
Neural Classification of h- and p-version Elements
Z. Goudarzi1 and A. Abedian2*

1Department of Computer Engineering, University of Isfahan, Isfahan, Iran.
2Department of Mechanical Engineering, Daneshpajoohan Higher Education Institute,

Isfahan, Iran; abedian@me.iut.ac.ir

Abstract
This paper deals with a comparative performance of traditional elements and high order elements, making use of their
formulation as vectors (or patterns) in a multi-dimensional space of proper attributes. The classification can be carried
out with the help a self-organizing feature map of Kohonen with the patterns corresponding to the input space. The work
makes use of the four attributes: its number of nodes, number of Lejendre terms, maximum degree of interpolation poly-
nomials and number of degrees of freedom per node, though a more general characterization is also possible.

*Author for correspondence

1. Introduction
The finite element method is usually applied in order to
find approximations of complex boundary value problems
arising in many engineering disciplines. These approxi-
mate solutions then serve as a basis for decisions which
have to be made, for instance, during a design process in
civil or mechanical engineering. Since the finite element
method is numerical, it involves different sources of errors
and a reliable decision can therefore only be made if the
error is somehow controlled. For the elements which
need to be refined, a decision has to be made whether the
polynomial degree should be increased (p-version) or the
element size should be reduced (h-version)1,2. High order
elements are used in the p-version FEM and low order
element are used in the h-version FEM, therefore it is
important to know relationship between these elements.
Also, still finite element performance lacks a sufficient
quantitative characterization. That is why investigations
into similarity among finite elements or their ‘‘closeness’’
and, subsequently, their classification may be useful. Due
to the great variety of finite elements available3,4, this
seems particularly relevant. The work thus focuses on a
comparative performance of finite elements, instead of its

Indian Journal of Science and Technology, Vol 7(5), 622–627, May 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Keywords: Classification, Finite Elements, Kohonen’s Network, Neural Networks

common evaluation in terms of approximation theories.
A traditional classification of finite elements is based on a
single attribute and it is not satisfactory. For example, by
their dimensionality, the finite elements are divided into
three trivial classes: linear, plane and 3Delements5. Beltzer6
introduced a classification for traditional elements based
on dimensionality, number of nodes, polynomial degree
and number of degrees of freedom per nodes. But total
classification of elements such as 1D, 2D and 3D may not
be useful since it is impossible to use them instead of each
others. Therefore, in the present study, the elements with
the same dimensionality were classified.

The interest in such a classification is not of a theoreti-
cal nature only. Since the elements, which belong to the
same class, should show a similar performance, the clas-
sification is of an obvious applied value too. The present
work proposes a general approach to this problem, which
is based on application of neural networks.

2. SOM Network for Finite
Elements

Let Z be the number of parameters (attributes) for a set
J of elements, which define the finite element, and state

Z. Goudarzi and A. Abedian

Indian Journal of Science and Technology 623Vol 7 (5) | May 2014 | www.indjst.org

these as a vector X in a Z-dimensional space, X = (X1, X2,
..., XZ), X ∈ J.

Thought many parameters are possible to use for clas-
sification, but here just the most important of them were
used. Under above, the basic attributes for spatial dimen-
sion are: its number of nodes N, the maximum degree
of approximating polynomials M, number of Lejendre
terms L, and the number of degrees of freedom per node
F. Thus, for the present case Z = 4, the X-vector being
specified as X = (N, M, L, F).

Consider the above set J of k finite elements specified
by their vectors, Xi, i = 1, 2, ..., k. As far as the problem and
mesh-dependent effects are excluded from consideration,
the vector Xi controls the performance of the ith element.
Therefore, elements, whose vectors Xi are close to one
another (belong to the same class or cluster), should show
similar performance.

Since J = {Xi, i = 1, 2, ..., k} may be considered as a set
of patterns in a four-dimensional space, one may invoke
the neural network paradigm for classification (cluster-
ing) purposes.

