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Abstract
This paper considers the well-known Quadratic Assignment Problem (QAP) for the study. It is NP-hard combinatorial 
optimizations that can be defined as follows. There is n facilities and n locations. A distance is specified for each pair of 
locations, and a flow is specifiedfor each pair of facilities. The objective of problem is to allocate all facilities to different 
locations such that the sum of the flows multiplied by the corresponding distances is minimized. We develop a data-guided 
lexisearch algorithm based on an existing reformulation to find exact solution to the problem. For this we first modify 
alphabet table according to the number of zeros in the rows of the surplus matrix, thus, renaming rows (facilities), and 
then we apply lexisearch algorithm. It is shown that before applying lexisearch algorithm, this minor preprocessing of the 
data improves computational time significantly. Finally, we present a comparative study between data-guided lexisearch 
algorithm and two existing algorithms on some QAPLIB instances of various sizes. The computational study shows the 
 effectiveness of our proposed data-guided lexisearch algorithm.
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1. Introduction
Koopmans and Beckmann1 introduced the Quadratic 
Assignment Problem (QAP) for the first time. The prob-
lem is defined in the context of assigning n facilities to 
n locations. Let fij be the flow between facilities i and j, 
and dkl be the distance between locations k and l. Let 
a a a a n= { ( ), ( ),......., ( )}1 2  be an assignment, where a(i) is 
the location of the facility i. The objective of problem is to 
allocate each facility to exactly one location such that the 
following total cost is minimized.
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The QAP is proved to be NP-hard problem and it is 
one of most difficult combinatorial optimization prob-
lems2. It has many applications in real-life3–13. Due to 
its real-life application and difficulty, several exact and 
heuristic algorithms have been developed by many 
researchers for solving the problem. It is so hard that 
medium sized instances cannot be solved optimally by 

an exact algorithm in reasonable time. However, there are 
some situations where only exact solution is required, for 
example, placing circuits in a VLSI chip, assigning storage 
facilities in some location of very large plants that is done 
once in lifespan for an organization. We, thus, aim to find 
exact solution to the problem.

The ‘complete enumeration approach’ of solving the 
QAP is to list all the feasible solutions, evaluate their 
objective function values, and pick out the best. But, as 
the number of possible solutions to the QAP is huge, 
this approach is obviously inefficient and impracticable 
even for the small sized problem instances, and compu-
tational time grows exponentially with the problem size. 
Quite a few special exact algorithms have been developed, 
which can solve the problem much more efficiently than 
this approach. Branch-and-bound14, Branch-and-cut15, 
lexisearch16 are well-known exact algorithms for solving 
the QAP. However, it is observed that as the problem size 
increases using exact method to find exact solution is very 
difficult, if not impossible. 
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The lexisearch algorithm has been effectively applied 
to many other combinatorial optimization problems17–20. 
In lexisearch algorithm, leader bound plays a vital role in 
reducing search space, hence, reduce the computational 
time. Also, before applying the lexisearch, pre-processing of 
data can reduce the computational effort significantly18, 19.  
In this paper, we apply a data-guided lexisearch algorithm 
that incorporates a data processing method to find exact 
solution to the QAP. The effectiveness of our data-guided 
algorithm against a simple lexisearch algorithm21 and a 
discrete linear reformulation22 have been examined for 
some QAPLIB instances23 of different sizes.

We organize the paper as follows: Section 2 gives a 
literature survey on the QAP. Section 3 presents formula-
tion of the problem by Ahmed21. A data-guided lexisearch 
algorithm is developed for the problem in Section 4. 
Computational experiment is reported in Section 5. 
Finally, Section 6 reports comments and concluding 
remarks.

2. Literature Survey
Numerous methods in the literature are used to find 
exact solution to the QAP and other combinatorial 
optimization problems. However, only a few instances 
of size n≥30 from QAPLIB have been solved optimally 
and most of them are solved using computers connected 
in parallel. Out of various methods, many researchers 
have proposed different branch and bound algorithms 
for solving the QAP. Branch and bound algorithms are 
defined from allocation and cutting rules that define 
lower bounds for the problem. Enumerative schemes 
using lower bounds to eliminate undesired solutions 
are developed by Gilmore24. Other literatures that use 
branch and bound algorithms are Lawler25, Burkard and 
Derigs26, Pardalos and Crouse27, Pardalos et al.28, Brixius 
and Anstreicher29, Hahn et al.30, etc.

