
A Data-guided Lexisearch Algorithm for the
Quadratic Assignment Problem

Zakir Hussain Ahmed*

Department of Computer Science, AlImam Mohammad Ibn Saud Islamic University (IMSIU),
P.O. Box No. 5701, Riyadh-11432, Kingdom of Saudi Arabia; zhahmed@gmail.com

Abstract
This paper considers the well-known Quadratic Assignment Problem (QAP) for the study. It is NP-hard combinatorial
optimizations that can be defined as follows. There is n facilities and n locations. A distance is specified for each pair of
locations, and a flow is specifiedfor each pair of facilities. The objective of problem is to allocate all facilities to different
locations such that the sum of the flows multiplied by the corresponding distances is minimized. We develop a data-guided
lexisearch algorithm based on an existing reformulation to find exact solution to the problem. For this we first modify
alphabet table according to the number of zeros in the rows of the surplus matrix, thus, renaming rows (facilities), and
then we apply lexisearch algorithm. It is shown that before applying lexisearch algorithm, this minor preprocessing of the
data improves computational time significantly. Finally, we present a comparative study between data-guided lexisearch
algorithm and two existing algorithms on some QAPLIB instances of various sizes. The computational study shows the
 effectiveness of our proposed data-guided lexisearch algorithm.

Keywords: Alphabet Table, Bound, Data-guided Lexisearch, Quadratic Assignment Problem, Surplus Matrix

*Author for correspondence

1. Introduction
Koopmans and Beckmann1 introduced the Quadratic
Assignment Problem (QAP) for the first time. The prob-
lem is defined in the context of assigning n facilities to
n locations. Let fij be the flow between facilities i and j,
and dkl be the distance between locations k and l. Let
a a a a n= { (), (),......., ()}1 2 be an assignment, where a(i) is
the location of the facility i. The objective of problem is to
allocate each facility to exactly one location such that the
following total cost is minimized.

 Z f da ij a i a j
j

n

i

n
= ÂÂ

==
() () ()1

11
 (1)

The QAP is proved to be NP-hard problem and it is
one of most difficult combinatorial optimization prob-
lems2. It has many applications in real-life3–13. Due to
its real-life application and difficulty, several exact and
heuristic algorithms have been developed by many
researchers for solving the problem. It is so hard that
medium sized instances cannot be solved optimally by

an exact algorithm in reasonable time. However, there are
some situations where only exact solution is required, for
example, placing circuits in a VLSI chip, assigning storage
facilities in some location of very large plants that is done
once in lifespan for an organization. We, thus, aim to find
exact solution to the problem.

The ‘complete enumeration approach’ of solving the
QAP is to list all the feasible solutions, evaluate their
objective function values, and pick out the best. But, as
the number of possible solutions to the QAP is huge,
this approach is obviously inefficient and impracticable
even for the small sized problem instances, and compu-
tational time grows exponentially with the problem size.
Quite a few special exact algorithms have been developed,
which can solve the problem much more efficiently than
this approach. Branch-and-bound14, Branch-and-cut15,
lexisearch16 are well-known exact algorithms for solving
the QAP. However, it is observed that as the problem size
increases using exact method to find exact solution is very
difficult, if not impossible.

Indian Journal of Science and Technology, Vol 7(4), 480–490, April 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Zakir Hussain Ahmed

Indian Journal of Science and Technology 481Vol 7 (4) | April 2014 | www.indjst.org

The lexisearch algorithm has been effectively applied
to many other combinatorial optimization problems17–20.
In lexisearch algorithm, leader bound plays a vital role in
reducing search space, hence, reduce the computational
time. Also, before applying the lexisearch, pre-processing of
data can reduce the computational effort significantly18, 19.
In this paper, we apply a data-guided lexisearch algorithm
that incorporates a data processing method to find exact
solution to the QAP. The effectiveness of our data-guided
algorithm against a simple lexisearch algorithm21 and a
discrete linear reformulation22 have been examined for
some QAPLIB instances23 of different sizes.

We organize the paper as follows: Section 2 gives a
literature survey on the QAP. Section 3 presents formula-
tion of the problem by Ahmed21. A data-guided lexisearch
algorithm is developed for the problem in Section 4.
Computational experiment is reported in Section 5.
Finally, Section 6 reports comments and concluding
remarks.

2. Literature Survey
Numerous methods in the literature are used to find
exact solution to the QAP and other combinatorial
optimization problems. However, only a few instances
of size n≥30 from QAPLIB have been solved optimally
and most of them are solved using computers connected
in parallel. Out of various methods, many researchers
have proposed different branch and bound algorithms
for solving the QAP. Branch and bound algorithms are
defined from allocation and cutting rules that define
lower bounds for the problem. Enumerative schemes
using lower bounds to eliminate undesired solutions
are developed by Gilmore24. Other literatures that use
branch and bound algorithms are Lawler25, Burkard and
Derigs26, Pardalos and Crouse27, Pardalos et al.28, Brixius
and Anstreicher29, Hahn et al.30, etc.

