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Abstract
This paper deals with a comparative performance of traditional elements and high order elements, making use of their 
formulation as vectors (or patterns) in a multi-dimensional space of proper attributes. The classification can be carried 
out with the help a self-organizing feature map of Kohonen with the patterns corresponding to the input space. The work 
makes use of the four attributes: its number of nodes, number of Lejendre terms, maximum degree of interpolation poly-
nomials and number of degrees of freedom per node, though a more general characterization is also possible.

*Author for correspondence

1.  Introduction
The finite element method is usually applied in order to 
find approximations of complex boundary value problems 
arising in many engineering disciplines. These approxi-
mate solutions then serve as a basis for decisions which 
have to be made, for instance, during a design process in 
civil or mechanical engineering. Since the finite element 
method is numerical, it involves different sources of errors 
and a reliable decision can therefore only be made if the 
error is somehow controlled. For the elements which 
need to be refined, a decision has to be made whether the 
polynomial degree should be increased (p-version) or the 
element size should be reduced (h-version)1,2. High order 
elements are used in the p-version FEM and low order 
element are used in the h-version FEM, therefore it is 
important to know relationship between these elements. 
Also, still finite element performance lacks a sufficient 
quantitative characterization. That is why investigations 
into similarity among finite elements or their ‘‘closeness’’ 
and, subsequently, their classification may be useful. Due 
to the great variety of finite elements available3,4, this 
seems particularly relevant. The work thus focuses on a 
comparative performance of finite elements, instead of its 
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common evaluation in terms of approximation theories. 
A traditional classification of finite elements is based on a 
single attribute and it is not satisfactory. For example, by 
their dimensionality, the finite elements are divided into 
three trivial classes: linear, plane and 3Delements5. Beltzer6 
introduced a classification for traditional elements based 
on dimensionality, number of nodes, polynomial degree 
and number of degrees of freedom per nodes. But total 
classification of elements such as 1D, 2D and 3D may not 
be useful since it is impossible to use them instead of each 
others. Therefore, in the present study, the elements with 
the same dimensionality were classified.

The interest in such a classification is not of a theoreti-
cal nature only. Since the elements, which belong to the 
same class, should show a similar performance, the clas-
sification is of an obvious applied value too. The present 
work proposes a general approach to this problem, which 
is based on application of neural networks.

2. � SOM Network for Finite 
Elements

Let Z be the number of parameters (attributes) for a set 
J of elements, which define the finite element, and state 
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these as a vector X in a Z-dimensional space, X = ( X1, X2, 
..., XZ ), X ∈ J.

Thought many parameters are possible to use for clas-
sification, but here just the most important of them were 
used. Under above, the basic attributes for spatial dimen-
sion are: its number of nodes N, the maximum degree 
of approximating polynomials M, number of Lejendre 
terms L, and the number of degrees of freedom per node 
F. Thus, for the present case Z = 4, the X-vector being 
specified as X = (N, M, L, F).

Consider the above set J of k finite elements specified 
by their vectors, Xi, i = 1, 2, ..., k. As far as the problem and 
mesh-dependent effects are excluded from consideration, 
the vector Xi  controls the performance of the ith element. 
Therefore, elements, whose vectors Xi  are close to one 
another (belong to the same class or cluster), should show 
similar performance.

Since J = {Xi, i = 1, 2, ..., k} may be considered as a set 
of patterns in a four-dimensional space, one may invoke 
the neural network paradigm for classification (cluster-
ing) purposes. 

The reader is referred to Hagan et al.7 and Haykin8 for 
comprehensive expositions of neural networks. Among 
various neural networks, the so-called self organizing fea-
ture map (SOM) of Kohonen is of particular interest9,10. 
One of the most interesting aspects of SOM is that they 
learn to classify data without supervision.

In order to evaluate the activity bubbles of biologi-
cal systems, without having to implement the nonlinear 
on-center/off-surround feedback connections, kohonen 
designed the following simplification. His Self-Organizing 
feature Map (SOM) network first determines the winning 
neuron i*  using the same procedure as the competitive 
layer. Next, the weight vectors for all neurons within a 
certain neighborhood of the winning neuron are updated 
using Kohonen rule,

where w is weight matrix, α is the learning rate, P is 
the input vector, i ∈ Ni* (d) and Ni* (d) contains the indi-
ces for all of the neurons that lie within a radius d of the 
winning neuron i* :

When a vector P is presented, the weights of the 
winning neuron and its neighbors will move toward P. 
The result is that, after many presentations, neighboring 
neurons will have learned vectors similar to each other. 