Several reformulations of the QAP as integer or 
Mixed-Integer Linear Programming Problems (MILPs) 
have been proposed, which are then solved using differ-
ent methods. Some literatures studied on special cases of 
QAP. Christofides and Benavent31 studied a special case of 
the QAP that considers the flow matrix as the adjacency 
matrix of a tree using a MILP approach, which is then, 
solved using dynamic programming. A similar technique 
was also used by Urban32. Adams and Johnson33 proposed 
a level-1 Reformulation-Linearization Technique (RLT-1) 
for obtaining lower bounds to the problem and found  

very good bounds. Erdoğan and Tansel15 proposed two 
integer programming formulations constructed on the 
flow-based linearization techniques, which are then used 
to solve some instances up to size 25 (nug24, chr25a) 
using a depth-first branch-and-cut algorithm.  Adams et 
al.34 developed exact solution methods using a RLT-2 for-
mulation for the problem and found solutions up to size 
of 30. As reported, among the RLT formulations, RLT-2 
provides very tighter lower bound that leads to very close 
exact solution to the problem. Zhang et al.35 proposed 
integer programming formulation of the problem and 
solved some instances up to size of 32 (esc32e-g) using 
CPLEX 9.0 and found very good results. Hahn et al.36 pro-
posed another RLT (RLT-3) formulation for calculating 
lower bounds for the QAP instances. As reported, experi-
mental results project significant runtime improvement 
over all other published QAP branch-and-bound solvers. 
Nyberg and Westerlund22 presented an exact discrete lin-
ear formulation of the problem and solved the problem 
using Gurobi (4.0.1) with default parameter settings. As 
reported they could solve some instances of size up to 64 
(esc64a, tai64a).

The lexicographic search (lexisearch, for short) 
was developed by Pandit37, first for Loading Problem 
(known as Knapsack Problem). It is a systematic branch 
and bound approach that was developed before branch 
and bound approach of Little et al.38. A lexisearch 
algorithm was developed to find exact solution to the 
QAP16. However, no any computational experiment was 
reported. Recently, a reformulation of the QAP has been 
proposed by Ahmed21 such that lexisearch algorithm 
can be applied efficiently. The comparative study of the 
lexisearch algorithm against implementation of MILP 
formulation (IPQAPR-IV, therein) by Zhang et al.35 
shows the effectiveness of the proposed lexisearch algo-
rithm based on the reformulation. We are going to use 
the reformulation by Ahmed21 and then solve by using 
a data-guided lexisearch algorithm. In the next section 
we briefly discuss reformulation by Ahmed21 with an 
example.

3. Areformulation by Ahmed21

Let f f u v and d d x yij ij i j ij ij i j
′ ′= - - = - - . Then Za  

in equation (1) becomes
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and sa is the assignment cost with respect to a surplus 
matrix S=[sij] with

 s x y u v iij i j i j i j i j= + + +a b g d ( )3 (3i)

Further Za can be reduced to the following form.
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In equation (5d), cs is a constant and s′a is the assign-
ment cost with regard to the reduced surplus matrix S′. 
The matrix S′ is a non-negative matrix. So, it is sufficient 
to minimize Za in equation (4). For example, let flow and 
distance matrices are presented in Table 1 and Table 2 
respectively, then the corresponding matrices F ′, D′ and 
S′ are calculated and shown in Table 3 to Table 5 21. We 
have cs=46.
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Table 1. The flow matrix F

Facility 1 2 3 4 5
1 X 5 0 6 1
2 5 X 3 0 4
3 2 3 X 0 0
4 4 0 0 X 1
5 1 2 0 5 X

Table 2. The distance matrix D

Location 1 2 3 4 5
1 X 1 1 2 5
2 1 X 4 1 2
3 1 2 X 1 3
4 2 1 1 X 5
5 3 2 2 1 X

Table 3. The reduced flow matrix F′

Facility 1 2 3 4 5
1 X 5 0 6 1
2 4 X 3 0 4
3 1 3 X 0 0
4 3 0 0 X 1
5 0 2 0 5 X

Table 4. The reduced distance matrix D′

Location 1 2 3 4 5
1 X 0 0 1 3
2 0 X 3 0 0
3 0 1 X 0 1
4 1 0 0 X 3
5 2 1 1 0 X

Table 5. The reduced surpluss matrix S′

Facility\Location 1 2 3 4 5
1 2 1 3 0 15
2 0 0 0 0 7
3 0 0 0 0 0
4 0 0 0 0 8
5 0 0 0 0 3
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It is to be noted that Edwards39, and Frieze and  
Yadegar41 proposed similar decombination methods to 
reduce the quadratic coefficients cij, dpq into ̄cij ,  ̄dpq and then 
applied Gilmore-Lawler method24, 25 to obtain lower of the 
QAP instances. However, our method is different from 
their methods. We are applying lexisearch algorithm which 
obtains exact solution, whereas their methods give only 
lower bound that may not be equal to the exact  solution.

