row sorting in three rows, 
three set of three cell sorters are used for comparison. Each 
three cell sorter exhibit outputs in the form of low, mid, 
high from its inputs. The high values of the first three cell 
sorter, the second three cell sorter and the third three cell 
sorter passes to the parallel first three cell sorter. The mid 
values of the first three cell sorter, the second three cell 
sorter and the third three cell sorter passes to the second 
parallel three cell sorter. The low values of the first three 
cell sorter, the second three cell sorter and the third three 
cell sorter passes to the third parallel three cell sorter. 
Then the low value of the first parallel three cell sorter, 
mid value of the second three cell sorter and the high 
value of the third parallel three cell sorter is compared 
using the final three cell sorter and the median value is 
finally produced at the output as shown in Figure 4.

5.2 Pipelined Parallel Architecture 
Pipelining process leads to the reduction in the critical 
path, which reduces the speed. The circuit is implemented 
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we need 2,037 gates. In all the tables the proposed logic is 
addressed as look ahead logic. Table 1 gives the gate level 
complexities of the various architectures. Table 2 illustrates 
the comparison of various two cell sorters. The proposed 
architecture is implemented for XC3s5000-5fg900 using 
Xilinx 7.1 compiler tool for synthesis and model sim 5.8IIi 
for simulation using VHDL. All the Rank ordering algo-
rithms have been implemented using VHDL for the above 
targeted device. Table 3 illustrates the comparison of other 
Rank ordering techniques with the proposed logic on the 
basis of area, speed, power. Figure 6 gives the utilization of 
number of slices for various algorithms. Figure 7 gives the 
utilization of 4 input look up table by various algorithms. 
Figure 8 illustrates the gate count of various algorithms. 
Figure 9 denotes the Maximum combinational delay for 

Figure 5. Illustration of the Pipelined Parallel architecture 
for modified shear sorting.

Table 1. Gate level complexity 

S.No PARAMETERS BASIC TWO CELL SORTER PRALLEL 
ARCHITECTURE

PIPELINED 
ARCHITECTURE

CL CSL BLAC CL CSL BLAC CL CSL BLAC
1. XOR - 35 40 - 735 840 - 735 840
2. AND 16 24 16 336 504 336 336 504 336
3. OR 8 15 8 168 315 168 168 315 168
4. INVERTER 24 9 16 504 189 336 504 189 336
5. MUX - 8 8 - 168 168 - 168 168
6. REGISTERS - - - - - - 189 189 189

Table 2. Various two cell sorter for the targeted device XC3s400tq144-5

PARAMETERS
COVENTIONAL 
LOGIC

CARRY SELECT 
LOGIC

BLAC

AFTER SYNTHESIS
Number of Slices 13 13 15
Number of 4 input LUTs 24 23 26
Number of bonded IOBs 32 32 34
Maximum combinational path delay 10.708 ns 13.638 ns 16.466 ns
AFTER MAPPING
Slices occupied 12 12 13
Number of 4 input LUTs 24 23 26
Number of bonded IOBs 32 32 34
Gate count for design 168 141 165
AFTER PLACE AND ROUTE
External Iob’s 32 32 34
Number of Slices 12 12 13
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Table 3. Various sorting algorithms for the targeted device XC3s5000-4fg900

S.no PARAMETERS
BUBLE 
SORT

HEAP 
SORT

INSERTION 
SORT

MDF
SELECTION 
SORT

TDF PA Parallel

AFTER SYNTHESIS
1 NO OF SLICES 4375 3810 4375 4021 4375 4132 252
2 NO OF 4 I/P LUT 6080 5312 6080 6854 6080 7066 439
3 BONDED IOB 328 321 321 82 321 82 80

4 MAX COMB DELAY PATHS 
(ns) 151.715 327.557 151.715 188.933 151.71 190.94 109.13

AFTER MAPPING
5 NO OF 4 I/P LUT 6080 5,312 6080 6,922 6,080 7,139 439
6 BONDED IOB 328 321 321 82 321 82 80
7 GATE COUNT 43075 37,699 43,075 42,055 43,075 43,927 2,634

AFTER PLACE AND ROUTE
11 EXTERNAL IOB 321 321 321 82 321 82 80
12 SLICES FLIP FLOP 3088 2783 3088 3689 3088 3800 227
13 EXTERNAL IOB 321 321 321 82 321 82 80

POWER CONSUMED

14 POWER CONSUMPTION 298 100 100 298 100 298 100

Figure 6. Various architecture vs number of slices.

Figure 7. Various architecture VS number of 4i/p Lut’s.

Figure 8. Various architecture vs equivalent gate count.

Figure 9. Various architecture vs combinational delay.
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various algorithms after place and route. Figure 10 implies 
the power used in each algorithms. Figure 11–13 illus-
trates the simulation results, floor plan and routed FPGA 
for the parallel Modified Shear architecture. Figures 14 
and 15 gives the simulation results, floor plan and routed 
FPGA for the pipelined Modified Shear Sorting. Table 2 
gives the simulation result of proposed two cell, three cell 
algorithms. Table 5 gives the simulation results of pipe-
lined architecture. 

The Proposed Architectures are compared with the 
existing different architectures for modified shear sorting 
and its pipelined version, implemented using conven-
tional 8 bit comparator, carry select comparator with the 
proposed BLAC respectively. The proposed architectures Figure 10. Various architecture vs power.