Several reformulations of the QAP as integer or
Mixed-Integer Linear Programming Problems (MILPs)
have been proposed, which are then solved using differ-
ent methods. Some literatures studied on special cases of
QAP. Christofides and Benavent31 studied a special case of
the QAP that considers the flow matrix as the adjacency
matrix of a tree using a MILP approach, which is then,
solved using dynamic programming. A similar technique
was also used by Urban32. Adams and Johnson33 proposed
a level-1 Reformulation-Linearization Technique (RLT-1)
for obtaining lower bounds to the problem and found

very good bounds. Erdoğan and Tansel15 proposed two
integer programming formulations constructed on the
flow-based linearization techniques, which are then used
to solve some instances up to size 25 (nug24, chr25a)
using a depth-first branch-and-cut algorithm. Adams et
al.34 developed exact solution methods using a RLT-2 for-
mulation for the problem and found solutions up to size
of 30. As reported, among the RLT formulations, RLT-2
provides very tighter lower bound that leads to very close
exact solution to the problem. Zhang et al.35 proposed
integer programming formulation of the problem and
solved some instances up to size of 32 (esc32e-g) using
CPLEX 9.0 and found very good results. Hahn et al.36 pro-
posed another RLT (RLT-3) formulation for calculating
lower bounds for the QAP instances. As reported, experi-
mental results project significant runtime improvement
over all other published QAP branch-and-bound solvers.
Nyberg and Westerlund22 presented an exact discrete lin-
ear formulation of the problem and solved the problem
using Gurobi (4.0.1) with default parameter settings. As
reported they could solve some instances of size up to 64
(esc64a, tai64a).

The lexicographic search (lexisearch, for short)
was developed by Pandit37, first for Loading Problem
(known as Knapsack Problem). It is a systematic branch
and bound approach that was developed before branch
and bound approach of Little et al.38. A lexisearch
algorithm was developed to find exact solution to the
QAP16. However, no any computational experiment was
reported. Recently, a reformulation of the QAP has been
proposed by Ahmed21 such that lexisearch algorithm
can be applied efficiently. The comparative study of the
lexisearch algorithm against implementation of MILP
formulation (IPQAPR-IV, therein) by Zhang et al.35
shows the effectiveness of the proposed lexisearch algo-
rithm based on the reformulation. We are going to use
the reformulation by Ahmed21 and then solve by using
a data-guided lexisearch algorithm. In the next section
we briefly discuss reformulation by Ahmed21 with an
example.

3. Areformulation by Ahmed21

Let f f u v and d d x yij ij i j ij ij i j
′ ′= - - = - - . Then Za

in equation (1) becomes

 Z f d sa ij a i a j a
j

n

i

n
= +ÂÂ

==

′ ′
() () ()

11
2 (2)

A Data-guided Lexisearch Algorithm for the Quadratic Assignment Problem

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org482

where,

u j n f for i n a

v i n f u

i ij

j ij i

= £ £ =

= £ £ -

min
, , , ,, ()

min
()

1 1 2 3 3

1 ,, , , ,, ()

min
, , , ,

for j n b

x j nd for ii ij

=

= £ £ =

1 2 3 3

1 1 2 3 .., ()

min
(), , , ,, ()

n c

y i n d x for j n d

f

j ij i

i ij

3

1 1 2 3 3= £ £ - =

=a
jj

n

j ij
i

n

for i n e

f for j

=

=

Â =

= Â =

1

1

1 2 3 3

1 2 3

, , , ,, ()

, , , ,b, ()

, , , ,, ()() ()

n f

d for i n g

d

i a i a j
j

n

j a

3

1 2 3 3
1

g

d

= Â =

=

=

′

(() () , , , ,, ()i a j
i

n
for j n h′

=
Â =

1
1 2 3 3

and sa is the assignment cost with respect to a surplus
matrix S=[sij] with

 s x y u v iij i j i j i j i j= + + +a b g d ()3 (3i)

Further Za can be reduced to the following form.

 Z f d sa ij a i a j
j

n

i

n

a= +ÂÂ
==

′ ′ ′
() () ()

11
4 (4)

()

()

()

()

()

()

()

()

3

3

3

3

3

3

3

3

a

b

c

d

e

f

g

h

()

()

()

()

()

()

()

()

3

3

3

3

3

3

3

3

a

b

c

d

e

f

g

h

()

()

()

()

()

()

()

()

3

3

3

3

3

3

3

3

a

b

c

d

e

f

g

h

()

()

()

()

()

()

()

()

3

3

3

3

3

3

3

3

a

b

c

d

e

f

g

h

()

()

()

()

()

()

()

()

3

3

3

3

3

3

3

3

a

b

c

d

e

f

g

h

()

()

()

()

()

()

()

()

3

3

3

3

3

3

3

3

a

b

c

d

e

f

g

h

()

()

()

()

()

()

()

()

3

3

3

3

3

3

3

3

a

b

c

d

e

f

g

h

()

()

()

()

()

()

()

()

3

3

3

3

3

3

3

3

a

b

c

d

e

f

g

h

where,

f

y f

i ij

j ij i

j n s for i n a

i n s

= £ £ =

= £ £ -

min
, , , ,, ()

min
()