The reader is referred to Hagan et al.7 and Haykin8 for
comprehensive expositions of neural networks. Among
various neural networks, the so-called self organizing fea-
ture map (SOM) of Kohonen is of particular interest9,10.
One of the most interesting aspects of SOM is that they
learn to classify data without supervision.

In order to evaluate the activity bubbles of biologi-
cal systems, without having to implement the nonlinear
on-center/off-surround feedback connections, kohonen
designed the following simplification. His Self-Organizing
feature Map (SOM) network first determines the winning
neuron i* using the same procedure as the competitive
layer. Next, the weight vectors for all neurons within a
certain neighborhood of the winning neuron are updated
using Kohonen rule,

where w is weight matrix, α is the learning rate, P is
the input vector, i ∈ Ni* (d) and Ni* (d) contains the indi-
ces for all of the neurons that lie within a radius d of the
winning neuron i* :

When a vector P is presented, the weights of the
winning neuron and its neighbors will move toward P.
The result is that, after many presentations, neighboring
neurons will have learned vectors similar to each other.

A simple SOM is shown in Figure 1. This network may
learn both the distribution and topology of a set of input
patterns. At the end of the learning process by Kohonen’s
rule, the neurons become selectively tuned to classes of
input patterns. This amounts to the formation of a map,
which correlates spatial locations of the neurons in the
output layer (lattice) with intrinsic features of the input
patterns.

3.   Classification of 1D Finite 
Elements

Assume that the set J consists of fourteen 1D-elements (k
= 14) given in Table 1. Let us treat this problem with the
help of a SOM. For all the elements of the set the dimen-
sionality are equal one. The pattern vector,Xi, i = 1, 2, ...,
14, becomes four dimensional, Z = 4, implying Xi = (Ni,
Mi, Li, Fi). The output layer may be arranged as a two-
dimensional lattice and the number of output neurons,
S, which depends on a desirable number of classes (or
clusters), may be taken as S = 2 × 2 or S = 2 × 3. The learn-
ing process starts with random initialization of weights
for each of the output neurons. Then, the algorithm picks
in a random fashion an input vector Xi = (Ni, Mi, Li, Fi),
i = 1, 2, ..., 14 from Table 1 and presents it to the net-
work. Each time the vector is presented, a neuron wins a
competition, as mentioned in the above. According to the
learning rule by Kohonen, this neuron and its neighbors
move their weight vectors even closer to the input vector.
This process has two tendencies: first, the weight vectors
spread out over the input space as the algorithm picks a
new input pattern; second, the weights of adjacent neu-
rons move in the same direction. The learning process,
which is, in fact, specification of the weight matrix, W,
usually goes on for 100 iterations or more, until the map
reaches a steady state.

N d j d di ij() { , }= ≤

Figure 1. Principle of a SOM network.

iW(q) = iW(q − 1) + α(P(q) − iW(q − 1)),

Neural Classification of h- and p-version Elements

Indian Journal of Science and TechnologyVol 7 (5) | May 2014 | www.indjst.org624

Figures 2 and 3 show the results, computed using
MATLAB software neural network toolbox, referring to
a finite element by its identifying number (in brackets) as
given in the second column of Table 1.

As shown in Figure 2, the first neuron selects the
finite elements #1, #2, #3, #4, #5, #7 and #8, the second
neuron selects the elements #9 and #10, the third neu-
ron selects the elements #6 and the fourth neuron #11,
#12, #13, #14. Therefore just element #8 of high order ele-
ments has classified in same class as low order elements.
For seeing more precisely elements classified as Figure 3
that shows again just element #8 gathered by traditional

Table 1. Set of 1D elements

Finite element Identifying
number,#

Number of
nodes, N

Polynomial
degree, M

Number of
Legendre
terms, L

Degrees of
freedom per

node, F

2-node linear 1 2 1 0 3
3-node parabolic 2 3 2 0 3
4-node cubic 3 4 3 0 3
5-node quadratic 4 5 4 0 3
2-node cubic–cubic
arch