Figure 11. Simulation results for the parallel architecture (using BLAC).

Figure 12. Floor plan of the parallel architecture (using BLAC).
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Figure 13. Routed FPGA of the parallel architecture (using BLAC).

Figure 14. Simulation results for the pipelined parallel architecture (using BLAC).

Figure 15. Floor Plan of the pipelined parallel architecture (using BLAC).
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are developed using VHDL in Xilinx Project manager 
environment for the targeted devices XC3s5000-4fg900 
and XC3s400tq144-5. The simulations are carried out 
using Model sim 5.8IIe and the synthesis tool is XST 
which is available in Xilinx 7.1i FPGA design suite. The 
architectures are targeted for Spartan 3e family of device 
having 5000 gate capacity and 400 gate capacity (Devices 
XC3s5000–4fg900 and XC3s400tq144-5). The Simulation 
and synthesis are carried out on an i3 processor with  
2.2 GHz with 3 GB RAM.

Table 1 illustrates the gate level complexities of the 
BLAC, and its position as a processing element in paral-
lel and pipelined architecture of modified shear sorting 
architectures. From Table 2 we infer that the two cell 
sorter has a on par area usage and low speed when com-
pared to conventional 8 bit comparator (Conventional 
logic) and comparator that uses carry select logic (Carry 
select logic). It is vivid from Table 3 that the proposed 
parallel architecture has a low area, high speed and low 
power architecture when compared to conventional 1D 
sorting algorithms. It was also noted that the proposed 
BLAC logic on modified parallel shear sorting requires 
one tenth of the gate count when compared with other 
1D algorithms. It is also evident from Figures 6–10 that 
the parallel architecture occupies less number of slices, 
4 input look up table, very meagre gate count, very less 
combinational delay and low power. This indicates that 
the proposed parallel architecture consumes less area, 
works at high speed and consumes low power for the 
targeted device XC3s5000-4fg900. From the Table 4 the 

performance of the proposed parallel architecture is 
compared with Conventional logic and look ahead logic 
(BLAC). It is observed that the parallel architecture has a 
par area, speed and power performance when compared 
with existing logic. The Table 5 tabulates the performance 
of parallel pipelined architecture using BLAC and other 
algorithms. When compared to carry select logic, the 
proposed pipelined parallel architecture has a low combi-
nation delay, lower gate count and occupies less number 
of slices. Figures 11–13 gives simulation result, floor plan 
and routed FPGA of the parallel architecture. Figures 
14–16 gives simulation result, floor plan and routed 
FPGA of the parallel pipelined architecture. It is visually 
vivid that the proposed algorithms occupy less area and 
routed in FPGA.

7.  Conclusions
The Paper proposes two architectures which are on par 
with the standard 8 bit comparator and carry select 
comparator. The performance of parallel architecture 
for modified shear sorting median architecture occupies 
one tenth of the area occupied by other 1D algorithms. 
The delay offered by the parallel architecture is found 
to be less and consumes less power. When targeted for 
XC3s5000-4fg900 for FPGA, the architecture consumed 
252 slices of the logic, having a combinational delay 
of 109.13ns and consuming a power of 100mw. When 
targeted for XC3s400tq144-5 FPGA, Parallel pipelined 
version of the parallel architecture the  architecture 

Figure 16. Routed FPGA of the pipelined parallel architecture (using BLAC).
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Table 4. Comparision of  different parallel architecture for modified shear 
sorting for the targeted device XC3s400tq144–5

PARAMETERS COVENTIONAL 
LOGIC

CARRY 
SELECT LOGIC

BLAC

AFTER SYNTHESIS

Number of Slices 226 216 250

Number of 4 input LUTs 411 378 442

Number of bonded IOBs 80 48 80

Maximum combinational path delay 47.352 ns 82.496 ns 94.664 ns

AFTER MAPPING

Slices occupied 211 194 231

Number of 4 input LUTs 411 378 442

Number of bonded IOBs 80 80 80

Gate count for design 2,964 2,301 2,739

AFTER PLACE AND ROUTE

External Iob’s 80 80 80

Number of Slices 211 194 231

Table 5. Various pipelined architecture for modified shear sorting for the 
targeted device XC3s400tq144-5

PARAMETERS
COVENTIONAL  
LOGIC

CARRY SELECT 
LOGIC

BLAC

AFTER SYNTHESIS

Number of Slices 172 371 283

Number of Slice Flip Flops 120 120 120

Number of 4 input LUTs 318 696 530

Number of bonded IOBs 33 33 33

Number of GCLKs 1 1 1

Minimum period 14.727 ns 10.656 ns 12.346 ns

Maximum Frequency 67.902 MHz 93.845 MHz 81.000 MHz

AFTER MAPPING

Slices occupied 120 120 120

Number of 4 input LUTs 672 294 560

Number of occupied Slices 377 187 298

Number of bonded IOBs 33 33 33

Gate count for design 6,579 4,629 5,640

AFTER PLACE AND ROUTE

External Iob’s 33 33 33

Number of Slices 377 187 298
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consumes 282 slices of area and operates at 81 MHz 
frequency and consumes less power. The pipelined 
architecture is found to operate faster when com-
pared to conventional 8 bit pipelined comparator. The 
parallel pipelined comparator also occupies less area 
when compared to existing carry select logic. Hence a 
low area, high speed parallel pipelined architecture is  
proposed. 
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