1 1 2 3 5

1 ,, , , ,, ()

, , ()

for j n b

s s i j n cij ij i j

=

= - - £ £

1 2 3 5

1 5′ f y

and

 s s c s da i j a
j

n

i

n

s a= + +ÂÂ = +
==

f y ′ ′

11
5() (5d)

In equation (5d), cs is a constant and s′a is the assign-
ment cost with regard to the reduced surplus matrix S′.
The matrix S′ is a non-negative matrix. So, it is sufficient
to minimize Za in equation (4). For example, let flow and
distance matrices are presented in Table 1 and Table 2
respectively, then the corresponding matrices F ′, D′ and
S′ are calculated and shown in Table 3 to Table 5 21. We
have cs=46.

f

y f

i ij

j ij i

j n s for i n a

i n s

= £ £ =

= £ £ -

min
, , , ,, ()

min
()

1 1 2 3 5

1 ,, , , ,, ()

, , ()

for j n b

s s i j n cij ij i j

=

= - - £ £

1 2 3 5

1 5′ f y

f

y f

i ij

j ij i

j n s for i n a

i n s

= £ £ =

= £ £ -

min
, , , ,, ()

min
()

1 1 2 3 5

1 ,, , , ,, ()

, , ()

for j n b

s s i j n cij ij i j

=

= - - £ £

1 2 3 5

1 5′ f y

f

y f

i ij

j ij i

j n s for i n a

i n s

= £ £ =

= £ £ -

min
, , , ,, ()

min
()

1 1 2 3 5

1 ,, , , ,, ()

, , ()

for j n b

s s i j n cij ij i j

=

= - - £ £

1 2 3 5

1 5′ f y

Table 1. The flow matrix F

Facility 1 2 3 4 5
1 X 5 0 6 1
2 5 X 3 0 4
3 2 3 X 0 0
4 4 0 0 X 1
5 1 2 0 5 X

Table 2. The distance matrix D

Location 1 2 3 4 5
1 X 1 1 2 5
2 1 X 4 1 2
3 1 2 X 1 3
4 2 1 1 X 5
5 3 2 2 1 X

Table 3. The reduced flow matrix F′

Facility 1 2 3 4 5
1 X 5 0 6 1
2 4 X 3 0 4
3 1 3 X 0 0
4 3 0 0 X 1
5 0 2 0 5 X

Table 4. The reduced distance matrix D′

Location 1 2 3 4 5
1 X 0 0 1 3
2 0 X 3 0 0
3 0 1 X 0 1
4 1 0 0 X 3
5 2 1 1 0 X

Table 5. The reduced surpluss matrix S′

Facility\Location 1 2 3 4 5
1 2 1 3 0 15
2 0 0 0 0 7
3 0 0 0 0 0
4 0 0 0 0 8
5 0 0 0 0 3

Zakir Hussain Ahmed

Indian Journal of Science and Technology 483Vol 7 (4) | April 2014 | www.indjst.org

It is to be noted that Edwards39, and Frieze and
Yadegar41 proposed similar decombination methods to
reduce the quadratic coefficients cij, dpq into ̄cij , ̄dpq and then
applied Gilmore-Lawler method24, 25 to obtain lower of the
QAP instances. However, our method is different from
their methods. We are applying lexisearch algorithm which
obtains exact solution, whereas their methods give only
lower bound that may not be equal to the exact solution.

4. A Data-guided Lexisearch
Algorithm

It is reported that in terms of computational times for
the same size of instances, simple lexisearch algorithm
produces two groups; one takes very low computational
time, whereas other takes very high computational time21.
In the simple algorithm, the nature of the data does not
play any role. However, a preliminary scrutiny of the data
can suggest some simple preprocessing, after which the
algorithm becomes considerably more effective. Ahmed18
developed a data-guided algorithm by transposing the
cost matrix depending variances of rows and columns
and then applied to the traveling salesman problem, and
found better performance of the algorithm. But, for our
problem, modifying the ‘alphabet table’ according to the
variances of rows and columns cannot be applicable.
Ahmed19 developed another data-guided algorithm by
modifying ‘alphabet table’ and applied to the bottleneck
traveling salesman problem, which can be applicable to
our problem. So, we modify the ‘alphabet table’ according
to the number of zeros in the rows of the ‘alphabet table’.
We rename the facilities (rows) of the ‘alphabet table’ and
accordingly create a new alphabet table and then apply
the simple lexisearch algorithm.

4.1 Alphabet Table
Alphabet matrix, T=[t(i,j)], is a square matrix of order n
formed by the positions of the elements of the reduced
surplus matrix S′ of order n when they are arranged in
the non-decreasing order of their values21. Alphabet table
"[(,)]", (,)t i j si t i j- ′ is the mixture of elements of matrix T
and their values (Ahmed, 2010a). The alphabet table for
the matrix S′ is shown in Table 6.