4.  A Data-guided Lexisearch 
Algorithm

It is reported that in terms of computational times for 
the same size of instances, simple lexisearch algorithm 
produces two groups; one takes very low computational 
time, whereas other takes very high computational time21. 
In the simple algorithm, the nature of the data does not 
play any role. However, a preliminary scrutiny of the data 
can suggest some simple preprocessing, after which the 
algorithm becomes considerably more effective. Ahmed18 
developed a data-guided algorithm by transposing the 
cost matrix depending variances of rows and columns 
and then applied to the traveling salesman problem, and 
found better performance of the algorithm. But, for our 
problem, modifying the ‘alphabet table’ according to the 
variances of rows and columns cannot be applicable. 
Ahmed19 developed another data-guided algorithm by 
modifying ‘alphabet table’ and applied to the bottleneck 
traveling salesman problem, which can be applicable to 
our problem. So, we modify the ‘alphabet table’ according 
to the number of zeros in the rows of the ‘alphabet table’. 
We rename the facilities (rows) of the ‘alphabet table’ and 
accordingly create a new alphabet table and then apply 
the simple lexisearch algorithm.

4.1 Alphabet Table
Alphabet matrix, T=[t(i,j)], is a square matrix of order n 
formed by the positions of the elements of the reduced 
surplus matrix S′ of order n when they are arranged in 
the non-decreasing order of their values21. Alphabet table 
"[ ( , ) ]", ( , )t i j si t i j- ′  is the mixture of elements of matrix T 
and their values (Ahmed, 2010a). The alphabet table for 
the matrix S′ is shown in Table 6.

4.2 Lower Bound
The lower bound that is considered in lexisearch algo-
rithm is the bound for leader block. We consider the 
same lower bound that is used by Ahmed21. However, we 

describe briefly the lower bound. As there are two terms 
in the equation (4), we have two calculations for the lower 
bound. For the first term, we sort row-wise elements of 
F ′ excluding diagonals in ascending order and store in 
F ″=[f  ″ij], sort column-wise elements of D′ excluding 
diagonals in descending order and store in D″=[d″ij], and 
then form an inner product matrix M as follows.

 m f dij ik kj
k

n
= Â

=

-
′′ ′′

1

1
6( ) (6)

Thereafter, elements of M are sorted row-wise in 
ascending order, which are shown in Table 7.

Now, suppose the location a(k) is selected for concat-
enating to an incomplete assignment { ( ), ( ),....., ( )}a a a k1 2 1- .  
Before concatenation, we must check the bound for the 
leader { ( ), ( ),......, ( ), ( )}a a a k a k1 2 1- . We calculate the lower 
bound for the leader as follows:
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where t(i, p) is the first ‘unassigned’ location in the ith 
row in the alphabet matrix T

The value of the incomplete assignment {a(1), 
a(2),......,a(k)} can be calculated as 
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Table 7. The matrix M

Facility\Location 1 2 3 4 5

1 0 1 1 1 8

2 0 3 3 3 13

3 0 0 0 0 1

4 0 0 0 0 1

5 0 0 0 0 2

Table 6. The alphabet table (P and V are 
the location and its value respectively)

Facility P–V P–V P–V P–V P–V

1 4–0 2–1 1–2 3–3 5–15

2 1–0 2–0 3–0 4–0 5–7

3 1–0 2–0 3–0 4–0 5–0

4 1–0 2–0 3–0 4–0 5–8

5 1–0 2–0 3–0 4–0 5–3
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4.3 Modified Alphabet Table
We modify the ‘alphabet table’ according to the  following 
rule. If all elements of the reduced surplus matrix  
S ′ are zero, then consider the matrix M, otherwise con-
sider reduced surplus matrix S ′ for constructing ‘alphabet 
matrix’, and then form the ‘alphabet table’. Now, inter-
change the rows (facilities) of the existing ‘alphabet table’ 
so that the rows with maximum zeros are shifted to the 
bottom while rows with minimum zeros are shifted to 
the top. In the event of a tie, the first positive values of 
the locations in the rows are compared, the rows con-
taining largest values are shifted to the top and the rows 
containing smallest values are shifted to the bottom. The 
modified alphabet table after preprocessing the existing 
alphabet table (Table 6) is shown in Table 8.