5 2 3 0 4

2-node Quantico–
Quantico arch

6 2 5 0 6

2-node beam 7 2 3 0 2
2-node, L1 8 2 2 1 3
2-node, L2 9 2 3 2 3
2-node, L3 10 2 4 3 3
2-node, L4 11 2 5 4 3
2-node, L5 12 2 6 5 3
2-node, L6 13 2 7 6 3

2-node, L7 14 2 8 7 3

Figure 2. Classification by four neuron 1D elements.
Figure 3. Classification by six neuron 1D elements.

elements. However, here the other lower order and high
order elements have classified more precisely. Tables 3
and 4 present the weight matrices of the two networks,
which are (4 · 4) and (6 · 4), respectively, arrived at by the
Kohonen algorithm.

Table 2. Weight matrix of four–neuron
classification network

2.6507 2.7547 0.48931 3.111
2.365 3.7761 1.9582 3.1422
2.399 3.8874 1.7609 3.3293
2 5.7756 4.4456 3.2475

Z. Goudarzi and A. Abedian

Indian Journal of Science and Technology 625Vol 7 (5) | May 2014 | www.indjst.org

4.   Classification of 2D Finite 
Elements

Table 2 shows a set of 2D traditional and high
order elements. Since the input patterns are defined in
4D-space of the attributes, resort to a one-dimensional
output lattice may cause information losses. So, the out-
put layer is arranged as a two-dimensional lattice. With
k = 17, a net should consist of several output neurons
only. Below we first investigate a network with S = 2 × 2
neuron

lattice and then a network with S = 2 × 3 lattice, which
may be referred to as the first- and second-order classifi-
cation networks, respectively.

The learning process starts with random initializa-
tion of four weights for each of the output neurons and
then evolves in a way described in the above. After 100
iterations, each of the finite elements given in Table 4
becomes associated with one of the neurons. Figures
4 and 5 graphically display the results for S = 2 × 2 and
S = 2 ×  3, respectively. The identifying numbers of the
finite elements selected by a particular neuron are shown
in brackets. As shown in Figure 4 just element #10 of high
order elements has classified in same class with low order
elements. For seeing more precisely elements classified as
Figure 5 that shows again just element #10 gathered by tra-
ditional elements and increasing number of neurons did
not help network to classify another high order element
to contribute in low order class, therefore it just classi-
fies other elements more precisely. Also there is another
concept “migration” which can happen by rising number
of output neurons that an element tends to another neu-
ron and increase or decrease number of element f each
neuron. This migration cause to elements classified more
precisely.

5.   Classification of 3D Finite 
Elements

As shown in Figure 6, the first neuron selects the finite ele-
ments #4 and #5, the second neuron selects the elements
#2 and #3, the third neuron selects the elements #1, #6
and #7 and the fourth neuron #8, #9 and #10. Therefore
in neuron 3 are contribution of low order and high order
elements (Table 5).

Because of similarity of 3D elements in number of
nodes this effect has ignored and classification applied
with other three inputs.

The network has distributed the finite elements
with respect to four classes or clusters, taking into
account their ‘‘closeness’’. The network also preserves

Table 3. Weight matrix of six–neuron
classification network

2 6.2146 5.2146 3
2.4043 5.3034 3.2195 3.5097
2.3962 4.0561 1.9439 3.302
2.9121 4.1861 0.78779 4.0673
2.3061 2.41 0.52872 2.8706

2.6348 3.1256 0.4266 3.4624

Figure 4. Classification by four neuron 2D elements.

Figure 5. Classification by six neuron 2D elements.

Figure 6. Classification by four neuron 3D elements.

Neural Classification of h- and p-version Elements

Indian Journal of Science and TechnologyVol 7 (5) | May 2014 | www.indjst.org626

the topology of the input set, for example indicating
that the third class is closer to the second class and
fourth class.