4.2 Lower Bound
The lower bound that is considered in lexisearch algo-
rithm is the bound for leader block. We consider the
same lower bound that is used by Ahmed21. However, we

describe briefly the lower bound. As there are two terms
in the equation (4), we have two calculations for the lower
bound. For the first term, we sort row-wise elements of
F ′ excluding diagonals in ascending order and store in
F ″=[f ″ij], sort column-wise elements of D′ excluding
diagonals in descending order and store in D″=[d″ij], and
then form an inner product matrix M as follows.

 m f dij ik kj
k

n
= Â

=

-
′′ ′′

1

1
6() (6)

Thereafter, elements of M are sorted row-wise in
ascending order, which are shown in Table 7.

Now, suppose the location a(k) is selected for concat-
enating to an incomplete assignment { (), (),....., ()}a a a k1 2 1- .
Before concatenation, we must check the bound for the
leader { (), (),......, (), ()}a a a k a k1 2 1- . We calculate the lower
bound for the leader as follows:

 L m sk ip
i k

n

i t i p
i k

n
= Â + Â

= + = +1 1
, (,)

′ (7)

where t(i, p) is the first ‘unassigned’ location in the ith
row in the alphabet matrix T

The value of the incomplete assignment {a(1),
a(2),......,a(k)} can be calculated as

 Z f d sk ij a i a j
j

k

i

k

i a i
i

k
= ÂÂ + Â

== =

′ ′ ′
() () , ()

11 1
 (8)

Table 7. The matrix M

Facility\Location 1 2 3 4 5

1 0 1 1 1 8

2 0 3 3 3 13

3 0 0 0 0 1

4 0 0 0 0 1

5 0 0 0 0 2

Table 6. The alphabet table (P and V are
the location and its value respectively)

Facility P–V P–V P–V P–V P–V

1 4–0 2–1 1–2 3–3 5–15

2 1–0 2–0 3–0 4–0 5–7

3 1–0 2–0 3–0 4–0 5–0

4 1–0 2–0 3–0 4–0 5–8

5 1–0 2–0 3–0 4–0 5–3

A Data-guided Lexisearch Algorithm for the Quadratic Assignment Problem

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org484

4.3 Modified Alphabet Table
We modify the ‘alphabet table’ according to the following
rule. If all elements of the reduced surplus matrix
S ′ are zero, then consider the matrix M, otherwise con-
sider reduced surplus matrix S ′ for constructing ‘alphabet
matrix’, and then form the ‘alphabet table’. Now, inter-
change the rows (facilities) of the existing ‘alphabet table’
so that the rows with maximum zeros are shifted to the
bottom while rows with minimum zeros are shifted to
the top. In the event of a tie, the first positive values of
the locations in the rows are compared, the rows con-
taining largest values are shifted to the top and the rows
containing smallest values are shifted to the bottom. The
modified alphabet table after preprocessing the existing
alphabet table (Table 6) is shown in Table 8.

4.4 The algorithm
Our data-guided lexisearch algorithm can be stated as
follows. This algorithm is a modification of the simple
lexisearch algorithm for the QAP21.
Step 0:- Form the ‘modified alphabet table’. Initialize the

‘best solution value’(Za)as big as possible, k = 1,
andZk-1 = 0.

Step 1:- Let the present leader be the assignment of
length (k-1) and the first ‘legitimate’ (i.e., unas-
signed and unchecked) location in kth row of the
 alphabet table be the next location with value V.
If ((V + Zk-1) ≥ Za), go to step 4, else, calculate Zk
(the value of present assignment) and Lk (lower
bound for the present leader), and go to step 2. If
we do not find any ‘legitimate’ location in the kth

row, go to step 4.
Step 2:- If ((Zk + Lk) < Za), go to step 3, else, drop the loca-

tion which was concatenated in step 1,and jump
over the block, i.e., go to step 1.

Step 3:- Go into the sub-block, i.e., augment the current
leader; concatenate the considered location per-
manently to it, lengthening the leader by one, that
is, k is increased by one. If the current assignment
is a complete assignment, then update Za = Zk and
go to step 4, else, go to step 1.

Step 4:- Jump out to next super-block, i.e., decrease k by 1
(one) and reject all subsequent assignments from
this block. If k < 1, go to step 5, else go to step 1.

Step 5:- Za is the optimal solution value and the cur-
rent assignment is the optimal assignment with
respect to the facilities as described after pre-
processing referred in step 0. Hence for getting
the optimal assignment sequence in the required
form, restore the facilities and stop.

4.5 Illustration of the Algorithm
Let us illustrate the working of the data-guided lexisearch
algorithm using the example presented in Table 1 and
Table 2. Let ‘best solution value’ (Za) = 9999. The ‘search
table’ is given in Table 9, and the following symbols are
used therein.

GS: Go into the sub-block.
JB: Jump over the block.
JO: Jump out to the next super-block.
As seen from the search table, the optimal solution is

given by the assignment
1 4 2 5 3
4 3 2 1 5

Ê
ËÁ

ˆ
¯̃

 or equivalently

the optimal assignment is {4, 2, 5, 3, 1} with value (cost)
Za = 4. Hence, the optimal assignment cost with regard to
the original matrices is Za + Cs = 4 + 46 = 50.