4.4 The algorithm
Our data-guided lexisearch algorithm can be stated as 
follows. This algorithm is a modification of the simple 
lexisearch algorithm for the QAP21.
Step 0:-  Form the ‘modified alphabet table’. Initialize the 

‘best solution value’(Za)as big as possible, k = 1, 
andZk-1 = 0.

Step 1:-  Let the present leader be the assignment of 
length (k-1) and the first ‘legitimate’ (i.e., unas-
signed and unchecked) location in kth row of the 
 alphabet table be the next location with value V. 
If ((V + Zk-1) ≥ Za), go to step 4, else, calculate Zk 
(the value of present assignment) and Lk (lower 
bound for the present leader), and go to step 2. If 
we do not find any ‘legitimate’ location in the kth 

row, go to step 4.
Step 2:-  If ((Zk + Lk) < Za), go to step 3, else, drop the loca-

tion which was concatenated in step 1,and jump 
over the block, i.e., go to step 1.

Step 3:-  Go into the sub-block, i.e., augment the current 
leader; concatenate the considered location per-
manently to it, lengthening the leader by one, that 
is, k is increased by one. If the current assignment 
is a complete assignment, then update Za = Zk and 
go to step 4, else, go to step 1.

Step 4:-  Jump out to next super-block, i.e., decrease k by 1 
(one) and reject all subsequent assignments from 
this block. If k < 1, go to step 5, else go to step 1.

Step 5:-  Za is the optimal solution value and the cur-
rent assignment is the optimal assignment with 
respect to the facilities as described after pre-
processing referred in step 0. Hence for getting 
the optimal assignment sequence in the required 
form, restore the facilities and stop.

4.5 Illustration of the Algorithm
Let us illustrate the working of the data-guided lexisearch 
algorithm using the example presented in Table 1 and 
Table 2. Let ‘best solution value’ (Za) = 9999. The ‘search 
table’ is given in Table 9, and the following symbols are 
used therein.

GS: Go into the sub-block.
JB: Jump over the block.
JO: Jump out to the next super-block.
As seen from the search table, the optimal solution is 

given by the assignment 
1 4 2 5 3
4 3 2 1 5

Ê
ËÁ

ˆ
¯̃

 or equivalently 

the optimal assignment is {4, 2, 5, 3, 1} with value (cost) 
Za = 4. Hence, the optimal assignment cost with regard to 
the original matrices is Za + Cs = 4 + 46 = 50.

5. Computational Experience
We have encoded our data-guided lexisearch algorithm 
(DGLSA) in Visual C++ and run on the same machine used 
by Ahmed21, i.e., on a Pentium IV personal computer with 
speed 3 GHz and 448 MB RAM under MS Windows XP, 
and tested with some medium sized QAPLIB instances23. 
To show the effectiveness of our DGLSA, a comparative 
study is carried out against simple Lexisearch Algorithm 
(LSA) of Ahmed21. In Table 10, Best Known solution 
(BKV) reported in QAPLIB; and Best Solution Value 
(BSV), percentage of error of the solution (Error(%)), 
Total computational Time (TotTime) and the computa-
tional time when the optimal solution is hit for the First 
Time (FirstTime) in seconds for solving the instances by 

Table 8. The modified alphabet table

Facility P–V P–V P–V P–V P–V
1(1) 4–0 2–1 1–2 3–3 5–15

2(4)∗ 1–0 2–0 3–0 4–0 5–8
3(2) 1–0 2–0 3–0 4–0 5–7
4(5) 1–0 2–0 3–0 4–0 5–3
5(3) 1–0 2–0 3–0 4–0 5–0

∗Note: The indices in the brackets are the original names given 
to the facilities, while the indices without parenthesis are new 
indices, for example, facility that was indexed as 4 is now  
indexed as 2. 
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Table 9. The search table