A simple SOM is shown in Figure 1. This network may 
learn both the distribution and topology of a set of input 
patterns. At the end of the learning process by Kohonen’s 
rule, the neurons become selectively tuned to classes of 
input patterns. This amounts to the formation of a map, 
which correlates spatial locations of the neurons in the 
output layer (lattice) with intrinsic features of the input 
patterns.

3.  �Classification of 1D Finite 
Elements

Assume that the set J consists of fourteen 1D-elements (k 
= 14) given in Table 1. Let us treat this problem with the 
help of a SOM. For all the elements of the set the dimen-
sionality are equal one. The pattern vector,Xi, i = 1, 2, ..., 
14, becomes four dimensional, Z = 4, implying Xi = (Ni, 
Mi, Li, Fi). The output layer may be arranged as a two-
dimensional lattice and the number of output neurons, 
S, which depends on a desirable number of classes (or 
clusters), may be taken as S = 2 × 2 or S = 2 × 3. The learn-
ing process starts with random initialization of weights 
for each of the output neurons. Then, the algorithm picks 
in a random fashion an input vector Xi = (Ni, Mi, Li, Fi), 
i = 1, 2, ..., 14 from Table 1 and presents it to the net-
work. Each time the vector is presented, a neuron wins a 
competition, as mentioned in the above. According to the 
learning rule by Kohonen, this neuron and its neighbors 
move their weight vectors even closer to the input vector. 
This process has two tendencies: first, the weight vectors 
spread out over the input space as the algorithm picks a 
new input pattern; second, the weights of adjacent neu-
rons move in the same direction. The learning process, 
which is, in fact, specification of the weight matrix, W, 
usually goes on for 100 iterations or more, until the map 
reaches a steady state.

N d j d di ij( ) { , }= ≤

Figure 1.  Principle of a SOM network.

iW(q) = iW(q − 1) + α(P(q) − iW(q − 1)),
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Figures 2 and 3 show the results, computed using 
MATLAB software neural network toolbox, referring to 
a finite element by its identifying number (in brackets) as 
given in the second column of Table 1. 

As shown in Figure 2, the first neuron selects the 
finite elements #1, #2, #3, #4, #5, #7 and #8, the second 
neuron selects the elements #9 and #10, the third neu-
ron selects the elements #6 and the fourth neuron #11, 
#12, #13, #14. Therefore just element #8 of high order ele-
ments has classified in same class as low order elements. 
For seeing more precisely elements classified as Figure 3 
that shows again just element #8 gathered by traditional 

Table 1.  Set of 1D elements

Finite element Identifying 
number,#

Number of 
nodes, N

Polynomial 
degree, M

Number of 
Legendre 
terms, L

Degrees of 
freedom per 

node, F

2-node linear 1 2 1 0 3
3-node parabolic 2 3 2 0 3
4-node cubic 3 4 3 0 3
5-node quadratic 4 5 4 0 3
2-node cubic–cubic 
arch

5 2 3 0 4

2-node Quantico–
Quantico arch

6 2 5 0 6

2-node beam 7 2 3 0 2
2-node, L1 8 2 2 1 3
2-node, L2 9 2 3 2 3
2-node, L3 10 2 4 3 3
2-node, L4 11 2 5 4 3
2-node, L5 12 2 6 5 3
2-node, L6 13 2 7 6 3

2-node, L7 14 2 8 7 3

Figure 2.  Classification by four neuron 1D elements.
Figure 3.  Classification by six neuron 1D elements.

elements. However, here the other lower order and high 
order elements have classified more precisely. Tables 3 
and 4 present the weight matrices of the two networks, 
which are (4 · 4) and (6 · 4), respectively, arrived at by the 
Kohonen algorithm.

Table 2.  Weight matrix of four–neuron 
classification network

2.6507 2.7547 0.48931 3.111
2.365 3.7761 1.9582 3.1422
2.399 3.8874 1.7609 3.3293
2 5.7756 4.4456 3.2475



Z. Goudarzi and A. Abedian

Indian Journal of Science and Technology 625Vol 7 (5) | May 2014 | www.indjst.org

4.  �Classification of 2D Finite 
Elements

Table 2 shows a set of 2D traditional and high 
order elements. Since the input patterns are defined in 
4D-space of the attributes, resort to a one-dimensional 
output lattice may cause information losses. So, the out-
put layer is arranged as a two-dimensional lattice. With 
k = 17, a net should consist of several output neurons 
only. Below we first investigate a network with S = 2 × 2 
neuron

lattice and then a network with S = 2 × 3 lattice, which 
may be referred to as the first- and second-order classifi-
cation networks, respectively.