5. Computational Experience
We have encoded our data-guided lexisearch algorithm
(DGLSA) in Visual C++ and run on the same machine used
by Ahmed21, i.e., on a Pentium IV personal computer with
speed 3 GHz and 448 MB RAM under MS Windows XP,
and tested with some medium sized QAPLIB instances23.
To show the effectiveness of our DGLSA, a comparative
study is carried out against simple Lexisearch Algorithm
(LSA) of Ahmed21. In Table 10, Best Known solution
(BKV) reported in QAPLIB; and Best Solution Value
(BSV), percentage of error of the solution (Error(%)),
Total computational Time (TotTime) and the computa-
tional time when the optimal solution is hit for the First
Time (FirstTime) in seconds for solving the instances by

Table 8. The modified alphabet table

Facility P–V P–V P–V P–V P–V
1(1) 4–0 2–1 1–2 3–3 5–15

2(4)∗ 1–0 2–0 3–0 4–0 5–8
3(2) 1–0 2–0 3–0 4–0 5–7
4(5) 1–0 2–0 3–0 4–0 5–3
5(3) 1–0 2–0 3–0 4–0 5–0

∗Note: The indices in the brackets are the original names given
to the facilities, while the indices without parenthesis are new
indices, for example, facility that was indexed as 4 is now
indexed as 2.

Zakir Hussain Ahmed

Indian Journal of Science and Technology 485Vol 7 (4) | April 2014 | www.indjst.org

Table 9. The search table

Leaders
Zk Lk Za Remarks

1(1) 2(4) 3(2) 4(5) 5(3)
4–0 (0) 0 0 9999 GS

1–0 (0) 9 3 9999 GS
2–0 (9) 9 0 9999 GS

3–0 (9) 23 1 9999 GS
5–0 (23) 26 0 9999 GS

26 JO
5–3 (12) 30 0 26 JB, JO

3–0 (9) 9 0 26 GS
2–0 (9) 19 1 26 GS

5–0 (19) 25 0 26 GS
25 JO

5–3 (12) 34 0 25 JB, JO
5–7 (16) 31 0 25 JB, JO

2–0 (0) 0 0 25 GS
1–0 (0) 9 0 25 GS

3–0 (9) 17 1 25 GS
5–0 (17) 32 0 25 JB, JO

5–3 (12) 36 0 25 JB, JO
3–0 (0) 0 0 25 GS

1–0 (0) 1 1 25 GS
5–0 (1) 7 0 25 GS

7 JO
5–3 (3) 17 0 7 JB, JO

5–7 (7) 7 JO
3–0 (0) 0 0 7 GS

1–0 (0) 9 0 7 JB
2–0 (0) 0 0 7 GS

1–0 (0) 1 1 7 GS
5–0 (1) 4 0 7 GS

4 JO
5–3 (3) 14 0 4 JB, JO

5-7 (7) 4 JO
5–8 (8) 4 JO

2–1 (1) 1 0 4 GS
1–0 (1) 1 3 4 JB
3–0 (1) 22 0 4 JB
4–0 (1) 1 0 4 GS

1–0 (1) 1 0 4 GS
3–0 (1) 4 1 4 JB
5–3 (4) 4 JO

A Data-guided Lexisearch Algorithm for the Quadratic Assignment Problem

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org486

Table 9. (Continued)