Leaders
Zk Lk Za Remarks

1(1) 2(4) 3(2) 4(5) 5(3)
4–0 (0) 0 0 9999 GS

1–0 (0) 9 3 9999 GS
2–0 (9) 9 0 9999 GS

3–0 (9) 23 1 9999 GS
5–0 (23) 26 0 9999 GS

26 JO
5–3 (12) 30 0 26 JB, JO

3–0 (9) 9 0 26 GS
2–0 (9) 19 1 26 GS

5–0 (19) 25 0 26 GS
25 JO

5–3 (12) 34 0 25 JB, JO
5–7 (16) 31 0 25 JB, JO

2–0 (0) 0 0 25 GS
1–0 (0) 9 0 25 GS

3–0 (9) 17 1 25 GS
5–0 (17) 32 0 25 JB, JO

5–3 (12) 36 0 25 JB, JO
3–0 (0) 0 0 25 GS

1–0 (0) 1 1 25 GS
5–0 (1) 7 0 25 GS

7 JO
5–3 (3) 17 0 7 JB, JO

5–7 (7) 7 JO
3–0 (0) 0 0 7 GS

1–0 (0) 9 0 7 JB
2–0 (0) 0 0 7 GS

1–0 (0) 1 1 7 GS
5–0 (1) 4 0 7 GS

4 JO
5–3 (3) 14 0 4 JB, JO

5-7 (7) 4 JO
5–8 (8) 4 JO

2–1 (1) 1 0 4 GS
1–0 (1) 1 3 4 JB
3–0 (1) 22 0 4 JB
4–0 (1) 1 0 4 GS

1–0 (1) 1 0 4 GS
3–0 (1) 4 1 4 JB
5–3 (4) 4 JO
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Table 9. (Continued)

Leaders
Zk Lk Za Remarks

1(1) 2(4) 3(2) 4(5) 5(3)
3–0 (1) 20 0 4 JB
5–7 (8) 4 JO

5–8 (9) 4 JO
1–2 (2) 2 3 4 JB
3–3 (3) 3 0 4 GS

1–0 (3) 3 3 4 JB
2–0 (3) 18 0 4 JB
4–0 (3) 3 0 4 GS

1–0 (3) 3 0 4 GS
2–0 (3) 4 1 4 JB
5–3 (6) 4 JO

2–0 (3) 20 0 4 JB
5-7 (10) 4 JO

5–8 (11) 4 JO
5–15(15) STOP

Table 10. Comparison of LSA and DGLSA

Instance BKV
LSA DGLSA

BSV Error(%) FirstTime TotTime BSV Error(%) FirstTime TotTime

esc16a 68 68 0.00 0.60 625.30 68 0.00 0.10 35.70

esc16b 292 292 0.00 29.10 14400.00 292 0.00 11.80 14400.00

esc16c 160 160 0.00 840.50 14400.00 160 0.00 0.00 2984.60

esc16d 16 16 0.00 2.50 14400.00 16 0.00 0.30 33.70

esc16e 28 28 0.00 0.56 14.30 28 0.00 0.00 0.30

esc16f 0 0 0.00 0.00 0.00 0 0.00 0.00 0.00

esc16g 26 26 0.00 0.00 0.50 26 0.00 0.00 0.10

esc16h 996 996 0.00 1.10 6228.20 996 0.00 0.00 1298.50

Partial Average 0.00 109.30 6258.54 0.00 1.53 2344.11

esc32a 130 198 52.31 12058.80 14400.00 142 9.23 1332.50 14400.00

esc32b 168 204 21.43 14093.60 14400.00 168 0.00 495.90 14400.00

esc32c 642 662 3.12 12339.60 14400.00 642 0.00 628.20 14400.00

esc32d 200 234 17.00 4931.80 14400.00 200 0.00 266.36 14400.00

esc32e 2 2 0.00 1.25 26.05 2 0.00 0.00 0.10

esc32f 2 2 0.00 2.03 25.32 2 0.00 0.00 0.10

esc32g 6 6 0.00 0.44 0.45 6 0.00 0.00 8.33

esc32h 438 574 31.05 4099.20 14400.00 460 5.02 2057.66 14400.00

Partial Average 15.61 5940.84 9006.48 1.78 597.58 9001.07

(Continued)
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the algorithms, have been reported. The error (%) is given 
by the formula Error BSV BKV BKV(%) ( )/ %= - ¥100 . 

Results obtained by the algorithms for twenty two 
instances of sizes from 12 to 32 have been reported in  
Table 10. Out of them LSA and DGLSA hit optimal solution 
to thirteen and seventeen instances respectively within four 
hours of computational time. However, for three instances 
optimality could not be proved by DGLSA. On average, 
DGLSA obtains solutions which are 3.48% away from the 
optimal solutions, whereas, LSA obtains solutions which 
are 10.29% away from the optimal solutions. So, DGLSA 
obtains better solutions. In terms of computational time 
also, DGLSA is found to be better. It is to be noted that lex-
isearch algorithm first finds an optimal solution and then 
proves the optimality of that solution. The table shows that, 
on average computational time, LSA found optimal solu-
tion within at least 42% of the total computational time, 
whereas DGLSA found the optimal solution within only 
31% of the total computational time. That is, LSA spent 
58% and DGLSA spent 69% of total computational time 
on proving optimality of the solutions. So, LSA spends a 
comparatively large amount of time on finding an optimal 
solution for these QAPLIB instances compared to DGLSA, 
and hence, many sub problems are thrown by DGLSA. On 
the basis of computational time, DGLSA is found to be bet-
ter than LSA. There is large improvement of DGLSA over 
LSA for the instances. So, our goal is achieved very well.