6. Conclusion
The work focuses on a comparative performance of high
order and traditional finite elements, instead of its evalua-

tion in terms of interpolation theories. The finite element
is formulated as a vector or pattern in a multi-dimensional
space of its attributes. Excluding from consideration the
problem and mesh-dependent effects, this work makes
use of a four-dimensional characterization: its number
of nodes, maximum degree of interpolation polynomials,
number of legendre terms and number of degrees of free-
dom per node.

Table 4. Set of 2D elements

Finite element Identifying
number,#

Number of
nodes, N

Polynomial
degree, M

Number of
Legendre terms,

L

Degrees of
freedom per node,

F

3-node plane triangle 1 3 1 0 2
4-node plane quadrilateral 2 4 2 0 2
6-node plane triangle 3 6 2 0 2
6-node plane quadrilateral 4 6 3 0 2
8-node plane quadrilateral 5 8 3 0 2
4-node rectangular plate 6 4 4 0 3
4-node rectangular shell 7 4 6 0 6
4-node cylindrical shell 8 4 6 0 12
10-node plane triangle 9 10 3 0 2
4-node quadrilateral, L1 10 4 3 1 2
4-node quadrilateral, L2 11 4 4 2 2
4-node quadrilateral, L3 12 4 5 3 2
4-node quadrilateral, L4 13 4 6 4 2
4-node quadrilateral, L5 14 4 7 5 2
4-node quadrilateral, L6 15 4 8 6 2
4-node quadrilateral, L7 16 4 9 7 2
4-node quadrilateral, L8 17 4 10 8 2

Table 5. Set of 3D elements

Finite element Identifying
number,#

Number of
nodes, N

Polynomial
degree, M

Number of
Legendre
terms, L

Degrees of
freedom per

node F

4-node tetrahedron 1 4 1 0 3
8-node brick 2 8 3 0 3
9-node wedge 3 9 3 0 3
10-node parabolic tetrahedron 4 10 2 0 3
15-node parabolic wedge 5 15 3 0 3
4-node tetrahedron, L1 6 4 2 1 3
4-node tetrahedron, L2 7 4 3 2 3
4-node tetrahedron, L3 8 4 4 3 3
4-node tetrahedron, L4 9 4 5 4 3
4-node tetrahedron, L5 10 4 6 5 3

Z. Goudarzi and A. Abedian

Indian Journal of Science and Technology 627Vol 7 (5) | May 2014 | www.indjst.org

The pattern classification may be carried out with the
help a SOM of Kohonen. These networks learn both the
distribution and topology of a set of input patterns.

The classification is of an obvious applied value, as the
elements, which belong to the same class, should show
a similar performance. Also suitability of neural net-
work for evolution of high order and low order elements
proved.

7. References
 1. Szabo BA, Babuska I. Finite element analysis. John Wiley &

Sons; 1991.
 2. Babuska I, Szabo BA, Katz IN. The p-version of the finite

element method. SIAM J Numer Anal. 1981; 18(3):515–45.

 3. MacNeal RH. Finite elements: their design and perfor-
mance. New York: Marcel Dekker; 1994.

 4. Beltzer A. Engineering analysis with Maple/Mathematica.
London: Academic Press; 1995.

 5. Kardestuncer H, Norrie DH. Finite element handbook.
New York: McGraw-Hill, Inc.; 1987.

 6. Beltzer A, Sato T. Neural classification of finite elements.
Comput Struct. 2003; 81:2331–35.

 7. Hagan MT, Demuth HB, Beale M. Neural networks design.
Boston: PWS Publ. Co; 1995.

 8. Haykin S. Neural networks. Upper Saddle River, NJ:
Prentice–Hall; 1999.

 9. Kohonen T. Self-organized formation of topologically cor-
rect feature maps. Biol Cybern. 1982; 43(1):59–69.

10. Kohonen T. The self-organizing map. Proc of the IEEE.
1990; 78(9):1464–80.