Leaders
Zk Lk Za Remarks

1(1) 2(4) 3(2) 4(5) 5(3)
3–0 (1) 20 0 4 JB
5–7 (8) 4 JO

5–8 (9) 4 JO
1–2 (2) 2 3 4 JB
3–3 (3) 3 0 4 GS

1–0 (3) 3 3 4 JB
2–0 (3) 18 0 4 JB
4–0 (3) 3 0 4 GS

1–0 (3) 3 0 4 GS
2–0 (3) 4 1 4 JB
5–3 (6) 4 JO

2–0 (3) 20 0 4 JB
5-7 (10) 4 JO

5–8 (11) 4 JO
5–15(15) STOP

Table 10. Comparison of LSA and DGLSA

Instance BKV
LSA DGLSA

BSV Error(%) FirstTime TotTime BSV Error(%) FirstTime TotTime

esc16a 68 68 0.00 0.60 625.30 68 0.00 0.10 35.70

esc16b 292 292 0.00 29.10 14400.00 292 0.00 11.80 14400.00

esc16c 160 160 0.00 840.50 14400.00 160 0.00 0.00 2984.60

esc16d 16 16 0.00 2.50 14400.00 16 0.00 0.30 33.70

esc16e 28 28 0.00 0.56 14.30 28 0.00 0.00 0.30

esc16f 0 0 0.00 0.00 0.00 0 0.00 0.00 0.00

esc16g 26 26 0.00 0.00 0.50 26 0.00 0.00 0.10

esc16h 996 996 0.00 1.10 6228.20 996 0.00 0.00 1298.50

Partial Average 0.00 109.30 6258.54 0.00 1.53 2344.11

esc32a 130 198 52.31 12058.80 14400.00 142 9.23 1332.50 14400.00

esc32b 168 204 21.43 14093.60 14400.00 168 0.00 495.90 14400.00

esc32c 642 662 3.12 12339.60 14400.00 642 0.00 628.20 14400.00

esc32d 200 234 17.00 4931.80 14400.00 200 0.00 266.36 14400.00

esc32e 2 2 0.00 1.25 26.05 2 0.00 0.00 0.10

esc32f 2 2 0.00 2.03 25.32 2 0.00 0.00 0.10

esc32g 6 6 0.00 0.44 0.45 6 0.00 0.00 8.33

esc32h 438 574 31.05 4099.20 14400.00 460 5.02 2057.66 14400.00

Partial Average 15.61 5940.84 9006.48 1.78 597.58 9001.07

(Continued)

Zakir Hussain Ahmed

Indian Journal of Science and Technology 487Vol 7 (4) | April 2014 | www.indjst.org

the algorithms, have been reported. The error (%) is given
by the formula Error BSV BKV BKV(%) ()/ %= - ¥100 .

Results obtained by the algorithms for twenty two
instances of sizes from 12 to 32 have been reported in
Table 10. Out of them LSA and DGLSA hit optimal solution
to thirteen and seventeen instances respectively within four
hours of computational time. However, for three instances
optimality could not be proved by DGLSA. On average,
DGLSA obtains solutions which are 3.48% away from the
optimal solutions, whereas, LSA obtains solutions which
are 10.29% away from the optimal solutions. So, DGLSA
obtains better solutions. In terms of computational time
also, DGLSA is found to be better. It is to be noted that lex-
isearch algorithm first finds an optimal solution and then
proves the optimality of that solution. The table shows that,
on average computational time, LSA found optimal solu-
tion within at least 42% of the total computational time,
whereas DGLSA found the optimal solution within only
31% of the total computational time. That is, LSA spent
58% and DGLSA spent 69% of total computational time
on proving optimality of the solutions. So, LSA spends a
comparatively large amount of time on finding an optimal
solution for these QAPLIB instances compared to DGLSA,
and hence, many sub problems are thrown by DGLSA. On
the basis of computational time, DGLSA is found to be bet-
ter than LSA. There is large improvement of DGLSA over
LSA for the instances. So, our goal is achieved very well.

In Table 11, we also present another compara-
tive study between our DGLSA and implementation of
Discrete Linear Reformulation (DLR) by Nyberg and
Westerlund22 for thirteen QAPLIB instances. The table

reports computational times (in seconds), and solutions
as were reported by Nyberg and Westerlund22 on a PC
with Intel i7 4-core 2.8 GHz processor and 6 GB RAM
and on another PC with Intel i7 6-core 3.2 GHz proces-
sor for esc64a using Gurobi (4.0.1) with default parameter
settings. So, as regards the computational time, it was not
possible to compare them directly as they have been run in
different machines, and the machines used by Nyberg and
Westerlund22 are much faster than our machine. From the
table it is seen that our algorithm could not hit optimal
solution for esc32a and tai64c within four hours of com-
putational time. For the remaining eleven instances, if we
consider First Time for our DGLSA, then our algorithm
is found to be far better than the DLR. However, among
these eleven instances, for four instances our algorithm
could not prove optimality of the solution within four
hours. At least for the instances of size 12, our algorithm
is found to be better. It means that our data-guided lex-
isearch algorithm can compete with stat-of-art methods
in the literature. Also, solution by DGLSA does not rely
on commercial math software, whereas solution by DLR
relies on Gurobi.

7. Conclusion
We have developed a data-guided lexisearch algorithm
to find exact solution to the Quadratic Assignment
Problem (QAP). Depending on the number of zeros in
the rows of ‘alphabet table’, we renamed the rows and
constructed a new alphabet table. Next, the simple lex-
isearch algorithm of Ahmed21 using new alphabet table

Table 10. (Continued)

Instance BKV
LSA DGLSA

BSV Error(%) FirstTime TotTime BSV Error(%) FirstTime TotTime

kra30a 88900 118820 33.66 3874.31 14400.00 107350 20.75 5118.91 14400.00

kra30b 91420 118930 30.09 4099.42 14400.00 115870 26.74 13924.61 14400.00

kra32 88700 115310 30.00 6170.01 14400.00 101890 14.87 14284.54 14400.00

Partial Average 31.25 4714.58 14400.00 20.79 11109.35 14400.00

scr12 31410 31410 0.00 0.14 0.27 31410 0.00 0.20 0.20

scr15 51140 51140 0.00 77.88 81.70 51140 0.00 36.70 39.10

scr20 110030 118568 7.76 12986.42 14400.00 110030 0.00 6266.00 7886.45

Partial Average 2.59 4354.81 4827.32 0.00 2100.97 2641.92

Total Average 10.29 3436.78 8172.82 3.48 2019.26 6449.42

A Data-guided Lexisearch Algorithm for the Quadratic Assignment Problem

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org488

is applied. It is shown that before applying the simple
lexisearch algorithm, preprocessing of the data improves
the computational time as well as solution quality sig-
nificantly. Finally, the performance of the data-guided
lexisearch algorithm is compared with implementation
of the Discrete Linear Reformulation (DLR) by Nyberg
and Westerlund22 for some medium sized QAPLIB
instances. Among the algorithms, our data-guided algo-
rithm is found to be the better than the simple algorithm,
and the data-guided algorithm is competing with DLR
using Gurobi.