In Table 11, we also present another compara-
tive study between our DGLSA and implementation of 
Discrete Linear Reformulation (DLR) by Nyberg and 
Westerlund22 for thirteen QAPLIB instances. The table 

reports  computational times (in seconds), and solutions 
as were reported by Nyberg and Westerlund22 on a PC 
with Intel i7 4-core 2.8 GHz processor and 6 GB RAM 
and on another PC with Intel i7 6-core 3.2 GHz proces-
sor for esc64a using Gurobi (4.0.1) with default parameter 
settings. So, as regards the computational time, it was not 
possible to compare them directly as they have been run in 
different machines, and the machines used by Nyberg and 
Westerlund22 are much faster than our machine. From the 
table it is seen that our algorithm could not hit optimal 
solution for esc32a and tai64c within four hours of com-
putational time. For the remaining eleven instances, if we 
consider First Time for our DGLSA, then our algorithm 
is found to be far better than the DLR. However, among 
these eleven instances, for four instances our algorithm 
could not prove optimality of the solution within four 
hours. At least for the instances of size 12, our algorithm 
is found to be better. It means that our data-guided lex-
isearch algorithm can compete with stat-of-art methods 
in the literature. Also, solution by DGLSA does not rely 
on commercial math software, whereas solution by DLR 
relies on Gurobi.

7. Conclusion
We have developed a data-guided lexisearch algorithm 
to find exact solution to the Quadratic Assignment 
Problem (QAP). Depending on the number of zeros in 
the rows of ‘alphabet table’, we renamed the rows and 
constructed a new alphabet table. Next, the simple lex-
isearch algorithm of Ahmed21 using new alphabet table 

Table 10. (Continued)

Instance BKV
LSA DGLSA

BSV Error(%) FirstTime TotTime BSV Error(%) FirstTime TotTime

kra30a 88900 118820 33.66 3874.31 14400.00 107350 20.75 5118.91 14400.00

kra30b 91420 118930 30.09 4099.42 14400.00 115870 26.74 13924.61 14400.00

kra32 88700 115310 30.00 6170.01 14400.00 101890 14.87 14284.54 14400.00

Partial Average 31.25 4714.58 14400.00 20.79 11109.35 14400.00

scr12 31410 31410 0.00 0.14 0.27 31410 0.00 0.20 0.20

scr15 51140 51140 0.00 77.88 81.70 51140 0.00 36.70 39.10

scr20 110030 118568 7.76 12986.42 14400.00 110030 0.00 6266.00 7886.45

Partial Average 2.59 4354.81 4827.32 0.00 2100.97 2641.92

Total Average 10.29 3436.78 8172.82 3.48 2019.26 6449.42
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is applied. It is shown that before applying the simple 
lexisearch algorithm, preprocessing of the data improves 
the computational time as well as solution quality sig-
nificantly. Finally, the performance of the data-guided 
lexisearch algorithm is compared with implementation 
of the Discrete Linear Reformulation (DLR) by Nyberg 
and Westerlund22 for some medium sized QAPLIB 
instances. Among the algorithms, our data-guided algo-
rithm is found to be the better than the simple algorithm, 
and the data-guided algorithm is competing with DLR 
using Gurobi.

We have investigated using lexisearch algorithm that 
only some medium sized instances can be solved optimally 
within stipulated time limit. For the large sized instances 
the lexisearch algorithm is not found to be suitable. Also, for 
some small sized instances, for example esc16b of size 16, 
our algorithm could not prove optimality of the solution; 
whereas the instancesesc32e-gof sizes32 could be solved 
within 8.33seconds only. Also, surprisingly, our algo-
rithm could hit the optimal solution for esc64a of size 64  
within 2.3 seconds. We investigated why some small sized 
instances could not be solved, whereas some medium 
sized instances could be solved very quickly, but, we did 
not come to any conclusion. This definitely, depends on 
the data structure. So, a more sophisticated data-guided 
approach may be used to reduce the computational time 
further and to find better optimal solution quickly. Also, 
one can propose a tighter lower bound method which a 

Table 11. Comparison of DRL and DGLSA

Instance Size BKV
Computational Time (in seconds)