The learning process starts with random initializa-
tion of four weights for each of the output neurons and 
then evolves in a way described in the above. After 100 
iterations, each of the finite elements given in Table 4 
becomes associated with one of the neurons. Figures 
4 and 5 graphically display the results for S = 2 × 2 and  
S = 2 × 3, respectively. The identifying numbers of the 
finite elements selected by a particular neuron are shown 
in brackets. As shown in Figure 4 just element #10 of high 
order elements has classified in same class with low order 
elements. For seeing more precisely elements classified as 
Figure 5 that shows again just element #10 gathered by tra-
ditional elements and increasing number of neurons did 
not help network to classify another high order element 
to contribute in low order class, therefore it just classi-
fies other elements more precisely. Also there is another 
concept “migration” which can happen by rising number 
of output neurons that an element tends to another neu-
ron and increase or decrease number of element f each 
neuron. This migration cause to elements classified more 
precisely.

5.  �Classification of 3D Finite 
Elements

As shown in Figure 6, the first neuron selects the finite ele-
ments #4 and #5, the second neuron selects the elements 
#2 and #3, the third neuron selects the elements #1, #6 
and #7 and the fourth neuron #8, #9 and #10. Therefore 
in neuron 3 are contribution of low order and high order 
elements (Table 5).

Because of similarity of 3D elements in number of 
nodes this effect has ignored and classification applied 
with other three inputs.

The network has distributed the finite elements 
with respect to four classes or clusters, taking into 
account their ‘‘closeness’’. The network also preserves 

Table 3.  Weight matrix of six–neuron 
classification network

2 6.2146 5.2146 3
2.4043 5.3034 3.2195 3.5097
2.3962 4.0561 1.9439 3.302
2.9121 4.1861 0.78779 4.0673
2.3061 2.41 0.52872 2.8706

2.6348 3.1256 0.4266 3.4624

Figure 4.  Classification by four neuron 2D elements.

Figure 5.  Classification by six neuron 2D elements.

Figure 6.  Classification by four neuron 3D elements.
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the topology of the input set, for example indicating 
that the third class is closer to the second class and 
fourth class.

6.  Conclusion 
The work focuses on a comparative performance of high 
order and traditional finite elements, instead of its evalua-

tion in terms of interpolation theories. The finite element 
is formulated as a vector or pattern in a multi-dimensional 
space of its attributes. Excluding from consideration the 
problem and mesh-dependent effects, this work makes 
use of a four-dimensional characterization: its number 
of nodes, maximum degree of interpolation polynomials, 
number of legendre terms and number of degrees of free-
dom per node.

Table 4.  Set of 2D elements

Finite element Identifying 
number,#

Number of 
nodes, N

Polynomial 
degree, M

Number of 
Legendre terms, 

L

Degrees of 
freedom per node, 

F

3-node plane triangle 1 3 1 0 2
4-node plane quadrilateral 2 4 2 0 2
6-node plane triangle 3 6 2 0 2
6-node plane quadrilateral 4 6 3 0 2
8-node plane quadrilateral 5 8 3 0 2
4-node rectangular plate 6 4 4 0 3
4-node rectangular shell 7 4 6 0 6
4-node cylindrical shell 8 4 6 0 12
10-node plane triangle 9 10 3 0 2
4-node quadrilateral, L1 10 4 3 1 2
4-node quadrilateral, L2 11 4 4 2 2
4-node quadrilateral, L3 12 4 5 3 2
4-node quadrilateral, L4 13 4 6 4 2
4-node quadrilateral, L5 14 4 7 5 2
4-node quadrilateral, L6 15 4 8 6 2
4-node quadrilateral, L7 16 4 9 7 2
4-node quadrilateral, L8 17 4 10 8 2

Table 5.  Set of 3D elements

Finite element Identifying 
number,#

Number of 
nodes, N

Polynomial 
degree, M

Number of 
Legendre 
terms, L

Degrees of 
freedom per 

node F

4-node tetrahedron 1 4 1 0 3
8-node brick 2 8 3 0 3
9-node wedge 3 9 3 0 3
10-node parabolic tetrahedron 4 10 2 0 3
15-node parabolic wedge 5 15 3 0 3
4-node tetrahedron, L1 6 4 2 1 3
4-node tetrahedron, L2 7 4 3 2 3
4-node tetrahedron, L3 8 4 4 3 3
4-node tetrahedron, L4 9 4 5 4 3
4-node tetrahedron, L5 10 4 6 5 3
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The pattern classification may be carried out with the 
help a SOM of Kohonen. These networks learn both the 
distribution and topology of a set of input patterns.

The classification is of an obvious applied value, as the 
elements, which belong to the same class, should show 
a similar performance. Also suitability of neural net-
work for evolution of high order and low order elements 
proved.
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