We have investigated using lexisearch algorithm that
only some medium sized instances can be solved optimally
within stipulated time limit. For the large sized instances
the lexisearch algorithm is not found to be suitable. Also, for
some small sized instances, for example esc16b of size 16,
our algorithm could not prove optimality of the solution;
whereas the instancesesc32e-gof sizes32 could be solved
within 8.33seconds only. Also, surprisingly, our algo-
rithm could hit the optimal solution for esc64a of size 64
within 2.3 seconds. We investigated why some small sized
instances could not be solved, whereas some medium
sized instances could be solved very quickly, but, we did
not come to any conclusion. This definitely, depends on
the data structure. So, a more sophisticated data-guided
approach may be used to reduce the computational time
further and to find better optimal solution quickly. Also,
one can propose a tighter lower bound method which a

Table 11. Comparison of DRL and DGLSA

Instance Size BKV
Computational Time (in seconds)

DGLSA DLR
FirstTime TotTime TotTime

nug12 12 578 0.77 3.58 59.00
scr12 12 31410 0.20 0.21 9.60
chr12a 12 9552 0.02 0.02 1.60
tai12a 12 224416 4.94 28.13 246.00
rou12 12 235528 12.31 52.16 1187.00
esc16a 16 68 0.10 35.70 11.40
esc16b 16 292 11.80 14400.00 158.00
esc16c 16 160 0.00 2984.60 286.00
esc32a 32 130 – – 1618580.00
esc32c 32 642 628.20 14400.00 24365.00
esc32d 32 200 266.36 14400.00 36256.00
esc64a 64 116 2.30 14400.00 16370.00
tai64c 64 1855928 – – 182983.00

very important part of the lexisearch algorithm that may
find optimal solution for some more instances quickly.
Further, combination of lexisearch and genetic algorithm41

may lead to an efficient way of solving the problem.

8. Acknowledgement
The author is thankful to the respected reviewer for
his constructive comments and suggestions. This work
has been supported by Deanery of Academic Research,
Al Imam Mohammad Ibn Saud Islamic University,
Saudi Arabia through Grant no. 320902. The author
is very much thankful to the Deanery for its Financial
Support.

9. References
 1. Koopmans TC, Beckmann MJ. Assignment problems

and the location of economic activities. Econometrica.
1957; 25(1):53–76.

 2. Sahni S, Gonzales T. P-complete approximation problems.
Journal of the Association for Computing Machinery. 1976;
23:555–65.

 3. Steinberg L. The backboard wiring problem: a placement
algorithm. SIAM Rev. 1961; 3(1):37–50.

 4. Geoffrion AM, Graves GW. Scheduling parallel production
lines with changeover costs: practical applications of a qua-
dratic assignment/LP approach. Operations Research. 1976
Jul–Aug; 24(4):595–610.

Zakir Hussain Ahmed

Indian Journal of Science and Technology 489Vol 7 (4) | April 2014 | www.indjst.org

 5. Pollatschek MA, Gershoni N, Radday YT. Optimization
of the typewriter keyboard by simulation. Angewandte
Informatik. 1976; 17:438–9.

 6. Elshafei AN. Hospital layout as a quadratic assign-
ment problem. Operations Research Quarterly. 1977;
28(1):167–79.

 7. Krarup J, Pruzan PM. Computer-aided layout design. Math
Program Stud. 1978; 9:75–94.

 8. Heffley DR. Decomposition of the Koopmans–Beckmann
problem. Reg Sci Urban Econ. 1980; 10(4):571–80.

 9. Hubert LJ. Assignment methods in combinatorial data
analysis. Statistics: Textbooks and Monographs Series. New
York: Marcel Dekker, Inc. 1987. Book 73.

10. Bos J. A quadratic assignment problem solved by simulated
annealing. Journal of Environmental Management. 1993;
37(2):127–45.

11. Forsberg JH, Delaney RM, Zhao Q, Harakas G, Chandran
R. Analyzing lanthanide-included shifts in the NMR spectra
of lanthanide (III) complexes derived from 1,4,7,10-tetrakis
(N,N-diethylacetamido)-1,4,7,10-tetraazacyclododecane.
Inorganic Chemistry. 1994; 34:3705–15.

12. Brusco MJ, Stahl S. Using quadratic assignment methods to
generate initial permutations for least-squares unidimen-
sional scaling of symmetric proximity matrices. J Classif.
2000; 17(2):197–223.

13. Duman E, Ilhan O. The quadratic assignment problem in
the context of the printed circuit board assembly process.
Comput Oper Res. 2007; 34:163–79.