DGLSA DLR
FirstTime TotTime TotTime

nug12 12 578 0.77 3.58 59.00
scr12 12 31410 0.20 0.21 9.60
chr12a 12 9552 0.02 0.02 1.60
tai12a 12 224416 4.94 28.13 246.00
rou12 12 235528 12.31 52.16 1187.00
esc16a 16 68 0.10 35.70 11.40
esc16b 16 292 11.80 14400.00 158.00
esc16c 16 160 0.00 2984.60 286.00
esc32a 32 130 – – 1618580.00
esc32c 32 642 628.20 14400.00 24365.00
esc32d 32 200 266.36 14400.00 36256.00
esc64a 64 116 2.30 14400.00 16370.00
tai64c 64 1855928 – – 182983.00

very important part of the lexisearch algorithm that may 
find optimal solution for some more instances quickly. 
Further, combination of lexisearch and genetic algorithm41 

may lead to an efficient way of solving the problem.

8. Acknowledgement
The author is thankful to the respected reviewer for 
his constructive comments and suggestions. This work 
has been supported by Deanery of Academic Research, 
Al Imam Mohammad Ibn Saud Islamic University, 
Saudi Arabia through Grant no. 320902. The author 
is very much thankful to the Deanery for its Financial 
Support. 

9. References
 1.  Koopmans TC, Beckmann MJ. Assignment problems 

and the location of economic activities. Econometrica.  
1957; 25(1):53–76.

 2.  Sahni S, Gonzales T. P-complete approximation problems. 
Journal of the Association for Computing Machinery. 1976; 
23:555–65.

 3.  Steinberg L. The backboard wiring problem: a placement 
algorithm. SIAM Rev. 1961; 3(1):37–50.

 4.  Geoffrion AM, Graves GW. Scheduling parallel production 
lines with changeover costs: practical applications of a qua-
dratic assignment/LP approach. Operations Research. 1976 
Jul–Aug; 24(4):595–610.



Zakir Hussain Ahmed

Indian Journal of Science and Technology 489Vol 7 (4) | April 2014 | www.indjst.org

 5.  Pollatschek MA, Gershoni N, Radday YT. Optimization  
of the typewriter keyboard by simulation. Angewandte 
Informatik. 1976; 17:438–9.

 6.  Elshafei AN. Hospital layout as a quadratic assign-
ment problem. Operations Research Quarterly. 1977; 
28(1):167–79.

 7.  Krarup J, Pruzan PM. Computer-aided layout design. Math 
Program Stud. 1978; 9:75–94.

 8.  Heffley DR. Decomposition of the Koopmans–Beckmann 
problem. Reg Sci Urban Econ. 1980; 10(4):571–80.

 9.  Hubert LJ. Assignment methods in combinatorial data 
analysis. Statistics: Textbooks and Monographs Series. New 
York: Marcel Dekker, Inc. 1987. Book 73. 

10.  Bos J. A quadratic assignment problem solved by simulated 
annealing. Journal of Environmental Management. 1993; 
37(2):127–45.

11.  Forsberg JH, Delaney RM, Zhao Q, Harakas G, Chandran 
R. Analyzing lanthanide-included shifts in the NMR spectra 
of lanthanide (III) complexes derived from 1,4,7,10-tetrakis 
(N,N-diethylacetamido)-1,4,7,10-tetraazacyclododecane. 
Inorganic Chemistry. 1994; 34:3705–15.

12.  Brusco MJ, Stahl S. Using quadratic assignment methods to 
generate initial permutations for least-squares unidimen-
sional scaling of symmetric proximity matrices. J Classif. 
2000; 17(2):197–223.

13.  Duman E, Ilhan O. The quadratic assignment problem in 
the context of the printed circuit board assembly process. 
Comput Oper Res. 2007; 34:163–79.

14.  Hahn P, Grant T, Hall N. A branch-and-bound algorithm 
for the quadratic assignment problem based on Hungarian 
method. Eur J Oper Res. 1998; 108:629–40.

15.  Erdoğan G, Tansel, B. A branch-and-cut algorithm for the 
quadratic assignment problems based on linearizations. 
Comput Oper Res. 2007; 34(4):1085–106.

16.  Das S. Routing and Allied Combinatorial Programming 
Problems: A Lexicographic Search Approach [Ph.D. Thesis]. 
Assam, India: Dibrugarh University; 1976.

17.  Ahmed ZH. i . e x eA lexisearch algorithm for the bottleneck trav-
eling salesman problem. Int J Comput Sci Secur. 2010a; 
3(6):569–77.

18.  Ahmed ZH. i . e x eA data-guided lexisearch algorithm for the 
asymmetric traveling salesman problem. Mathematical 
Problems in Engineering. 2011a; 2011(2011). 
doi:10.1155/2011/750968.