14. Hahn P, Grant T, Hall N. A branch-and-bound algorithm
for the quadratic assignment problem based on Hungarian
method. Eur J Oper Res. 1998; 108:629–40.

15. Erdoğan G, Tansel, B. A branch-and-cut algorithm for the
quadratic assignment problems based on linearizations.
Comput Oper Res. 2007; 34(4):1085–106.

16. Das S. Routing and Allied Combinatorial Programming
Problems: A Lexicographic Search Approach [Ph.D. Thesis].
Assam, India: Dibrugarh University; 1976.

17. Ahmed ZH. i . e x eA lexisearch algorithm for the bottleneck trav-
eling salesman problem. Int J Comput Sci Secur. 2010a;
3(6):569–77.

18. Ahmed ZH. i . e x eA data-guided lexisearch algorithm for the
asymmetric traveling salesman problem. Mathematical
Problems in Engineering. 2011a; 2011(2011).
doi:10.1155/2011/750968.

19. Ahmed ZH. i . e x eA data-guided lexisearch algorithm for the
bottleneck travelling salesman problem. International
Journal of Operational Research. 2011b; 12(1):20–33.

20. Ahmed ZH. i . e x e An exact algorithm for the clustered travelling
salesman problem. OPSEARCH. 2013a Jun; 50(2):215–28.

21. Ahmed ZH. A new reformulation and an exact algorithm
for the quadratic assignment problem. Indian Journal of
Science and Technology. 2013b; 6(4):4368–77.

22. Nyberg A, Westerlund T. A new exact discrete linear
 reformulation of the quadratic assignment problem. Eur J
Oper Res. 2012; 220:314–19.

23. Burkard RE, Karisch SE, Rendl F. QAPLIB - a quadratic
assignment problem library. J Global Optim. 1997;
10(4):391–403.

24. Gilmore PC. Optimal and suboptimal algorithms for the
quadratic assignment problem. SIAM J Appl Math; 1962;
10:305–13.

25. Lawler EL. The quadratic assignment problem. Manag Sci.
1963; 19:586–90.

26. Burkard RE, Derigs U. Assignment and matching problems:
solutions methods with Fortran programs. Lect Notes Econ
Math Syst. 1980; 184.

27. Pardalos P, Crouse J. A parallel algorithm for the quadratic
assignment problem. Supercomputing ‘89. Proceedings of
the 1989 ACM/IEEE Conference on Supercomputing; 1989
Nov 12–17; Reno, NV, United States. p. 351–60.

28. Pardalos PM, Ramakrishnan KG, Resende MGC, Li Y.
Implementation of a variance reduction-based lower bound
in a branch-and-bound algorithm for the quadratic assign-
ment problem. SIAM J Optim. 1997; 7(1):280–94.

29. Brixius NW, Anstreicher KM. Solving quadratic assignment
problems using convex quadratic programming relaxations.
Optim Meth Software. 2001; 16(1–4):49–68.

30. Hahn PM, Hightower WL, Johnson TA, Guignard-Spielberg
M, Roucairol C. Tree elaboration strategies in branch and
bound algorithms for solving the quadratic assignment
problem. Yugoslavian Journal of Operational Research.
2001; 11(1):41–60.

31. Christofides N, Benavent E. An exact algorithm for
the quadratic assignment problem. Oper Res. 1989;
37(5):760–68.

32. Urban TL. Solution procedures for the dynamic facility lay-
out problem. Ann Oper Res. 1998. 76:323–42.

33. Adams WP, Johnson TA. Improved linear programming-
based lower bounds for the quadratic assignment problem.
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. 1994; 16:43–75.

34. Adams WP, Guignard M, Hahn PM, Hightower WL. A
level-2 reformulation–linearization technique bound for
the quadratic assignment problem. European Journal of
Operational Research. 2007; 180(3):983–96.

35. Zhang H, Beltran-Royo C, Constantino M. Effective for-
mulation reductions for the quadratic assignment problem.
Comput Oper Res. 2010; 37:2007–16.

36. Hahn PM, Zhu Y-R, Guignard M, Hightower WL, Saltzman
MJ. A level-3 reformulation-linearization technique-based
bound for the quadratic assignment problem. INFORMS J
Comput. 2012; 24(2):202–09.

A Data-guided Lexisearch Algorithm for the Quadratic Assignment Problem

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org490

37. Pandit SNN. Some quantitative combinatorial search
 problems [Ph.D. Thesis]. Kharagpur, India: Indian Institute
of Technology; 1963.

38. Little JDC, Murthy KG, Sweeny DW, Karel C. An
Algorithm for the Travelling Salesman Problem. Oper Res.
1963; 11:972–89.

39. Edwards CS. A branch and bound algorithm for the
Koopmans-Bechmann quadratic assignment problem.
Math Program Stud. 1980; 13:35–52.

40. Frieze AM, Yadegar J. On the quadratic assignment
problem. Discrete Appl Math. 1983; 5(1):89–98.

41. Ahmed ZH. Genetic algorithm for the traveling salesman
problem using sequential constructive crossover opera-
tor. International Journal of Biometrics & Bioinformatics.
2010b; 3(6):96–105.