19.  Ahmed ZH. i . e x eA data-guided lexisearch algorithm for the 
bottleneck travelling salesman problem. International 
Journal of Operational Research. 2011b; 12(1):20–33.

20.  Ahmed ZH. i . e x e An exact algorithm for the clustered travelling 
salesman problem. OPSEARCH. 2013a Jun; 50(2):215–28.

21.  Ahmed ZH. A new reformulation and an exact algorithm 
for the quadratic assignment problem. Indian Journal of 
Science and Technology. 2013b; 6(4):4368–77.

22.  Nyberg A, Westerlund T. A new exact discrete linear 
 reformulation of the quadratic assignment problem. Eur J 
Oper Res. 2012; 220:314–19.

23.  Burkard RE, Karisch SE, Rendl F. QAPLIB - a  quadratic 
assignment problem library. J Global Optim. 1997; 
10(4):391–403. 

24.  Gilmore PC. Optimal and suboptimal algorithms for the 
quadratic assignment problem. SIAM J Appl Math; 1962; 
10:305–13.

25.  Lawler EL. The quadratic assignment problem. Manag Sci. 
1963; 19:586–90.

26.  Burkard RE, Derigs U. Assignment and matching problems: 
solutions methods with Fortran programs. Lect Notes Econ 
Math Syst. 1980; 184.

27.  Pardalos P, Crouse J. A parallel algorithm for the quadratic 
assignment problem. Supercomputing ‘89. Proceedings of 
the 1989 ACM/IEEE Conference on Supercomputing; 1989 
Nov 12–17; Reno, NV, United States. p. 351–60.

28.  Pardalos PM, Ramakrishnan KG, Resende MGC, Li Y. 
Implementation of a variance reduction-based lower bound 
in a branch-and-bound algorithm for the quadratic assign-
ment problem. SIAM J Optim. 1997; 7(1):280–94.

29.  Brixius NW, Anstreicher KM. Solving quadratic assignment 
problems using convex quadratic programming relaxations. 
Optim Meth Software. 2001; 16(1–4):49–68.

30.  Hahn PM, Hightower WL, Johnson TA, Guignard-Spielberg 
M, Roucairol C. Tree elaboration strategies in branch and 
bound algorithms for solving the quadratic assignment 
problem. Yugoslavian Journal of Operational Research. 
2001; 11(1):41–60.

31.  Christofides N, Benavent E. An exact algorithm for 
the  quadratic assignment problem. Oper Res. 1989; 
37(5):760–68.

32.  Urban TL. Solution procedures for the dynamic facility lay-
out problem. Ann Oper Res. 1998. 76:323–42.

33.  Adams WP, Johnson TA. Improved linear programming-
based lower bounds for the quadratic assignment problem. 
DIMACS Series in Discrete Mathematics and Theoretical 
Computer Science. 1994; 16:43–75.

34.  Adams WP, Guignard M, Hahn PM, Hightower WL. A 
level-2 reformulation–linearization technique bound for 
the quadratic assignment problem. European Journal of 
Operational Research. 2007; 180(3):983–96.

35.  Zhang H, Beltran-Royo C, Constantino M. Effective for-
mulation reductions for the quadratic assignment problem. 
Comput Oper Res. 2010; 37:2007–16.

36.  Hahn PM, Zhu Y-R, Guignard M, Hightower WL, Saltzman 
MJ. A level-3 reformulation-linearization technique-based 
bound for the quadratic assignment problem. INFORMS J 
Comput. 2012; 24(2):202–09.



A Data-guided Lexisearch Algorithm for the Quadratic Assignment Problem

Indian Journal of Science and TechnologyVol 7 (4) | April 2014 | www.indjst.org490

37.  Pandit SNN. Some quantitative combinatorial search 
 problems [Ph.D. Thesis]. Kharagpur, India: Indian Institute 
of Technology; 1963.

38.  Little JDC, Murthy KG, Sweeny DW, Karel C. An 
Algorithm for the Travelling Salesman Problem. Oper Res. 
1963; 11:972–89.

39.  Edwards CS. A branch and bound algorithm for the 
Koopmans-Bechmann quadratic assignment problem. 
Math Program Stud. 1980; 13:35–52.

40.  Frieze AM, Yadegar J. On the quadratic assignment   
problem. Discrete Appl Math. 1983; 5(1):89–98.

41.  Ahmed ZH. Genetic algorithm for the traveling salesman 
problem using sequential constructive crossover opera-
tor. International Journal of Biometrics & Bioinformatics. 
2010b; 3(6):96–105.


